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ABSTRACT

In this paper, we propose using a domain-incremental learning ap-
proach for coping with different devices in acoustic scene classifi-
cation. While the typical way to handle mismatched training data is
through domain adaptation or specific regularization techniques, in-
cremental learning offers a different approach. With this technique,
it is possible to learn the characteristics of new devices on-the-go,
adding to a previously trained model. This also means that new de-
vice data can be introduced at any time, without a need to retrain
the original model. In terms of incremental learning, we propose
a combination of domain-specific Low-Rank Adaptation (LoRA)
parameters and running statistics of Batch Normalization (BN) lay-
ers. LoRA adds low-rank decomposition matrices to a convolu-
tional layer with a few trainable parameters for each new device,
while domain-specific BN is used to boost performance. Experi-
ments are conducted on the TAU Urban Acoustic Scenes 2020 Mo-
bile development dataset, containing 9 different devices; we train
the system using the 40h of data available for the main device, and
incrementally learn the domains of the other 8 devices based on 3h
of data available for each. We show that the proposed approach
outperforms other fine-tuning-based methods, and is outperformed
only by joint learning with all data from all devices.

Index Terms— Domain-incremental learning, Low-Rank
Adaptation, Batch Normalization, acoustic scene classification,
mismatched devices

1. INTRODUCTION

Deep learning models have recently shown impressive results for
acoustic scene classification (ASC) tasks from in-domain static
data. However, in realistic scenarios, new data comes in sequen-
tially. This new data may be from a different domain than the data
used to optimize the model. Incremental or continuous learning of
such a sequence of mismatched domains (i.e., locations, devices,
or other acoustic conditions) deteriorates the model performance on
previously learned domains when learning a new one, which means
catastrophic forgetting [1] occurs in the absence of the previous
domain’s data. Mismatched conditions in continuously evolving
domains introduce domain shift or bias in the feature distribution,
which is the main reason for performance degradation.

In this work, we propose to use the domain-incremental learn-
ing (DIL) [2] approach for learning ASC tasks from different do-
mains (devices) without forgetting the acoustic scenes from previ-
ously seen domains.

This work was supported by Jane and Aatos Erkko Foundation grant
230048 “Continual learning of sounds with deep neural networks”. The
authors wish to thank CSC-IT Centre of Science Ltd., Finland, for providing
computational resources.
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DIL was successfully applied to detect objects from road scenes
in different locations [3] and in different weather conditions [2] for
images, and acoustic scenes from different locations [4]. We aim to
develop a practical DIL model to effectively classify acoustic scenes
from all recording devices seen so far by going through the stream
of data only once, in online learning mode.

DIL is different than existing domain adaptation (DA) methods
for ASC from different devices [5—7]. DA setup typically includes
two domains: source and target. It transfers the knowledge from the
source to the target domain and only focuses on the accuracy of the
target domain. DA requires access to the data of the source domain
to match the distribution with the target domain. In comparison to
DA, the DIL setup includes multiple domains over time that the sys-
tem needs to adapt to; it focuses on the overall accuracy of all the
domains seen so far; takes additional measures to alleviate the for-
getting; and typically does not have access to the previous domain’s
data.

Our previous work adapts the model for the new locations se-
quentially by updating only the running statistics i.e., running mean
and variance of BN layers in an online domain incremental learning
(ODIL) setup [4]. In this work, we propose to add Low-Rank Adap-
tation (LoRA) parameters to the convolutional layers of the model,
and update only these LoORA parameters and running statistics of the
BN layers to adapt to the incrementally occurring new devices for
effective ASC. LoRA is a parameter-efficient fine-tuning (PEFT)
method widely used as a fine-tuning strategy for transformer-based
Large Language Models (LLMs) [8]. LoRA is also used with vision
transformers for continual learning of images [9] and also applied to
convolutional layers for DA [10] and segmentation [11] of images.

The use of LoRA with CNN-based models for ODIL in the con-
text of audio devices is yet to be explored. Unlike conventional
fine-tuning, in which all the parameters of the model are updated
to adapt to a new domain, LoRA fixes the other parameters of the
current model and only updates the trainable low-rank matrices on
the new domain, sequentially. LoRA parameters are significantly
less than the total parameters of the original model.

The main contributions of this work are as follows,

e We propose using LoRA parameters for ODIL to learn acoustic
scenes incrementally from mismatched devices.

e We investigate the combination of LoRA and BN statistics in
classifying acoustic scenes in both online and offline settings.

e We also investigate the ability of the proposed approach trained
on a device with enough data to adapt to incoming mismatched
devices with limited data. It verifies the suitability of LoRA in
low-data scenarios.

The rest of the paper is organized as follows: Section 2 presents the
notations, baselines, and the proposed LoRA and BN combination
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Figure 1: Overview of the proposed approach for incremental learn-
ing of acoustic scenes from different devices in sequence. Inputs
to the model are the test sample and the device ID. The frozen
model M uses domain-specific LoORA parameters and BN statis-
tics to classify the acoustic scenes from a particular device such as
A, B, C, S1, and so on.

for ODIL of acoustic scenes. Section 3 introduces the datasets, im-
plementation details, and results. Finally, conclusions are given in
Section 4.

2. INCREMENTAL LEARNING OF DEVICE DOMAINS

2.1. Incremental learning setup and notations

In our incremental learning setup, a sequence of ASC tasks is pre-
sented to the model; these tasks represent the datasets from differ-
ent domains: D1, D2, ..., D;. The model learns each task, i.e., D;
in our case, at incremental time step ¢. A domain D, is an acoustic
scene dataset recorded with a particular device, composed of audio
clips and corresponding class labels. All domains share the same
classes. We aim to train a single-model M that learns to classify
the same acoustic scenes when domain or data distribution changes.
Initially, we train the M on a relatively larger dataset D, offline
and this model is a base model for incremental tasks. During the
training of incremental tasks, M follows a realistic setting where it
sees a stream of samples only once, online, and quickly adapts to
the new domain on the fly, i.e., ODIL. More importantly, the per-
formance of the M does not degrade on previous domains when it
learns a new domain, unlike the domain adaptation case, in which
the performance on the previous domain does not matter. Note that
in this work we refer to D; as task, domain, device, and dataset
interchangeably.

2.2. Baselines

We construct a few standard baselines to compare with the proposed
approach: (1) Feature extraction (FE): the feature extractor com-
ponent of the base model is frozen after learning D;. The classi-
fier is updated in each incremental domain; (2) Conventional Fine-
tuning (FT): a model trained on the previous domain is fine-tuned
on the new domain at each incremental time step with all its param-
eters. The model is being trained incrementally; (3) Disjoint: a base
model is trained separately on each domain. (4) Joint: a base model
is retrained from all the data of the domains seen so far in each in-
cremental time step, breaking one of the constraints of the DIL. For
a fair comparison, the base model on D; is trained offline and on
other domains trained online in incremental steps for all methods.
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2.3. Online domain-incremental learning of devices using
LoRA-BN combination

We propose to compute domain-specific LORA parameters and BN
statistics for ODIL. At the initial time step ¢ = 1, the base model
M is trained on dataset D;. At each incremental time step ¢, M is
frozen and we only update its LoORA parameters and BN statistics
using new dataset D; as explained below.

Low-Rank Adaptation parameters

For a weight matrix Wygse € R™ ™ of a convolutional layer of the
base model M, LoRA adds trainable rank decomposition matrices
A and B as:

Wbase + AW = Wbasc + A37 (1)
where A € R™*" is a down-projection matrix, B € R™*" is a
up-projection matrix and rank 7 is much smaller than the size of the
inputs m and outputs n, i.e., 7 < min(m, n). The forward pass of
the network with LoRA changes from Wiy se to:

h = Wyesex + ABx, 2)
where « is the input and h is the hidden output. During incremental
learning of a new domain, Whqse is frozen and only the domain-
specific weights of A and B are updated and stored in the model.

Statistics of Batch Normalization layer

BN normalizes the input activations of each layer using mini-batch
statistics, i.e., running mean and variance. The behavior of the BN
layer is different in the training and inference phases. During train-
ing, statistics of the BN layer are updated using training data for-
warded through the network. During inference, statistics obtained
from the training phase are fixed and used to standardize each layer
of the network. BN performs well only when training and testing
data come from the same domain. Therefore, we compute statistics
for each domain separately and store into the model during training.

During inference at each incremental time step, domain-specific
LoRA parameters and BN statistics are applied to base model M to
classify acoustic scenes from the current domain, as shown in Fig. 1.
Input to the model is a combination of the device ID and test sam-
ple, similar to task-incremental learning [12]. Device ID locates the
LoRA parameters and BN statistics of the corresponding device be-
fore classifying the test sample. We only update additional LoRA
parameters and statistics of the BN layers; all other parameters of
the M are fixed. This allows us to recover the original performance
of M for each device by replacing the corresponding LoRA param-
eters and BN statistics. Therefore, M does not suffer from forget-
ting previous devices when it learns a new device. Hereafter, we
refer to our proposed approach as LoORA-BN.

3. EVALUATION AND RESULTS

3.1. Dataset and training setup

Experiments are conducted on the TAU Urban Acoustic Scenes
2020 Mobile development dataset [13], containing audio recordings
from 3 real devices: denoted as A, B, and C, and additional S1-S6
devices simulated from device A. The domain D; is composed of
40 hours of audio data from device A; the other 8 domains D to
Dy include 3 hours of data each from devices B, C and S1-S6. We
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Table 1: Device-specific accuracy of the different methods on each current domain.

Dy | Dy | Ds | Ds | Ds | Do | D7 | Ds | Do
Method A ‘ B | C ‘ st | s2 ‘ s3 ‘ s4 | s5 | s6
Base 672 [ 372 | 36.1 | 19.1 | 189 | 217 | 266 | 23.5 | 224
ODIL-BN [4] | 672 | 40.8 | 447 | 23.1 | 225 | 260 | 30.5 | 312 | 254
LoRA-BN | 672 | 47.0 | 523 | 37.0 | 37.4 | 39.7 | 424 | 433 | 34.6

Table 2: Average accuracy of the different methods over current and all previously seen domains.

Dy | Do | Dy | Da | Ds | Ds | Do | Ds | Do
Method A | B ‘ ¢ ‘ st | s2 ‘ S3 ‘ s4 | S5 ‘ S6
FE 672 | 465 | 43.6 | 333 | 24.7 | 303 | 33.6 | 33.6 | 34.0
FT 672 | 48.0 | 484 | 37.7 | 33.1 | 39.0 | 439 | 43.4 | 44.0
Disjoint | 67.2 | 48.0 | 46.6 | 353 | 29.1 | 359 | 36.2 | 349 | 36.9
LoRA-BN | 67.2 | 57.1 | 55.5 | 50.9 | 48.2 | 46.8 | 46.2 | 45.8 | 44.7
Joint | 67.2 | 603 | 59.7 | 56.3 | 56.1 | 55.0 | 56.4 | 56.7 | 54.7

follow the official training and testing split provided in the dataset
to generate the data for each domain/device'.

Initially, the model is trained on the domain D; and it adapts
to the remaining domains in incremental time steps. We follow the
standard procedure in incremental learning, where the model is only
trained on the current domain, without any data from previous do-
mains, and evaluated on all previously seen domains.

3.2. Implementation details and evaluation metrics

We use the 6 convolutional blocks as a feature extractor and the
layers specifications of each block are the same as PANNs CNN14
[14]. The global pooling is applied to the last convolutional layer
to get a fixed-length input feature vector to the classifier. The en-
tire network is trained from scratch on the first domain D; as the
base model. This base model is adapted to the other domains in
incremental time steps. Input audio recordings are resampled to 32
kHz and log mel spectrograms are computed using default settings
provided in [14].

The model is trained using the Adam optimizer [15] with a
learning rate of 0.0001 and a mini-batch size of 32. The number
of epochs to train the model on D; is set to 120. The LoRA-BN
and baselines are trained at incremental time steps for one epoch
only. CosineAnnealingL.R [15] scheduler updates the optimizer in
every epoch. The rank 7 is set to 2 for minimal trainable parameters
and the original kernel weight is 3.

We evaluate the performance of the model on the current do-
main and all previously seen domains at each incremental step us-
ing average accuracy and forgetting (Fr) as defined in [4]. Average
accuracy is the average of accuracies of the method over the current
and all previously seen domains. Average forgetting (Fr) is the aver-
age difference between the accuracy of the model for each domain
at its learning iteration (the first time the model learns this domain)
and the accuracy of the model for the same domain at the current
iteration (after learning the current domain). A higher average ac-
curacy and lower Fr are better.

"For S4-S6 the 3 hours of training data was not included in the official
DCASE challenge train-test split, but is provided in the dataset.
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3.3. Results

The base model trained on data from real device A achieved an ac-
curacy of 67.2% for domain D;. In Table 1, we compare the accu-
racy of proposed LoRA-BN on the current domain with other meth-
ods, in which all the parameters are frozen or only a few device-
specific parameters are updated in incremental steps and therefore
not suffer from forgetting.

To check the severity of the mismatch between domain D; and
other incremental domains D5 to Dy, we use the base model to clas-
sify the acoustic scenes of other domains without updating its pa-
rameters (no training). The base model does not adapt to the incre-
mental domains, resulting in a drastic performance drop, especially
from simulated domains, D4 to Dy, as seen in Table 1.

ODIL-BN computes the domain-specific running statistics of
the BN layers to classify acoustic scenes from each domain [4].
ODIL-BN does not change any other parameters of the base model
and does not forget previous domains. However, this alone im-
proves the performance of the base model only slightly in most
of the incremental domains. The proposed LoRA-BN computes
the domain-specific LoORA parameters for each convolutional layer
and domain-specific running statics for each BN layer. The addi-
tional combined LoRA parameters and running statistics help the
base model to effectively adapt to the incremental domains. It can
be seen that LORA-BN improves the performance for D2 by 9.8%p
(percentage point), D3 by 16.2%p, D4 by 17.9%p, Ds by 18.5%p,
De by 18.0%p, D7 by 15.8%p, Ds by 19.8%p, Dy by 12.2%p, com-
pared to the base model.

We also compare the performance of the proposed LoRA-BN
method with other popular baseline methods in terms of average ac-
curacy over current and previous domains in Table 2. Accuracy in
the current domain and average forgetting over previous domains is
also shown in Fig. 2. Results of FE compared to FT show that adapt-
ing the layers of the feature extractor to an incremental domain is
better than freezing them. One can observe from Fig. 2a and 2b that
higher forgetting of previous real domains D; to D3 happens when
the model starts learning the simulated domains, specifically D4 and
Ds due to highly mismatched domains. The poor performance of
FT in classifying the acoustic scenes from D; after learning D5 can
also be seen in Fig. 3b. This leads to a lower average accuracy for
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Figure 2: Accuracy at the current domain and average forgetting over previous domains of FE (a), FT (b) and disjoint (c) methods.
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Figure 3: Confusion matrices of a base model on domain D, (a), FT
on domain D; after learning the simulated domain D5 correspond-
ing to S2 (b). The 10 classes are, Al: airport, BU: bus, ME: metro,
MS: metro station, PA: park, PS: public square, SM: shopping mall,
SP: pedestrian street, ST: street with traffic, and TR: tram.

FE and FT for simulated domains D4 and Ds, as seen in Table 2.
However, FT uses all layers to adapt to the simulated devices after
Ds ,and performs better overall after learning all domains.

The disjoint approach fine-tunes the base model trained on D,
to a current domain and performs well on real domains D2 and D3,
maybe due to similar feature distributions. However, fine-tuning the
base model directly to each simulated domain reduces the perfor-
mance of the disjoint method as compared to FT, in which previous
knowledge of the simulated domain is used to classify the acoustic
scenes from the current domain.

The proposed LoRA-BN outperforms all other methods with-
out forgetting any of the previously learned domains and its perfor-
mance is close to the baseline joint which trains the model from the
data of all previously seen domains. The number of LoRA param-
eters for each domain is 124434, which is only a 0.17% increase
to the total parameters 75497930 of the base model. It shows that
LoRA-BN is more suitable for practical scenarios because it only
stores inexpensive LoRA parameters and running statistics.

We also compare the performance of LoORA-BN and other base-
line systems in offline settings. Baseline systems suffer from over-
fitting and lead to decreased performance. However, LoORA-BN
converges effectively over an increasing number of epochs with lim-
ited training data in incremental domains, as seen in Fig. 4. Further,
we test the performance of all the methods by changing the order of
the domains. We found that the devices S1 and S2 are more chal-
lenging to adapt in any order than other devices.

In comparison to the results of the DCASE Challenge 20207,

’https://dcase.community/challenge2020/
task-acoustic-scene-classification#subtask-a-3
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Figure 4: Accuracy of the LoRA-BN over increasing number of
epochs.

the baseline achieves an average accuracy of 54.1%, being trained
for 200 epochs on combined data of devices A-S3, with S4-S6 not
included in the training. This result is aligned with the joint base-
line in this paper, which achieves 54.7% using online training of all
devices using the base model. DCASE baseline reports lower per-
formance on simulated devices S1-S3, being trained offline, non-
incrementally. Our proposed LoRA-BN achieves comparable re-
sults on S1-S3 when trained for 30 epochs, only on data of one
device sequentially. However, our method follows a completely dif-
ferent learning procedure and is therefore not fully comparable with
the DCASE baseline.

4. CONCLUSION

In this paper, we propose a combination of LoRA parameters and
running statistics of the BN layer for ODIL of acoustic scenes
from different devices over time. Results show that highly mis-
matched simulated devices, especially starting devices S1 and S2
are more difficult to adapt by a model trained on real devices.
ODIL-BN achieves poor performance on simulated devices and
baselines severely forget acoustic scenes from previous real de-
vices when these start learning simulated devices. The proposed
LoRA-BN adapts effectively to the new domain and increases the
performance of the base model by a large margin without forget-
ting acoustic scenes from any of the previously leaned devices. The
performance of the LoRA-BN is further improved by increasing
the number of iterations over the training data. LoRA-BN stores
and uses inexpensive parameters and is more suitable for realistic
applications. Future works include the development of a domain-
agnostic approach that does not require device ID to classify acous-
tic scenes.
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