
Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

PREDICTION OF PLEASANTNESS AND EVENTFULNESS PERCEPTUAL SOUND
QUALITIES IN URBAN SOUNDSCAPES

Amaia Sagasti, Martı́n Rocamora, Frederic Font

Music Technology Group
Universitat Pompeu Fabra, Barcelona

name.surname@upf.edu

ABSTRACT

The acoustic environment induces emotions in human listeners.
To describe such emotions, ISO-12913 defines pleasantness and
eventfulness as orthogonal properties that characterise urban sound-
scapes. In this paper, we study different approaches for automati-
cally estimating these two perceptual sound qualities. We empha-
size the comparison of three sets of audio features: a first set from
the acoustic and psychoacoustic domain, suggested in ISO-12913; a
second set of features from the machine listening domain based on
traditional signal processing algorithms; and a third set consisting
of audio embeddings generated with a pre-trained audio-language
deep-learning model. Each feature set is tested on its own and
in combination with ground-truth labels about the sound sources
present in the recordings to determine if this additional informa-
tion improves the prediction accuracy. Our findings indicate that
the deep-learning representation yields slightly better performance
than the other feature sets when predicting pleasantness, but all of
them yield similar performance when predicting eventfulness. Nev-
ertheless, deep-learning embeddings present other advantages, such
as faster calculation times and greater robustness against changes in
sensor calibration, making them more effective for real-time acous-
tic monitoring. Furthermore, we observe a clear correlation be-
tween the sound sources that are present in the urban soundscape
and its induced emotions, specially regarding the sensation of pleas-
antness. Models like the ones proposed in this paper allow for an
assessment of the acoustic environment that goes beyond a char-
acterisation solely based on sound pressure level measurements and
could be integrated into current acoustic monitoring solutions to en-
hance the understanding from the perspective of the induced emo-
tions.

Index Terms— Urban soundscapes, acoustic monitoring, emo-
tions, machine-learning, perception

1. INTRODUCTION

Environmental noise regulations are primarily based on sound pres-
sure level (SPL) measurements. For example, the current European
Environmental Noise Directive proposes several SPL-based metrics
(like Ld, Le, Ln and their combination, Lden) to determine permit-
ted noise levels [1]. The limit values depend on factors such as the
time of the day and the designated noise sensitivity of the evaluated
area. However, other perspectives argue that SPL is insufficient to
reliably characterise the acoustic environment [2]. Some psychoa-
coustic parameters such as loudness and sharpness [3], or episodic
memory and visual perception [4], also play a role in shaping the
perception of an acoustic environment. In this field of research, the

concept of soundscape is key, defining the perceptual and emotional
construct related to a physical phenomenon (the acoustic environ-
ment). The study of soundscapes constitutes a big challenge due to
the intrinsic nature of emotions: they are triggered, brief and uncon-
scious [5]. Addressing these difficulties, the ISO-12913 [6, 7, 8] de-
termines a framework to enable international consensus on the defi-
nition and conceptual foundation of soundscapes. The standard pro-
poses a model with pleasantness and eventfulness as main orthogo-
nal axes to characterise soundscape emotional responses, based on
the evidence that physiological responses to all types of stimuli can
be organized along the dimensions of valence and arousal [9, 10],
or pleasantness and eventfulness when applied to soundscapes [11].

In this study, we focus on exploring different approaches for
automatically estimating the two aforementioned perceptual sound
qualities in urban soundscapes. We put emphasis on the compar-
ison of three feature sets for sound representation: the acoustic
and psychoacoustic features suggested in ISO-12913, a set of fea-
tures from the machine listening domain based on traditional signal
processing algorithms, and a third set consisting of the audio em-
beddings generated by a pre-trained language-audio deep-learning
model. Each feature set is tested independently and in combination
with ground-truth labels about the sound sources present in each
recording to determine if this additional information improves the
prediction accuracy. Additionally, we examine the models’ suit-
ability for real-time acoustic monitoring applications. Our findings
indicate that the deep-learning representation yields slightly better
performance than the other feature sets when predicting pleasant-
ness, but all of them yield similar results when predicting eventful-
ness. Nevertheless, deep-learning embeddings present other advan-
tages, such as presumably faster calculation times and greater ro-
bustness against changes in sensor calibration, making them more
effective for real-time acoustic monitoring. Furthermore, the addi-
tion of sound source information improves the prediction accuracy,
especially regarding the sensation of pleasantness, indicating a clear
correlation between the sound sources present in the urban sound-
scape and its induced emotions. Models like the ones proposed in
this paper allow for an assessment of the acoustic environment that
goes beyond a characterisation solely based on SPL measurements
and could thereby contribute to the development of more accurate
acoustic monitoring techniques, enhancing the understanding of the
evaluated environment from an emotional perspective.

The rest of the paper is structured as follows: Section 2 in-
troduces the related work. Section 3 describes the methods used,
detailing the dataset and the features employed. Section 4 describes
the evaluation process and Section 5 presents the results of our anal-
ysis. Finally, Section 6 consists of a discussion of the findings and
their implications, followed by a conclusion in Section 7.

131



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

2. RELATED WORK

In recent years, many studies have focused on the two-dimensional
model for soundscape emotion assessment, resulting in the cre-
ation of datasets and the experimenting of algorithms on them. Fan
et al.[12] present diverse valence/arousal classifications using their
own dataset EMO-SOUNDSCAPES [13, 14]. In an analogous way,
ATHUS (Athens Urban Soundscape) [15], created by the authors of
[16], is a dataset for urban soundscape quality recognition which in-
cludes pleasantness and unpleasantness annotations. Similarly, the
ARAUS (Affective Responses to Augmented Urban Soundscapes)
dataset [17], combines real urban soundscape recordings with dif-
ferent audio maskers including traffic, construction, water, wind,
bird, and silence, creating a large-scale dataset of augmented sound-
scapes labelled with pleasantness and eventfulness scores obtained
from listening tests developed according to the ISO-12913 [18].
Using psychoacoustic features, the authors run preliminary experi-
ments for the estimation of pleasantness.

Existing research on automatic sound classification provides
insights which are also useful for addressing soundscape qual-
ity assessment. As an example of early work, Salamon et al.
[19] present a set of classification experiments using traditional
machine-learning algorithms applied to their own developed urban
soundscape datasets [20, 21]. Later sound classification works
adopted deep neural networks to address more complex classifica-
tion problems (e.g., [22]). However, the most recent approaches
involve the use of large pre-trained models to extract audio embed-
dings (i.e. representations) that can be used to address different
classification problems and other sound-related tasks such as sound
similarity [23]. In particular, Contrastive Language-Audio Pre-
training (CLAP) models [24, 25, 26, 27] use contrastive learning
to bring audio and text descriptions into a joint multimodal space,
and generate sound representations that capture semantically repre-
sentative information from the audio.

The studies above provide a good framework for research on
urban soundscape characterisation. Nevertheless, two important as-
pects remain unexplored. Firstly, despite existing research showing
that the sound sources present in an acoustic environment contribute
to its perceived qualities (e.g. natural sounds contribute positively
to the pleasantness of an acoustic environment while construction or
traffic noise contributes negatively [11, 18]), there is a lack of exper-
iments incorporating such information as an input for automatically
characterising soundscapes. Secondly, none of the studies validates
the suitability and robustness of the models in real-time contexts,
which is essential for the eventual incorporation of the emotional
dimension into acoustic monitoring techniques.

3. METHODS

The core methodology for studying different approaches for pre-
dicting the perceptual qualities of pleasantness and eventfulness in
urban soundscapes involves data selection, feature extraction, and
model training. Our main objective is to evaluate the performance
of three different feature sets, and determine which one delivers the
best results in terms of accuracy and suitability for real-time appli-
cations.

3.1. Dataset

We choose the ARAUS dataset for our experiments because it is the
most comprehensive available dataset with pleasantness and event-

fulness annotations. ARAUS consists of a set of 25,440 unique
and 30s-length augmented audios, created by digitally adding au-
dio maskers (see Section 2) to real urban soundscape recordings.
They are organised in a five-fold cross-validation set and an in-
dependent test set. Based on the soundscape study methodology
suggested in the ISO-12913, the audio clips are individually la-
belled with 1-5 ratings on how pleasant, annoying, eventful, un-
eventful, vibrant, monotonous, chaotic and calm they are according
to the participants of a listening test. From these ratings, a global
value of pleasantness and eventfulness per recording can be calcu-
lated as defined in the standard. These values range from -1 to 1,
where negative values indicate unpleasantness or uneventfulness,
respectively. Additionally, the ARAUS dataset includes, for each
augmented soundscape, pre-calculated acoustic and psychoacoustic
features recommended by the ISO-12913. These features are cal-
culated with ArtemiS SUITE 1, which is a proprietary software not
easily available to researchers. As part of our work, we provide an
open-source Python implementation of such features facilitating the
reproducibility of the experiments2.

3.2. Features

What follows is a description of the three aforementioned feature
sets that we consider for our experiments.

Psychoacoustic features The standard ISO-12913 suggests a set
of acoustic and psychoacoustic features to characterise urban
soundscapes: sharpness, loudness, fluctuation strength, rough-
ness, tonality, LAeq and LCeq. We compiled existing open
source implementations for these features, and wrote custom
implementations for the missing ones. For each feature, we use
the statistics mean, maximum, and the 5th, 10th, 20th, 30th,
40th, 50th, 60th, 70th, 80th, 90th, and 95th percentiles calcu-
lated over time. Additionally, replicating ARAUS, the band
powers summed over third-octave bands (5Hz to 20kHz) are
included. This results in a total of 117 features. It should be
noted that these features should not be computed directly on the
WAV signal, but on the peak-Pascals pressure signal that results
after applying a gain correction to the raw waveform. Thus, the
waveform represents the SPL at which the signal was recorded,
or, in this case, the level at which it was played in the listening
tests. The Leq value, provided in the ARAUS dataset, is used to
calculate the mentioned calibration factor (designated as wav
gain). This feature set is referred to as ARAUS features.

Signal processing features This set includes features typically
used in traditional machine listening systems. Freesound Ex-
tractor algorithm from the Essentia audio analysis library3 gen-
erates an extensive set of features from which we use: average
loudness; loudness EBU-128; dynamic complexity; spectral
flatness, roll-off, flux, skewness, spread, kurtosis and centroid;
energy per bands (low, middle-low, middle-high, high); 13th
first MFCCs; dissonance; zero-crossing rate; temporal cen-
troid, kurtosis, skewness and spread; log attack-time; inhar-
monicity; and bpm. For each feature, we compute the statistics
mean, variance, and the 20th and 80th percentiles over time,
resulting in a total of 139 features. Contrary to the set above,
these features are directly linked to the raw audio signal. How-
ever, a gain adjustment is performed to ensure that the signal

1https://www.head-acoustics.com/products
2https://github.com/MTG/soundlights
3https://essentia.upf.edu
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amplitude proportions between different audio clips reflect the
volume at which they were played during the listening tests.
To achieve this, we apply the corresponding wav gain to each
audio and then divide by a common normalization factor to
prevent clipping. This set is referred to as Freesound features.

CLAP embeddings This set of features consists of the 512-
length audio embedding generated using LAION-AI’s CLAP
model [24]. Since this model is trained using audio-text pairs,
the resulting vector is expected to capture semantic information
from the audio. This is unlike the ARAUS and Freesound fea-
ture sets, which only represent acoustic information from the
sounds. The same scaling procedure used for the Freesound
feature set is applied in this case. This representation is re-
ferred to as CLAP features.

The above feature sets are tested independently, but also
in combination with information about which sound sources are
present in the urban soundscape. Ideally, this information should in-
clude the predominant sound source. However, no dataset contains
realistic urban soundscape sounds with both this source information
and the pleasantness/eventfulness annotations. The ARAUS dataset
provides the maskers (see Section 2) that were used to generate each
augmented soundscape. Even though these sound sources might
not always be predominant, it is guaranteed that they are present.
Therefore, we use the maskers’ information as a proxy for sound
source information, and represent it with one-hot vectors. These six
features are referred to as sources features.

3.3. Models

The emphasis of this work is not on the models to be trained but
on the feature sets. Nevertheless, a number of preliminary experi-
ments were carried out in which the performances of some classic
machine-learning regression models were compared (like Support
Vector Regression, Multi-layer Perceptron Regressor or regression
based on K-Nearest-Neighbours). In these experiments, the best re-
sults were obtained by an Elastic Net model (as used in [18]), and a
Random Forest Regressor. Therefore, these two models are imple-
mented in our experiments using the Scikit-Learn library 4.

4. EVALUATION

To evaluate the predictive performance and robustness of the feature
sets and models, we design a multi-faceted evaluation framework
which not only includes the use of ARAUS data folds for cross-
validation and model testing but it also involves the creation of a
new testing set with data not present in the original dataset. Ad-
ditionally, the analysis of models’ robustness against sensor cali-
bration is evaluated by introducing controlled variations in audio
signals. Mean Absolute Error (MAE) is used as the main evaluation
metric because it allows for a straightforward interpretation that rep-
resents the average absolute difference between the predicted and
the ground-truth values.

4.1. Data folds

ARAUS includes five folds of augmented soundscapes for cross-
validation and one test fold of 48 audios, reported under the labels
Val and fold-0 in Table 1, respectively. In addition, we create a
complementary testing fold using 25 urban recordings downloaded

4https://scikit-learn.org

Feature
set

Sound
sources
info

Model Train Val Test
fold-
0

Test
fold-
Fs

Var.
%

PLEASANTNESS - MAE

ARAUS no RFR 0.29 0.30 0.24 0.21 4.31yes RFR 0.29 0.29 0.26 0.18

Freesound no EN 0.29 0.30 0.22 0.19 2.19yes EN 0.29 0.29 0.22 0.19

CLAP no RFR 0.10 0.28 0.22 0.14 0.53yes RFR 0.10 0.28 0.22 0.14

EVENTFULNESS - MAE

ARAUS no EN 0.30 0.30 0.15 0.20 1.57yes EN 0.30 0.30 0.14 0.20

Freesound no RFR 0.13 0.29 0.16 0.22 0.02yes RFR 0.13 0.29 0.16 0.22

CLAP no RFR 0.10 0.29 0.20 0.18 -0.41yes RFR 0.10 0.29 0.20 0.18

Table 1: MAE results for the best performing models for the cross-
validation folds and the two testing folds. The MAE variation per-
centage is included in the last column, representing the mean per-
centage variation in MAE when adding the sound sources informa-
tion to the feature set (a positive percentage indicates an improve-
ment in prediction). Note: EN and RFR stand for Elastic Net and
Random Forest Regressor, respectively.

from Freesound5. The selection was carried out manually by the
authors and consists of 30-second excerpts of real urban environ-
ment recordings that include sources such as traffic, construction,
rain, wind, voices, and music. Following ISO-12913, a listen-
ing test was carried out where 22 participants rated the 25 audios
with 1-5 scales on how pleasant, annoying, eventful, uneventful,
vibrant, monotonous, chaotic and calm the soundscapes were per-
ceived. From those ratings, ground-truth pleasantness and event-
fulness metrics were calculated following the same standard. The
audios were calibrated and played at appropriate and varied Leq val-
ues, regardless of the audio content. We refer to this fold as fold-Fs.

4.2. Robustness analysis

As has been mentioned, to evaluate the robustness of the studied
models against different input signal calibration conditions, five
controlled variations of the testing fold fold-0 are generated by
modifying the audio signals with wav gain adjustments of -6dB,
+6dB, +12dB and +18dB; and a fifth variation with random wav
gain within a fixed range [0-20dB].

5. RESULTS

Table 1 presents the MAE scores for the different combinations of
models and feature sets evaluated. For pleasantness, the CLAP rep-
resentation outperforms the other two feature sets in both test folds,
reaching an MAE of 0.14 in fold-Fs. This indicates that, on a scale
of [-1, 1], the predictions deviate by an average of 0.14. In terms
of MAE variation resulting from the inclusion of the source fea-
tures, the CLAP representation shows the smallest improvement,

5https://freesound.org
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with just 0.53%, compared to 4.31% for ARAUS features and 2.19%
for Freesound features. Regarding eventfulness, ARAUS features
outperform the others when taking into account both test folds, but
the smallest MAE for fold-Fs, 0.18 points, is achieved by CLAP
features. When examining the MAE percentage variation, the in-
clusion of sound sources information has a smaller impact, with
percentages closer to zero than those observed for pleasantness.

Figure 1: Increase in MAE value provoked by each fold-0 variation
with respect to the original and unvaried fold-0 MAE.

Furthermore, all controlled calibration variations generated of
fold-0 result in higher MAE values. Figure 1 illustrates the in-
crease of MAE only for the best-performing model for each feature
set. The first noticeable observation is that the impact is greater on
eventfulness, where the MAE increase is more pronounced. Also,
it can be noted that the ARAUS feature set is more negatively af-
fected in both cases, whereas the CLAP feature set appears to be
the least affected. Among the variations, the 6dB increase in wav
gain caused the smaller impact.

In terms of calculation time, CLAP features is the fastest set,
taking 0.5s to calculate the embeddings for a 30s-long stereo au-
dio file (sampled at 48kHz, run in a MacBook Pro M3). Freesound
features and ARAUS features take 8x and 144x longer, respectively.
Note that this comparison is limited as these feature sets are imple-
mented in different frameworks and languages.

6. DISCUSSION

The experimental results indicate that, for predicting pleasantness,
CLAP features outperform the other two sets, achieving an MAE of
0.22 and 0.14 for fold-0 and fold-Fs, respectively. These results
occur both when CLAP features are used alone and when com-
bined with sources features, with only a 0.53% difference in per-
formance between the two scenarios. Since CLAP embeddings in-
trinsically contain semantic information about the audio, additional
sound source information is redundant. Conversely, for feature sets
that lack this semantic data, including the source information pos-
itively impacts the accuracy in the prediction of pleasantness: the
performances of ARAUS and Freesound feature sets improve by
4.31% and 2.19%, respectively. These findings suggest a clear cor-
relation between the sound sources that are present in the urban
soundscape and the perceived sensation of pleasantness. In fact,
these results coincide with those obtained in the listening test. A
quantitative analysis, which can be seen in Figure 2, shows a clear
source-class separation on the pleasantness scale depending on the
predominant sound source: construction and traffic noises are posi-
tioned on the negative side of the axis, while natural sounds are on
the positive side.

For predicting eventfulness, all feature sets perform similarly,

Figure 2: Two-dimensional Kernel Density Estimate plot of the
pleasantness(P) and eventfulness(E) values reported from the an-
swers to the listening test.

with ARAUS features showing slightly better results when consid-
ering the MAE mean of both test sets. Besides, the impact of the
inclusion of source features is negligible, being smaller than 2% for
ARAUS features, and close to zero for Freesound and CLAP fea-
ture sets. This indicates a weaker correlation between the sound
sources present in the soundscape and the sensation of eventful-
ness, coinciding again with the data extracted from the listening
test, where there is more overlap between class groups when seen
from the eventfulness axis (see Figure 2).

In terms of robustness against changes in sensor calibration,
none of the trained models demonstrate strong capabilities, as MAE
increases notably in every fold-0 variation case. Nevertheless, pre-
dictions of eventfulness are more negatively affected, potentially
indicating a correlation between SPL, or loudness, and the percep-
tion of eventfulness. Moreover, models trained with CLAP features
seem to be slightly less impacted by the calibration changes. In
addition to this, their rapid generation time suggests that CLAP fea-
tures are adequate for real-time contexts.

7. CONCLUSION

This research shows that CLAP embeddings generated by LAION-
AI’s CLAP model demonstrate high performance as input to models
for predicting pleasantness and eventfulness perceptual sound qual-
ities. Even though the sound representation does not present strong
robustness to variations in sensor calibration, it can be computed
rapidly, making it suitable for real-time applications. Moreover,
our study indicates a clear correlation between the sound sources
present in an urban soundscape and its sensation of pleasantness.
Future research directions could include evaluating the developed
models in the context of a real-world acoustic sensor network and
incorporating sound classification and source separation technolo-
gies to improve the models’ accuracy and capabilities for meaning-
ful soundscape characterisation and monitoring.
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