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ABSTRACT

General-purpose audio representations with self-supervised learn-
ing have shown promising results on diverse tasks. Methods such
as BYOL-A try to learn semantically robust representation by ig-
noring differences between two data computed using data augmen-
tations that simulate semantically similar data from the same input.
However, some audio-difference-related tasks require representa-
tions that are sensitive to slight semantic differences while maintain-
ing robustness to similar data. This study investigates how to learn
difference-aware audio representations. We propose subtraction-
consistent representation learning in which mixed sounds are sepa-
rable by subtracting representations in latent space. In the proposed
method, an additional network extending BYOL-A learns the differ-
ence between a sound sample and its down-mix with another sound
sample. Experiments confirmed that the proposed method improves
the accuracy of difference-aware audio tasks while maintaining the
general-purpose audio representation performance.

Index Terms— general-purpose audio representation, audio
difference, self-supervised learning

1. INTRODUCTION

General-purpose audio representations with self-supervised learn-
ing have shown promising results on diverse tasks [1–4]. Some
of the self-supervised learning methods try to semantically robust
learn representations by ignoring differences between two data aug-
mentations applied to the same input. Data augmentations, such
as time shifting, pitch shifting, and mixing other audio samples or
noise, are designed and selected to emulate divisions to be ignored
to obtain semantically similar representations in the latent space.
As a result, learned representation will be robust to the difference
between semantically similar data.

However, some difference-aware audio tasks, such as audio re-
trieval with auxiliary information [5], require representations that
are sensitive to slight semantic differences while maintaining ro-
bustness to similar data. Existing general-purpose representation
learning methods do not sufficiently solve this kind of task.

To address the lack of difference awareness in conventional
self-supervised learning, we propose subtraction-consistent repre-
sentation learning in which mixed sounds are separable by subtract-
ing representations in latent space. The overview of the proposed
method is shown in Fig. 1. The proposed method is implemented as
an extension of BYOL-A [3]. Subtraction-consistent representation
learning is based on the hypothesis that the semantic information
present in a mixture of two sounds at similar sound pressure levels is
equivalent to the combined semantic information of the two sounds
before mixing. Our training method subtracts the representation of
one mixed audio sample from the representation of the mixture and
maximizes the agreement between the remaining representation of
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Figure 1: Overview of the proposed method and BYOL-A (con-
ventional method). The proposed method (colored in red) extends
BYOL-A (colored in green), mixing the augmented view v among
other batch data to make a mixed input w. We train the proposed
method to predict the BYOL-A target network output zξ from the
difference between the encoder outputs of v and w.

the subtraction and the representation of the other mixed audio sam-
ple. Multitask learning of BYOL-A and subtraction-consistent rep-
resentation learning losses are performed during training. BYOL-A
learns semantically robust audio representation, while subtraction-
consistent representation learning makes that representation aware
of differences. As a result, our method should learn a difference-
aware general-purpose audio representation.

Experiments confirm the learned representation by the pro-
posed method improves the performance on two difference-aware
audio tasks: environmental sound classification under noisy con-
ditions and audio retrieval with auxiliary information. We also
evaluate the learned representations in various downstream tasks
and confirm that the performance was comparable to that learned
by conventional BYOL-A. Therefore, the proposed method learns
the difference-aware audio representation without degrading the
general-purpose audio representation performance.

2. RELATED WORK

2.1. Self-supervised learning for audio representation

The general-purpose audio representation with self-supervised
learning is effective for diverse tasks, including environmental
sounds, music, and speech. BYOL-A [3] combines the self-
supervised learning method Bootstrap Your Own Latent [6] (BYOL)
with audio data augmentation. It learns representations invariant
to differences in background noise and changes in the pitch and
duration of audio. COLA [1] uses contrastive learning to learn rep-
resentations that become closer to the segments cropped from the
same audio clip and farther among the segments from the different
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audio clips, making the representations of an audio clip invariant
to the cropping location. Fonseca et al. [2], and DeLoRes [4] also
learn representations invariant to audio differences produced by
data augmentation.

While they learn representations robust to changes produced by
data augmentation and differences in segment cropping locations,
they do not explicitly learn to encode information about differences
in audio. This study investigates the learning of a general-purpose
audio representation with awareness of audio differences by intro-
ducing the difference-based loss created by mixing sounds.

2.2. Difference-aware audio tasks

The recognition and retrieval tasks related to audio differences have
also been studied. In [5], audio retrieval with auxiliary information
was proposed. The content-based audio retrieval with text-query
modifier [5] enables us to search an audio clip from an audio sample
and the description of the difference. This method uses the common
latent space between audio clips and descriptions of differences.

The methods to generate text explaining the difference between
two sounds have also been studied [7, 8]. In [8], self-supervised
learning focusing on the fact that input two audio clips are similar
but slightly different is applied for learning the audio difference en-
coder. For the audio captioning system, the training method using
the difference between the audio representation of before and after
mixing is proposed in [9]. This study fixed the parameters of the
encoder model that outputs acoustic representations and utilized the
differences to train the text generation model. Unlike this study, we
use differences to learn the parameters of the encoder model that
outputs the audio representation.

3. BACKGROUND: BYOL-A

BYOL-A [3] is the method to obtain general-purpose audio rep-
resentation by self-supervised training based on the BYOL frame-
work [6]. The green area in Fig. 1 shows the overview of the BYOL
training procedure. BYOL framework uses online and target net-
works with parameters θ and ξ, respectively. The online network
has encoder fθ , projector gθ , and predictor qθ . The target network
has encoder fξ and projector gξ. The parameter of the target net-
work ξ is the exponential moving average of the parameter of the
online network θ. In the online network, compute v by data aug-
mentation t to input x, then pass through the encoder, projector,
and predictor to obtain qθ(zθ). In the target network, compute v′

by another data augmentation t′ to input x, then pass through the
encoder and projector to obtain zξ. After that, the normalized mean
squared error of qθ(zθ) and zξ is used for training loss:

Lbyol = ||l2(qθ(zθ))− l2(zξ)||22

= 2− 2 · ⟨qθ(zθ), zξ⟩
||qθ(zθ)||2 · ||zξ||2

, (1)

where l2(·) is l2-normalization, and ⟨x, y⟩ indicates the inner prod-
uct of x and y. Thus, the BYOL framework can obtain the feature
representation robust to the data augmentation t and t′, and design-
ing the data augmentation is one of the important elements to obtain
better representation.

BYOL-A uses mel-spectrogram to preprocess the audio signal
and three data augmentation methods that consider the nature of
the audio signal: Mixup, random resize crop (RRC), and random
linear fader (RLF). Mixup randomly adds another sound as back-
ground sound, RRC performs shifts and stretches in the axis of time

and frequency randomly, and RLF makes random changes of tem-
poral amplitude, which simulates fade in or out. BYOL-A applies
Mixup, RRC, and RLF to input x sequentially and outputs the data-
augmented views v and v′.

4. PROPOSED METHOD

The proposed method adds self-supervised learning to represent
the relation between the audio signals before and after the mixture
through differences in feature representations in the training proce-
dure of BYOL-A. The training procedure of the proposed method is
shown in red in Fig. 1. The proposed method is structured to include
BYOL-A and in addition to a conventional loss Lbyol, it learns to
predict the target network output zξ from the difference between au-
dio representations before and after the mixture. The computational
procedure of the proposed method branches from the input v af-
ter data augmentation, following the conventional BYOL-A. First,
the mixture w is obtained by intra-batch mixing v with its index-
shifting s(v) and weighted log-sum-exp:

w = log(γ exp(s(v)) + (1− γ) exp(v)), (2)

where, γ is the mixing rate, s is the intra-batch shift operator,
s(v) = s([v1, v2, . . . , vN ]) = [v2, . . . , vN , v1] and vn is n-th
data of v. Then, the difference between the encoder output of the
mixture fθ(w) and encoder output of the sound before mixing mul-
tiplied by the mixing ratio γs(yθ) is calculated and input into the
projector gθ and another predictor q̂θ to compute q̂θ(ẑθ). Finally,
we get the difference loss Ldiff , a normalized mean squared error
between q̂θ(ẑθ) and zξ:

Ldiff = ||l2(q̂θ(ẑθ))− l2(zξ)||22

= 2− 2 · ⟨q̂θ(ẑθ), zξ⟩
||q̂θ(ẑθ)||2 · ||zξ||2

. (3)

The training step backpropagates the weighted sum of two loss (1−
λ)Lbyol + λLdiff , where λ is the weight parameter.

5. EXPERIMENTS

We conducted the following experiments to evaluate the audio rep-
resentations learned by the proposed method, and we used BYOL-
A [3] as the baseline method.

5.1. Pre-training Setup

All audio data was transformed into a mel-spectrogram with a sam-
pling frequency of 16,000 Hz, window size of 25 ms, hop size of
10 ms, and mel-spaced frequency bins F = 64 in the range of
50 to 8,000 Hz. The pre-training dataset was a random sample of
200,000 files from AudioSet [10]. Note that it was approximately
1/10 of the original size. The pre-training only utilized audio files
without employing any labels. The same setup for data augmenta-
tion, exponential moving average, and model structures was used as
the conventional method [3]. Adam [11] was used as the optimizer
with a learning rate 0.001. The number of epochs was set to 100.
The weight parameter λ, which decides the balance between Lbyol

and Ldiff was set to 0, 0.1, 0.2, 0.5, or 0.8. Note that λ = 0 corre-
sponds to the baseline method. The mixing rate of the intra-batch
mixing γ is randomly sampled uniformly between 0.4 and 0.6 for
each input.
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Background sound
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Figure 2: Procedure to generate BgKnown ESC-50. We mix the
ESC-50 samples with the FSD50K sample as background noise to
create a mixture and three reference background sounds.

Table 1: BgKnown ESC-50 results (%). A larger λ learned more
from Ldiff improves accuracy, validating that the proposed ap-
proach achieved the difference-aware property.

Method λ Mix (a) 100% (b) 50% (c) 0%

Baseline 0 47.25 55.29 52.21 47.92

Proposed 0.1 47.39 55.54 52.46 48.50
Proposed 0.2 47.42 57.54 53.37 48.67
Proposed 0.5 47.33 58.96 54.63 50.50
Proposed 0.8 45.84 59.96 55.50 51.96

5.2. Evaluation: Background-known ESC-50

This experiment verified that the audio representation learned by
the proposed method holds effective information about the audio
differences for solving a task. To do so, we created a dataset,
Background-known ESC-50 (BgKnown ESC-50), and tested the
pre-trained models.

Dataset: Background-known ESC-50
BgKnown ESC-50 extends ESC-50 [12], an environmental sound
classification task with 50 classes, by mixing the FSD50K audio
files as background noise to the ESC-50 audio files. As shown in
Fig. 2, we created a mixture (an ESC-50 audio contaminated with
noise) and three reference backgrounds. While solving a task using
only the mixture is challenging due to the noise, we made one of
the reference backgrounds available; the more effectively the solver
utilizes the difference between a mixture and a reference, the higher
the task performance.

We randomly selected the FSD50K sample with 10 seconds or
longer and cropped (a) a 5-second long clip, (b) a 5-second long
clip with 50% overlap with (a), and (c) a 5-second long clip without
overlap from (a), and mixed (a) into ESC-50 sample with a random
SNR between 0 to 3 dB using Scaper [13]. We kept the labels un-
changed. Among the split folds of ESC-50, we assigned 1, 2, and
3 to the training set (1200 files) and 4 and 5 to the test set (800
files). We used the FSD50K development and evaluation sets as the
background noise for the training and test sets, respectively.

Experimental setup
We conducted a linear evaluation using feature differences on Bg-
Known ESC-50. First, we used the pre-trained encoder fθ to obtain
representations ymix and ybg of the mixture and reference back-
ground and obtained the difference representation ydiff = ymix −
ybg. Then, we conducted a linear evaluation using the ydiff on the
three problem settings (a) to (c).
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Figure 3: Model and adapter structure for audio retrieval with aux-
iliary information. We train the system using a contrastive learning
and classification task. Audio Emb and Text Emb indicate audio
and text embedding layers, respectively. GELU is the Gaussian er-
ror linear unit [14].

Table 2: APwD-Dataset results (%). The proposed method im-
proves the audio encoder, performing better than the conventional
and baseline, with the best results using λ of 0.2 to 0.5.

Rain Traffic
Method λ R@1 R@5 R@10 R@1 R@5 R@10

Conventional [5] - 44.5 72.1 76.9 39.1 62.2 69.5
Baseline 0 50.23 71.66 75.26 36.86 58.59 67.93

Proposed 0.1 51.96 71.63 74.83 37.96 59.73 66.9
Proposed 0.2 53.99 72.06 76.00 37.70 60.06 68.00
Proposed 0.5 52.76 71.73 75.73 39.73 60.63 68.30
Proposed 0.8 51.66 70.63 74.86 39.56 61.36 68.16

We followed the standard linear evaluation procedure in the
conventional method [3] that trains a single linear layer, taking the
difference representation ydiff as input. We set the training epochs
for 200 with early stopping based on the validation loss value, as-
signed 10% of the training set as the validation set, and used the
Adam optimizer with a learning rate of 0.001. We ran the exper-
iments with different random seeds three times and averaged the
results.

Results
Table 1 shows the results of BgKnown ESC-50. In addition to the
(a) to (c), we also tested ymix as is in the linear evaluation, denoted
as “Mix”. The results show that the proposed method improved
accuracy with larger λ for the (a) to (c) when using the difference
representation ydiff . In contrast, the results stayed around 47% for
the Mix when we used the representation of the ymix as it is in-
stead of ydiff . These results demonstrate that the representation of
the proposed method holds effective information about the audio
differences.

Notably, the (c) 0% results show improvement despite no direct
overlap with the mixed background noise. The segments cropped
from the same audio clip share the background sounds (or sound
scene of the clip), indicating that the information about the audio
difference represents the clip-level (or semantic-level) information
of the audio clip.

5.3. Evaluation: Audio retrieval with auxiliary information

We validated the effectiveness of the difference-aware representa-
tion for the difference-aware audio task. We evaluated the represen-
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Table 3: Linear evaluation results on audio classification tasks (%) with 95% CI. The results in bold are the best scores in each task. Many
underlined results within the 95% confidence interval of the baseline show that our models maintain baseline performance.

Method λ ESC-50 US8K SPCV2 VC1 VF CRM-D GTZAN NSynth Surge Average

Baseline 0 82.70 ± 1.76 79.43 ± 0.73 93.16 ± 0.18 57.17 ± 0.97 93.39 ± 0.38 61.81 ± 2.30 67.24 ± 3.93 74.80 ± 0.22 37.82 ± 0.17 71.95

Proposed 0.1 82.12 ± 1.37 79.85 ± 0.33 93.22 ± 0.16 56.90 ± 0.12 93.22 ± 1.10 60.67 ± 0.00 67.24 ± 0.86 76.30 ± 0.37 37.82 ± 0.02 71.93
Proposed 0.2 82.77 ± 0.85 79.72 ± 0.48 93.15 ± 0.31 56.75 ± 0.14 93.38 ± 0.09 61.21 ± 1.64 67.24 ± 3.09 74.23 ± 0.39 37.68 ± 0.29 71.79
Proposed 0.5 82.37 ± 1.56 78.99 ± 0.50 92.96 ± 0.24 55.86 ± 0.03 92.78 ± 0.79 60.65 ± 0.33 66.90 ± 1.48 74.76 ± 0.26 38.17 ± 0.91 71.49
Proposed 0.8 80.80 ± 2.00 78.62 ± 0.12 92.82 ± 0.23 55.19 ± 0.15 92.10 ± 0.45 61.36 ± 1.45 66.78 ± 1.98 74.25 ± 0.29 38.72 ± 0.92 71.18

tations using an audio retrieval task with auxiliary information [5],
one of the practical tasks utilizing semantic differences.

Experimental setup
This experiment used the APwD-Dataset [5], which consists of a set
of two similar audio clips and an auxiliary text describing the dif-
ferences between these audio clips. The task is to search for a target
audio that best matches the query audio and auxiliary text. The au-
dio clip is a mixture of ESC-50 audio event samples (foreground
sound with class labels) and an FSD50K acoustic scene sample
(background sound). This dataset contains two scenes, “Rain” and
“Traffic,” distinguished by their background sounds, consisting of
50,000/1,000 samples for training and testing sets. In addition, class
labels are available for an extra classification task.

We followed [5] for the system and the training/test details.
Fig. 3 shows the system that inputs a query audio and a query-
modifier text (auxiliary information), and searches the target audio
using cosine similarity. During training, it learned through con-
trastive learning and multi-label classification tasks. We used the
encoder pre-trained by the proposed method as the audio embedding
layer in the shared audio encoder blocks and DistilBERT [15] as text
embedding layer in the text encoder block. We froze all audio/text
encoder parameters. We trained the adapter and linear layers for
300 epochs using the Adam [11] optimizer. We assigned 10% of
the training samples for validation, and the model with the smallest
validation loss was used for evaluation. We used recall@K(R@K)
to evaluate the accuracy of audio retrieval. R@K is the rate at which
the ground-truth audio files are included in the Kth rank of the se-
lected candidates. We ran the evaluation with three random seeds
and averaged the results to obtain the final score.

Results
Table 2 shows that the audio encoder pre-trained by the proposed
method improves the audio retrieval performance. The results con-
tain the conventional method [5] using VGGish [16] as audio em-
bedding, the baseline using BYOL-A, and the proposed methods.
The “Rain” results show that the proposed method improved to
53.99% for R@1 from the baseline of 50.23% and the conventional
44.5%. The “Traffic“ results also show that the proposed method
improved to 39.73% for R@1 from the baseline of 36.86% and
the conventional 39.1%. These results validate the effectiveness of
the proposed subtraction-consistent representation learning for the
difference-aware audio task.

5.4. Evaluation: General-purpose audio representation

We validated that the proposed subtraction-consistent representa-
tion learning maintains a general-purpose audio representation per-
formance without the impact of learning the difference-aware abil-
ity. We followed BYOL-A [3] to assess the performance in a linear
evaluation on various tasks, including environmental sound, music,
and speech.

Experimental setup
The tasks for linear evaluation include ESC-50 [12], Urban Sound
8K [17] (US8K), Speech Command V2 [18] (SPCV2), Vox-
Celeb1 [19] (VC1), VoxForge [20] (VF), CREMA-D [21] (CRM-
D), GTZAN [22], NSynth [23], and the Pitch Audio Dataset (Surge
synthesizer) [24] (Surge). The training/test details follow BYOL-
A [3], such as the training epochs 200 with early stopping based on
the validation loss. We ran the evaluation with three random seeds
and averaged the results with 95% CI.

Results
Table 3 shows that the proposed method slightly degrades the
general-purpose performance, while most results are within the
95% confidence interval. The average result degrades from 71.95%
for the baseline to 71.18% for λ = 0.8. However, most task results
of the proposed method are marked with underline, i.e., within the
range of 95% confidence interval of the baseline results. The most
significant degradation of VC1 is -1.98 from 57.17%, which should
be a slight drop considering the confidence interval range is ±0.97.
These results confirm that the performance degradation caused
by the proposed subtraction-consistent representation learning is
generally insignificant.

We confirm that the large λ changes the characteristics of the
learned representations as the APwD-Dataset results in Section
5.3. While using λ = 0.8 degrades the general-purpose perfor-
mance most in Table 3, using λ = 0.5 or 0.8 improves the Traffic
performance of APwD-Dataset in Table 2. In addition, Surge, a
pitch classification of musical instruments, improves as λ becomes
larger, suggesting the representation contains more pitch informa-
tion. These observations suggest a tradeoff of task performance by
the use of learning tasks.

6. CONCLUSION

This study investigates how to learn difference-aware audio repre-
sentations. We propose a self-supervised learning method called
subtraction-consistent representation learning. With the obtained
representation, mixed sounds are separable by subtracting repre-
sentations in latent space. In the proposed method, an additional
network extending BYOL-A learns the difference between a sound
sample and its down-mix with another sound sample. Experiments
confirmed that the proposed method improves the accuracy of audio
signal retrieval with text auxiliary information utilizing semantic
differences in sounds. It was also confirmed that the performance
of the proposed method does not degrade significantly in the lin-
ear evaluation of various traditional audio classification tasks that
require general-purpose audio representation.
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