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ABSTRACT
This work aims to advance sound event detection (SED) research
by presenting a new large language model (LLM)-powered dataset
namely wild domestic environment sound event detection (Wild-
DESED). It is crafted as an extension to the original DESED dataset
to reflect diverse acoustic variability and complex noises in home
settings. We leveraged LLMs to generate eight different domestic
scenarios based on target sound categories of the DESED dataset.
Then we enriched the scenarios with a carefully tailored mixture of
noises selected from AudioSet and ensured no overlap with target
sound. We consider widely popular convolutional neural recurrent
network to study WildDESED dataset, which depicts its challenging
nature. We then apply curriculum learning by gradually increasing
noise complexity to enhance the model’s generalization capabilities
across various noise levels. Our results with this approach show
improvements within the noisy environment, validating the effec-
tiveness on the WildDESED dataset promoting noise-robust SED
advancements.

Index Terms— sound event detection, DESED, noisy scenario,
noise robust SED, curriculum learning

1. INTRODUCTION

Sounds play a vital role in our lives, helping us understand our sur-
roundings and notice changes. Sound event detection (SED) [1, 2]
is essential for interpreting and responding to our environment, with
applications ranging from urban noise management to smart-home
technologies [3] and security systems [4]. SED has made great
strides [5–7], thanks to diverse datasets [8] tailored for specific sce-
narios. Google AudioSet [9] provides a wide array of sounds, and
MAVD [10] focuses on traffic noise. Among various SED datasets,
DESED [11, 12] is well known for its focus on domestic environ-
ments, which makes it the most utilized dataset for home sound
event research. However, DESED faces challenges in comprehen-
sively representing the unpredictable and complex nature of house-
hold sounds. Hence, there exists scope for covering a wide range of
domestic scenarios with common background noises that can occur
in a household.

The quest for noise robustness in SED has led to the develop-
ment of new methodologies and datasets [13, 14] aimed towards
improving performance under challenging conditions such as noisy
urban environments. Innovations by researchers like Neri et al. [15],
Serizel et al. [16], and Wan et al. [17] have pushed the boundaries
of SED systems by integrating deep learning and audio enhance-
ment techniques. These studies, however, predominantly address
controlled or semi-controlled environments, leaving a gap for SED
systems to effectively detect sound events in the less predictable,
‘wild’ conditions in domestic environments.

Addressing this gap, our research contributes to the field by in-
troducing a new dataset namely, wild domestic environment sound
event detection (WildDESED). We proposed carefully selecting
noise types from the AudioSet that accurately represent real home
environments but are distinct from DESED’s target sounds. This
artificial selection could be challenging because of the bias and un-
natural correlations. Large language models (LLMs) [18] such as
GPT-4, ChatGPT, and Llama have demonstrated remarkable poten-
tial to perform various tasks [19–21] in recent years. In this regard,
we utilized the strong capabilities of LLMs to analyze and sum-
marize acoustic data for selecting specific noises. This helped us
to design eight different scenarios that blend the noises with target
sounds, simulating authentic domestic environments. The noises
are divided into four categories based on their sources and acous-
tic properties, allowing for a diverse and realistic combination with
target sounds. This novel approach has culminated in the creation
of WildDESED dataset, specifically designed to enhance SED re-
search in dynamic and natural home environments.

Building on this foundation, our research not only intro-
duces the WildDESED dataset, but also explores the application
of curriculum learning in the context of SED to tackle the chal-
lenges posed by domestic noisy environments. Curriculum learn-
ing [22–24] is a training approach that improves models for noisy
speech [25–27] and audio by starting with simpler, less noisy data
and gradually increasing the noise level. This method is similar to
the way how the humans learn and helps models adjust from clean
to noisy sounds more effectively. In this work, we applied curricu-
lum learning to the baseline convolutional recurrent neural network
(CRNN) [28–30] model using the WildDESED dataset for our stud-
ies. The novelty of this work lies in the proposal of a new in-the-
wild dataset for advancing SED research and exploring curriculum
learning as an approach to develop noise-robust SED systems. The
WildDESED dataset has been made publicly available1.

2. RELATED WORK

The WildDESED dataset is an extension to the original DESED
dataset, which is a foundational resource featuring 10 target sound
classes pivotal for understanding the sounds in home environments.
The DESED dataset consists of the following subsets: The weak
set, with 1,578 real recordings labeled with weak annotations, cap-
tures the presence of sound classes without temporal specifics. The
unlabeled training set includes 14,412 real, unlabeled recordings.
The test set comprises of 1,168 real recordings with strong anno-
tations to assess model performance. These three subsets are real-
world recordings from AudioSet. The training synth set contains
10,000 synthetic recordings with strong annotations [31], detailing

1https://github.com/swagshaw/WildDESED
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Table 1: A summary of different background noises used in Wild-
DESED dataset.

Noise Occurrences Duration (Second)
Bird chirping outside 9,847 7,523

Car passing by outside 311 862
Chair moving 343 359
Clock ticking 2,5777 2,662

Coffee machine 6 30
Door closing 335 196

Fan noise 117 958
Footsteps 6,243 2,101
Light rain 159 1,379

Refrigerator humming 58 456
TV playing in the background 805 7,191

Wind blowing 5,467 48,648
Total 49,468 72,365

exact temporal boundaries. The synth validation set has 2,500 syn-
thetic recordings with strong annotations for model validation dur-
ing development. These two synthetic subsets are generated with
the Scaper. Their background files are extracted from SINS [32],
TUT [33], MUSAN [34], or YouTube and have been selected be-
cause they contain a very low amount of our sound event classes.
We propose to simulate more diverse and complex noisy scenarios
that are not covered by the original DESED dataset and also intro-
duce a controlled variability for testing.

3. WILDDESED

We extend DESED to the WildDESED for in-the-wild scenarios for
domestic environments by considering three primary set of ques-
tions to address as follows:

• What type of background noises do we use?
• What are the domestic scenarios we choose?
• How do we mix the background noises to the scenarios?

GPT-4 is an advanced language model that builds on the GPT-3 ar-
chitecture but uses a larger amount of training data. It includes the
latest techniques to enhance understanding of natural language. In
the following subsections, we will detail how we leverage GPT-4
to address each of these questions, outlining the methodology be-
hind the creation of the WildDESED dataset. This new dataset aims
to bridge the gap between the controlled environment of existing
datasets and the dynamic, often unpredictable nature of real-world
domestic soundscapes, thus expanding the potential for noise-robust
SED research in truly ‘wild’ home scenarios.

3.1. What type of background noises do we use?

To construct the WildDESED dataset, we initiated our process with
the foundational DESED dataset, which identifies 10 distinct sound
events in 10-second audio clips. The events in DESED include
diverse household sounds like alarms, appliances, pets, and run-
ning water. We input the total 356 classes from the strongly anno-
tated subset of AudioSet to the GPT-4 together with the 10 DESED
classes. Then we guide GPT-4 by the following prompt:

“Select noise classes from the 356 strongly annotated AudioSet
classes, alongside the 10 DESED classes ensuring clear delineation
and no overlap with DESED’s sound events. Further, apply thor-
ough filtering to exclude any AudioSet classes similar to DESED
target classes, preserving the distinctiveness of the dataset.”

Considering the output of GPT-4, we enhanced DESED with
selected events from the strongly annotated subset of AudioSet, en-
suring clear delineation and no overlap with DESED’s sound events.
A thorough filtering process was applied to exclude any AudioSet
classes that are very similar to target classes of DESED dataset,
preserving the distinctiveness of our dataset. Table 1 displays the
outcome of our selection process, listing the types and quantities of
noise clips integrated into WildDESED. We included a spectrum of
sounds both indoor, like the clock ticking, and outdoor, such as birds
chirping that capture the essence of a domestic environment. The
‘clock ticking’ class, for instance, has the largest event count, while
‘wind blowing’ spans the greatest duration, together reflecting the
continuous and transient nature of home sounds.

This dataset construction ensures WildDESED encompasses a
rich and authentic array of domestic noises, ready to challenge and
advance SED systems in recognizing the events under complex
acoustic home environments.

3.2. What are the domestic scenarios we choose?

For the WildDESED dataset, we still have to map the selected 12
noise classes with our 10 target classes. We input them to GPT-4
and use the following prompt:

“Create eight different domestic scenarios so that they should
map 12 selected noise classes to the 10 target classes from the
DESED dataset, crafting authentic household soundscapes. Ensure
the scenarios reflect typical sounds one would encounter in a house-
hold environment.”

Considering the output of LLM, we crafted eight different do-
mestic scenarios, each mapping to target classes from the DESED
dataset to create authentic soundscapes one would encounter in a
household. These scenarios are constructed to reflect the typical
activities and the accompanying sounds in a domestic environment.

• Morning Routine: Associated with ‘Blender’ target sounds,
this scenario captures the essence of the morning with ‘Light
rain’, ‘Refrigerator humming’, ‘Clock ticking’, and ‘TV play-
ing in the background’.

• Home Office: Linked to ‘Speech’ as the target class, it includes
background sounds of ‘Car passing by’, ‘Fan noise’, and ‘Foot-
steps’, emulating a work-from-home setting.

• Household Chores: Representing ‘Vacuum cleaner’ noises as
the target, this scenario combines ‘Door closing’, ‘Chair mov-
ing’, and ‘Footsteps’ as background to depict cleaning activi-
ties.

• Late-night: Tied to the ‘Electric shaver toothbrush’ target
sound, offering the ‘Clock ticking’ and ‘Light rain’ as a back-
drop for night-time routines.

• Cooking: Merging the target sounds of ‘Frying’ and ‘Dishes’
with ‘Coffee machine’ buzzes and ‘Refrigerator humming’,
this scenario is bustling with culinary activity.

• Pet Care: Incorporating target sounds of ‘Cat’ and ‘Dog’, this
setting is further brought to life with ‘Bird chirping outside’
and ‘TV playing in the background’.

• Bathroom Routine: Linked to ‘Running water’ as the target
sound, with added ‘Fan noise’ and ‘Wind blowing’, simulating
personal care sounds.

• Emergency: Associated with the ‘Alarm bell ringing’ target
sound, it layers urgent sounds like ‘Refrigerator humming’ and
‘Fan noise’ with ‘Clock ticking’ and ‘Car passing by’.
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Figure 1: Illustration3of Morning Routine Scenario out of the total
eight scenarios in WildDESED dataset. In the scenario, key target
sound events are written in bold fonts, along with added different
background noises to simulate real-life settings.

Each scenario’s sound design is a thoughtful blend of target and
noise classes, chosen to challenge the detection capabilities of SED
systems within the rich and varied auditory context of a home en-
vironment. To illustrate our scenarios, we present a Figure 1 that
showcases two typical scenarios out of the eight: the ‘Pet Care Sce-
nario’ and the ‘Morning Routine Scenario’. This figure highlights
key target sound events within each scenario, incorporating strate-
gically placed background noises to simulate the real-life acoustic
challenges found in domestic settings.

3.3. How do we mix the background noises to the scenarios?

In the WildDESED dataset, the integration of background noises
into the selected domestic scenarios is meticulously structured
around a quadrant based on the acoustic characteristics of the
noises. The quadrant categorizes noises into four groups: Ambi-
ent Environmental Sounds, Human-related and Intermittent Sounds,
Mechanical and Electronic Sounds, and Nature and Outdoor
Sounds, as illustrated in Figure 2.

• For Ambient Environmental Sounds, such as ‘Light rain’ and
‘Wind blowing’, we repeated these sounds to cover the entire
duration of the audio clip from the original DESED dataset.
These sounds are mixed at a low intensity to ensure they pro-
vide a consistent background atmosphere without overpower-
ing the primary sound events. The rationale behind this is to
create an unobtrusive ambient layer that emulates the continu-
ous presence of these sounds in a typical home environment.

• Sounds like ‘Footsteps’, ‘Door closing’, and ‘Chair moving’
fall into the Human-Related and Intermittent Sounds cat-
egory. These are inserted at random intervals to simulate the
sporadic nature of human movement and activities within a
home. The volume and frequency of these sounds are varied
±10% range to reflect the realistic and unpredictable nature of
their occurrence in daily life.

• Mechanical sounds, including ‘Clock ticking’ and ‘Coffee
machine’, are inserted at specific points to coincide with the
actions they represent, such as a coffee machine being used
during morning routines. The volume is set to be noticeable
but not overwhelming, ensuring the sound is recognized as a
part of the scenario without becoming a large distraction.

• Lastly, Nature and Outdoor Sounds like ‘Car passing by out-
side’ and ‘Bird chirping outside’ are incorporated randomly to
enhance the realism of external environmental influences. The

Ambient Sounds

Unpredictable 

Human-Related
Sounds

Nature and Outdoor
Sounds

Mechanical Sounds

ContinuousDiscontinuous

Predictable

Figure 2: Quadrant showing four groups of noise types based on
their acoustic characteristics considered in the WildDESED.

Figure 3: Statistics of noises in the WildDESED subsets.

volume may fluctuate to mimic the variable volume of these
sounds in real settings, contributing to the unpredictability and
diversity of the overall soundscape.

Each noise type and its corresponding mixing approach are tailored
to maintain the authenticity of the domestic scenarios. This me-
thodical and scenario-specific approach to mix noises ensures that
the WildDESED dataset not only presents a challenge for SED sys-
tems but also closely reflects the complex acoustic environments of
actual domestic settings.

In finalizing the composition of the WildDESED dataset, spe-
cial consideration was given to the representation of the ‘speech’
sound class due to its prevalence and significance in domestic en-
vironments. For the ‘Home Office’ scenario in synth set and synth
val set, we exclusively selected clips that featured the ‘speech’ class
in isolation, omitting any clips where ‘speech’ occurred alongside
other sound events.

Figure 3 displays class-wise statistics for different background
noises in each subset of the WildDESED dataset, indicating the
prevalence of each noise type, within synth, synth val, weak, and
test subsets. Figure 4 shows scenario-wise statistics for the sce-
narios in the WildDESED dataset, quantifying how frequently each
scenario appears in each subset. Through this detailed dataset
structure, WildDESED dataset positions itself as a crucial resource
for developing and evaluating SED systems, equipping researchers
with the means to advance the field of SED in diverse naturalistic
home environments.

3Figures generated using DALL-E-2 (https://openai.com/dall-e-2)
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Table 2: Performance in PSDS1 (P1), PSDS2 (P2) and PSDS1 + PSDS2 (P1 + P2) of the proposed curriculum learning (CL) approach on the
DESED devtest set and our proposed WildDESED (W) dataset with SNR in dB.

Model Performance on DESED Performance on WildDESED
10dB 5dB 0dB -5dB

P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2
CRNN 0.344 0.543 0.887 0.222 0.409 0.631 0.148 0.302 0.450 0.064 0.174 0.238 0.017 0.078 0.095

CRNN (W) 0.200 0.329 0.529 0.175 0.337 0.512 0.135 0.303 0.438 0.087 0.242 0.329 0.048 0.174 0.222
CRNN (W+ CL) 0.265 0.461 0.726 0.212 0.443 0.655 0.175 0.390 0.565 0.114 0.317 0.431 0.049 0.211 0.260

Figure 4: Statistics of the scenarios in the WildDESED subsets.

4. CURRICULUM LEARNING FOR NOISE-ROBUST SED

We use a curriculum learning [22, 26] method to develop noise-
robust SED systems. This approach introduces complexity in
stages, starting with simple tasks and gradually integrating noise
at various signal-to-noise ratios (SNR), aligning with our goal to
augment the model’s resilience to noise.

We have five stages in our methodology, each with an increas-
ing level of noise difficulty. Initially, the model learns from clean
audio samples. This foundational step is crucial for establishing an
understanding of the sound events without the confounding pres-
ence of noise. We then incrementally introduce noise, decreasing
the SNR by 5dB in subsequent stages. Let N be the total number of
training samples. Given k noise levels L = [L1, L2, . . . , Lk], the
dataset D is composed as follows:

D =

k⋃
i=1

{Di} , Di =
N

k
samples at noise level Li (1)

The k in our experiment here is 5 including the clean DESED,
and noise levels 10dB, 5dB, 0dB, and -5dB are considered. The
model’s progress is meticulously monitored, and a validation metric
c is used to evaluate learning at each epoch. In our approach, the c
is the intersection f1-score. If c fails to improve for ten consecutive
epochs [35], the best-performing model state is reloaded, and the
training progresses to the next noise level.

5. EXPERIMENTAL SETTINGS

5.1. Dataset and Evaluation Metric

We considered the DESED dataset and our proposed WildDESED
dataset, featuring 10-second audio clips across various subsets. All
clips were resampled to 16 kHz mono and segmented using a 2048-
sample window and 256-sample hop length for spectrogram extrac-
tion and log-mel spectrogram generation. Our systems were eval-
uated using the threshold-independent polyphonic sound event de-
tection scores (PSDS) [36] in two scenarios following DCASE 2023
Challenge Task 4A protocol. Scenario-1 focuses on prompt reaction
and temporal localization, while Scenario-2 emphasizes on reduc-
ing class confusion for SED.

5.2. Implementation Details

For our experiments, following the DCASE 2023 Task 4A base-
line [29], we utilized a batch size of 48 and employed the Adam
optimizer with an initial learning rate of 0.001, coupled with an ex-
ponential warmup scheduler applied across the first 50 epochs out
of a total 200 epochs. To stabilize training, we implemented a mean
teacher model with an exponential moving average [37] factor set at
0.999. We consider the CRNN [29] baseline system from DCASE
2023 Task 4A, featuring approximately 1.2 million parameters, en-
suring a robust comparison for our curriculum learning approach.

6. RESULTS AND DISCUSSION

Table 2 shows the results of our studies on DESED and newly cre-
ated WildDESED datasets. It is observed that the performance of
the baseline CRNN model trained using DESED dataset drops sig-
nificantly as the noise levels are increased on WildDESED dataset
compared to that on the original DESED dataset. We then explore
the baseline CRNN model trained using WildDESED data, which
we refer to as CRNN (W). We find that CRNN (W) performs bet-
ter than the original CRNN model when the noise levels on Wild-
DESED are on the higher end (0 dB and -5 dB). However, the per-
formance is comparable for both models when noise level is 5 dB
and then the original CRNN model performs better for less noisy
scenario of 10dB on WildDESED and on the clean DESED dataset.

We now focus on the studies for curriculum learning approach
applied on the CRNN model trained using WildDESED dataset. We
refer this model as CRNN (W+CL) and find that it outperforms
both CRNN as well as CRNN (W) models for all noise levels on
the WildDESED dataset. This highlights the scope of curriculum
learning approach for developing noise-robust SED systems using
WildDESED dataset for unseen complex domestic settings. We also
note that the CRNN model trained on the clean DESED performs
the best on the DESED test due to the matched conditions. How-
ever, the model CRNN (W+CL) with curriculum learning certainly
helps to boost the performance of the CRNN (W) model trained on
WildDESED dataset to bring it closer that of the CRNN model on
DESED test set. The future work will focus on reducing this per-
formance gap on the clean scenario for noise-robust SED models.

7. CONCLUSION

In this work, we have presented a new dataset referred to as Wild-
DESED to advance SED research under noisy home settings and
also explored a preliminary curriculum learning method to develop
noise-robust SED systems. We used 12 noises from Audioset to
craft the WildDESED dataset considering 8 different scenarios de-
picting complex home environments by considering assistance from
an LLM. The studies conducted showed the scope of curriculum
learning approach for developing noise-robust SED systems using
the WildDESED dataset. We believe this WildDESED dataset will
be useful for future horizons of noise-robust SED research.
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