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Abstract—This paper investigates multimodal and hierarchical classifi-
cation strategies to enhance performance in real-world sound classification
tasks, centered on the two-level structure of the Broad Sound Taxonomy.
We propose a framework that enables the system to consider high-
level sound categories when refining its predictions at the subclass level,
thereby aligning with the natural hierarchy of sound semantics. To
improve accuracy, we integrate acoustic features with semantic cues
extracted from crowdsourced textual metadata of the sounds such as
titles, tags, and descriptions. During training, we utilize and compare pre-
trained embeddings across these modalities, enabling better generalization
across acoustically heterogeneous yet semantically related categories.
Our experiments show that the use of text-audio embeddings improve
classification. We also observe that, although hierarchical supervision
does not significantly impact accuracy, it leads to more coherent and
perceptually structured latent representations. These improvements in
classification performance and representation quality make the system
more suitable for downstream tasks such as sound retrieval, description,
and similarity search.

Index Terms—Classification, Hierarchical, Multimodal, Taxonomy

1. INTRODUCTION

Automatic analysis of heterogeneous sound types remains a central
problem in audio classification, spanning domains such as music,
speech, and environmental acoustics [1]–[3]. Addressing this challenge
requires broader classification frameworks and taxonomies capable
of handling arbitrary input sounds. Unlike approaches tailored to
particular types of sound, in heterogeneous sound classification, the
goal is to develop a high-level classifier that generalizes across diverse
acoustic inputs. This presents challenges due to the high intra-class
variability, the varying audio qualities (quality, recording conditions,
etc.), and the presence of ambiguous cases [4]–[7]. In this paper, we
focus on a heterogeneous classification framework, where we use the
Broad Sound Taxonomy (BST) [8] which organizes sounds into a
two-level hierarchical structure, with 5 top-level and 23 second-level
categories.

Human auditory perception naturally distinguishes sound classes
at multiple abstraction levels [9], [10]. Therefore, the hierarchical
information derived from the taxonomic structure can be valuable
during the training of classifiers, e.g. [11]–[13]. In addition, in cases
where acoustic signals are ambiguous or acoustically similar across
different sources, introducing semantic information from human-
annotated metadata can help disambiguate and improve classification.
This is especially relevant with taxonomies such as the BST, where
audio classes are defined according to sound semantics. Freesound [14],
which contains a large and heterogeneous collection of user-contributed
audio material, has recently adopted the BST as its organizational
scheme. Freesound hosts audio recordings annotated with titles, tags,
and free-text descriptions. The use of metadata is also essential in
professional audio collections that involve music, instrument samples,
and sound effects. Previous research shows that a common cause of
misclassifications is acoustic ambiguity resulting from similarities in

sound characteristics or shared sound sources between categories [6].
This is particularly relevant in scenarios involving heterogeneous
classification, where classes and audio qualities vary widely. Thus,
incorporating additional modalities and semantic context is expected
to enhance model performance.

In our work, we explore both hierarchical and multimodal ap-
proaches to improve classifier performance, and also take into account
annotation confidence scores (i.e. scores that reflect the certainty of the
annotator for each sound annotation) to filter training data and explore
its impact in the classifier performance. The experimental results
show that the combination of text and audio embeddings improves
classification, while hierarchical supervision helps produce latent
representations that are more coherent and perceptually well-structured.
Our approach aims not only to improve classification accuracy but
also to make the system better applicable to different downstream
tasks, such as computing context-informed similarity between sounds,
generating descriptive characterizations, and enhancing sound retrieval.

2. BACKGROUND

Hierarchical classification has been widely applied across various do-
mains, including musical instrument families, music genre recognition,
sound effect organization, and acoustic scene analysis, where labels can
be naturally organized into structured taxonomies [15]–[18]. In such
tasks, these hierarchical structures align with the way humans perceive
and categorize auditory information, moving from broad categories
(e.g. animal) to more specific ones (e.g. cat). Unlike flat classifiers
that treat all labels independently, hierarchical approaches leverage
relationships among labels to improve generalization, accuracy, and
interpretability. Early examples in the audio domain that included
hierarchical information were carried out using models such as HMMs
and GMMs [19], [20]. More recently, hierarchical information has
been integrated in classification problems through hierarchical deep
neural architectures, loss functions, and evaluation metrics. Many
different hierarchy-aware loss functions have been used, adapting
standard losses such as cross entropy, triplet, and contrastive [21]–
[26], proposing custom losses such as rank-based loss [23], and
combinations thereof [27]. Most of these approaches are paired
with representation learning and deep embeddings. These methods
are particularly valuable when addressing challenges such as class
imbalance, semantic overlap, or sparse labels at deeper levels of the
taxonomy.

Multimodal setups in representation learning are gaining significant
traction in the audio domain. It is common practice to obtain and
utilize accompanying metadata, such as textual descriptions, tags,
or contextual information, that can provide additional semantic
information in the acoustic signal. Recent advances in multimodal
learning have led to methods that learn shared embedding spaces
for audio and text, supporting seamless integration and cross-modal
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understanding of sound data. Models such as Contrastive Language-
Audio Pretraining (CLAP) are context-agnostic and aim to learn
general-purpose representations that are transferable across diverse
audio-text tasks [28], [29]. Other approaches incorporate semantic
supervision, training models to classify audio events while aligning
them with text-derived embeddings, thereby encouraging semantic
consistency in the learned representations [30], [31]. In some methods,
audio and text embeddings are explicitly combined or fused as joint
input for downstream classification tasks [32], [33], allowing the model
to leverage complementary information from both modalities. In this
paper, we incorporate hierarchy information using a custom hierarchy-
aware loss function, and we leverage the CLAP audio-text space to
include audio and auxiliary textual information in the classification
pipeline.

3. METHODOLOGY
3.1. Model Formulation
We design a classifier to process both audio and text embeddings,
denoted respectively as a ∈ Rda and t ∈ Rdt . Each input passes
through a modality-specific encoder, implemented as a multilayer
perceptron (MLP) comprising an input projection, a sequence of
residual blocks, and an output projection. All layers use Leaky ReLU
activations. The encoders extract modality-specific feature vectors:

ha = fenca(a), ht = fenct(t) (1)

When both modalities are used jointly, their representations are
fused via an attention-based mechanism:

hf = α1ha + α2ht, α = Softmax (W2 tanh(W1[ha;ht])) (2)

The resulting feature vector h ∈ ha,ht,hf is then passed through
a latent projection and classification layer, producing the final logits:

ŷ = fcls (fproj(h)) (3)

The training objective is to minimize the cross-entropy loss between
the predicted logits ŷ and the ground truth labels y:

L = −
∑
i

yi log (softmax(ŷ)i) (4)

where i indexes the second-level classes.

3.2. Hierarchical Setting
In the hierarchical setting, we train the model adding two auxiliary
losses to the standard cross-entropy in Eq. 4: a top-class penalty LTop

and a contrastive loss LContr.
Let {zi}Ni=1, with zi ∈ Rd and ∥zi∥ = 1, denote the normalized

latent representations of a batch of N samples. Each sample i has a
second-level label yi and a corresponding top-class label ti = top(yi).
The top-class penalty is:

LTop =
1

N

N∑
i=1

1
(
top(ŷi) ̸= ti

)
, (5)

where ŷi is the predicted second-level class, and 1(·) is the indicator
function, equal to 1 if the condition holds and 0 otherwise.

The use of contrastive loss [34] encourages samples with the same
top-class label to be pushed toward the same position in the feature
space:

ℓi = − 1

|P(i)|
∑

p∈P(i)

log
exp(z⊤i zp/τ)∑
a̸=i exp(z

⊤
i za/τ)

, (6)

where P(i) = {p ̸= i | tp = ti} is the set of positive samples sharing
i’s top-class label, zp are the corresponding representations, za are

all other representations in the batch, and τ > 0 is a temperature
parameter. The total contrastive loss, weighted by a factor λ, is:

LContr = λ
1

N

N∑
i=1

ℓi. (7)

4. EXPERIMENTAL SETUP

4.1. Dataset and Preprocessing

For our experiments, we use BSD10k-v1.1, an updated version
of the BSD10k dataset introduced in [6]. BSD10k-v1.1 comprises
10,956 sounds retrieved from Freesound, labeled into 5 top-level
classes and 23 second-level classes, according to the hierarchical
taxonomy presented in [8]. This version contains a more balanced
dataset with increased representation of underrepresented classes.
It was also refined by analyzing the training data to identify and
correct misclassifications caused by human error. The dataset includes
confidence scores assigned to each sound during the annotation
process, ranging from 1 (very unconfident) to 5 (very confident).
The distribution of annotation confidence levels is as follows: 1 (1%),
2 (6.9%), 3 (30.1%), 4 (55%) and 5 (7%). The updated version of
the dataset is publicly accessible1.

As part of the experimental setup for model training, we run part of
the experiments with the sounds assigned a confidence score ≥3 and
≥4, which consist 92.1% and 62% of the dataset, respectively. As
input features, we use representations from text and audio embeddings.
In previous work, it was demonstrated that CLAP audio embeddings
achieve better performance compared to purely audio-based embed-
dings in a heterogeneous setting [6]. In this work we extract CLAP
embeddings as our audio feature representation. Additionally, we
introduce a new modality by extracting text embeddings from the
same CLAP model, using the metadata (textual data) in BSD10k-
v1.1 originally provided by Freesound users. Text embeddings are
extracted in two configurations: i) using sound title and tags; ii) using
sound title, tags, and textual descriptions. Because the description
is considered noisier, as it often includes unstructured or irrelevant
information, we aim to evaluate its impact compared to the more
concise metadata. All audio and text embeddings are extracted as
512-dimensional vectors.

4.2. Hyperparameters and Training

We trained each model for a maximum of 100 epochs, using early
stopping in validation to prevent overfitting with patience = 5, Adam
optimizer, fixed learning rate scheduler with an initial learning rate of
1e−3, and a batch size of 64. Due to the unbalanced class distribution
in the dataset, we opted for a stratified 5-fold cross-validation [35],
ensuring that each fold preserved the overall class proportions. For
each fold, we split the data into 80%/20% train/test, further dividing
the former into 90%/10% train/validation. In all experiments, the
feature vectors ha and ht were set to a dimensionality of 128, while
the latent representation vectors z had a fixed dimensionality of 64.
In the hierarchical settings, we kept τ = 0.5 and λ = 1 for the
contrastive loss. Finally, we applied data augmentation on both audio
and text embeddings, namely noise addition and random masking (up
to 70%). In the context of pretrained embeddings, such augmentations
act as a network regularizer similar to dropout [36]. Preliminary
results indicate that these augmentations do not impact overall model
performance but do lead to faster convergence, thereby reducing
training time.

1https://github.com/allholy/BSD10k
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Table 1: Performance comparison across different hierarchy and modality configurations at three annotation confidence thresholds, including
top-2 accuracy. All values are reported as percentages.

Confidence Loss Modality Second-level Top-level Second-level (top-2) Top-level (top-2)

≥ 1

Hierarchical
Audio 76.73 ± 0.47 87.67 ± 0.35 88.76 ± 0.20 94.44 ± 0.33
Text 77.26 ± 0.32 87.11 ± 0.27 89.22 ± 0.10 94.14 ± 0.10
Both 79.33 ± 0.03 88.75 ± 0.30 90.76 ± 0.13 95.19 ± 0.14

Non-hierarchical
Audio 76.94 ± 0.23 87.50 ± 0.10 89.40 ± 0.58 95.29 ± 0.21
Text 76.69 ± 0.26 86.54 ± 0.36 88.92 ± 0.27 94.55 ± 0.25
Both 79.80 ± 0.53 88.97 ± 0.11 91.40 ± 0.40 96.02 ± 0.13

≥ 3

Hierarchical
Audio 78.83 ± 0.65 88.81 ± 0.29 89.50 ± 0.20 94.57 ± 0.31
Text 78.16 ± 0.99 87.96 ± 0.54 89.86 ± 0.22 94.70 ± 0.26
Both 81.07 ± 0.81 89.81 ± 0.52 91.64 ± 0.05 95.69 ± 0.19

Non-hierarchical
Audio 78.77 ± 0.31 88.98 ± 0.12 90.05 ± 0.06 95.64 ± 0.18
Text 78.50 ± 0.49 87.93 ± 0.18 90.49 ± 0.01 95.16 ± 0.10
Both 81.50 ± 0.91 90.00 ± 0.25 92.12 ± 0.13 96.23 ± 0.03

≥ 4

Hierarchical
Audio 84.79 ± 1.32 92.57 ± 0.28 92.18 ± 1.00 95.87 ± 0.50
Text 83.39 ± 1.59 91.48 ± 0.43 92.17 ± 0.56 95.40 ± 0.08
Both 87.34 ± 0.83 93.60 ± 0.34 94.11 ± 0.42 96.58 ± 0.17

Non-hierarchical
Audio 84.96 ± 0.42 92.23 ± 0.16 92.83 ± 0.81 96.74 ± 0.38
Text 84.12 ± 0.77 91.61 ± 0.42 92.92 ± 0.46 96.49 ± 0.19
Both 87.36 ± 0.42 93.42 ± 0.22 94.76 ± 0.32 97.66 ± 0.13

5. RESULTS

We compare against a baseline consisting of a KNN trained in audio-
only embeddings [6], which we retrain with the latest version of
the dataset and yield an accuracy of 77.45% in second-level classes
and 87.65% in top-level classes. Our best performing model with
the same setting (non-hierarchical, audio-only, non-filtered dataset by
confidence levels) performs 77.51% on the second level and 87.84%
on the top level. This demonstrates an incremental improvement.

Table 1 shows the results of all training configurations. For the
text embeddings, we use the best-performing variant, which includes
descriptions. The difference in accuracy is marginal, suggesting that
a reduced amount of textual information may still be sufficient in
this setting. Overall, both hierarchical and non-hierarchical models
tend to exhibit comparable performance. Models trained with audio
embedding achieve a small increase in accuracy than those using text
embeddings, while both modalities significantly outperform the single-
modality ones. Annotator confidence plays an important role in the
overall accuracies: filtering the dataset by confidence level (including
sounds with confidence scores of ≥3 and ≥4) removed the more
ambiguous samples, resulting in a substantially improved accuracy
across all configurations (up to ~2% and ~9% in the second level and
~1.5% and ~5% in the top level, respectively). The approach presented
herein allows for a more thorough assessment of the model’s learning
performance. We have observed that human uncertainty is reflected
in the model’s behavior; specifically, the model occasionally makes
errors similar to those of annotators due to the ambiguous boundaries
inherent in the broadness of the task. The average confidence per
class in the dataset ranges from 3.15 to 4.05, indicating moderate
variations of annotation uncertainty in specific classes but suggesting
the presence of ambiguous sounds in most classes.

In addition, we report the top-2 accuracy for both taxonomic
levels, defined as the proportion of samples for which the correct
label appears among the model’s top two predictions. We support
that this is particularly relevant, since the case of edge-case sounds
falling between two categories could be semantically plausible, as
already highlighted in [6]. Therefore, we can assess its ability to
capture these ambiguities and provide insight into how often it
nearly arrives at the correct decision, even when its top prediction
is incorrect. The accuracy across all configurations trained with the
unfiltered dataset improves by ~12% in the top level and ~7% in
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Fig. 1: Confusion matrix showing class-wise accuracies for the
hierarchical configuration (H, A+T, C ≥ 1, training fold 1).

the second level. During the experiments, this proved also useful
from an analytical perspective, as it allowed us to evaluate clearly
wrong-classified samples. In further comment on such ambiguity,
Fig. 1 shows an example of a confusion matrix relative to a single
fold in hierarchical, multimodal training. Overall, some classes
always exhibit a higher degree of confusion. Misclassifications are
prominent within the Music (m) top class, particularly with the
Multiple instruments (m-mi) subclass frequently being assigned to the
other two subclasses, while within the Soundscapes (ss) class, the
Indoors (ss-i) class gets incorporated into Urban (ss-u). In cases where
the top-level class is also misclassified, certain second-level classes
remain persistently challenging even as the annotation confidence
score filtering increases. Specifically, misclassifications occur from
Speech→Conversation/Crowd (sp-c) to Soundscapes→Urban, and
from Sound effects→Animals (fx-a) to Soundscapes→Nature (ss-n).
This could be due to certain classes having more complex definitions
or involving the concept of single/multiple sound sources, which the
model may not effectively capture.
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(a) NH, A+T, C ≥ 1 (b) H, A+T, C ≥ 1 (c) H, A+T, C ≥ 3 (d) H, A+T, C ≥ 4

Fig. 2: Latent space visualizations of the various settings. Plots are relative to the same training fold.
NH = non-hierarchical; H = hierarchical; A+T = audio + text modality; C = annotation confidence score.
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Fig. 3: Sorted average class accuracy color-coded by number of
samples in the test set (NH, A+T, C ≥ 3, test fold 1).

Although the classification accuracy across the same modalities
remains comparable between hierarchical and non-hierarchical ap-
proaches, the structure of the latent space differs significantly. We
apply PCA to reduce the 64-dimensional representations to a 2D
latent space. As seen in Fig. 2, the hierarchical latent space (2b)
demonstrates a more coherent and well-separated representation, where
classes sharing the same top-level class cluster closer together. This
spatial organization reflects the underlying taxonomy of the data and
highlights the positive impact of hierarchical priors on representation
learning. Another artifact is the elongation of latent clusters, which
may be attributed to the dimensionality reduction algorithm. Further
examination can be conducted to identify which samples are located
on opposite sides of the intra-class space. This behavior contrasts with
the non-hierarchical latent space illustrated in Fig. 2a, where such clear
organization is absent. For example, Instrument samples →Percussion
(is-p) are positioned closer to Sound effects (fx), likely due to shared
acoustic characteristics such as short, non-pitched textures. Another
example is that Soundscapes→Synthetic (ss-s) are located close to
Sound effects→Electronic (fx-el) and Instrument samples→Electronic
(is-e), likely because they often include computer-generated textures
and may share common tag vocabularies. This could indicate that
the model first focuses on timbral characteristics (e.g. texture) rather
than on properties such as the number of sources or time-domain
characteristics. Interestingly, the conceptually important distinction
between mono-source and multi-source content, such as that between
Sound effects and Soundscapes, does not appear to be prioritized.

Figs. 2c and 2d, which depict the latent spaces for multimodal
hierarchical training with annotation confidence scores ≥3 and ≥4,
respectively, show a similar coherent structure where classes that share
the same top level are closer. Additionally, as confidence increases,
the clusters become sharper with larger gaps between second-level
classes inside the same top-level class, fewer intrusions from other
classes, and a greater tendency for each class to occupy a well-defined

region of the latent space.
Finally, we observe a common tendency for less-represented classes

to exhibit lower performance, as shown in Fig. 3. Although class
imbalance is a well-known factor contributing to such disparities,
we argue that this alone does not fully explain such behavior.
Indeed, the taxonomy used underlies semantically or structurally
complex phenomena that are inherently harder to learn, stemming
from intra-class variability or a dependence on context-specific features.
Consequently, the limited number of training examples may not fully
represent this variability and lead to poor generalization on unseen
data in the test split. Moreover, preliminary experiments involving
traditional approaches to addressing dataset imbalance (e.g. focal
loss [37]) yield only negligible improvements. Some underrepresented
classes performed slightly better, but the improvements were not
consistent across different folds. Enhancing performance on such
classes may, therefore, require not only rebalancing the dataset but also
increasing the diversity of training samples. Notably, the confidence of
the model for each class did not show a correlation with the number
of samples in the training set, and training with fewer data in all
classes did not significantly impact the accuracy.

6. CONCLUSION AND FUTURE WORK
This paper investigates multimodal and hierarchical strategies to
enhance classification performance in real-world tasks. The insertion
of textual information demonstrated an improvement in classification
accuracy. We also foresee that the shown benefits of hierarchical
latent representations extend beyond representational structure, proving
especially useful in organizing similarity relationships with a better
balance between semantic and acoustic features while encoding high-
level conceptual information. Filtering data based on annotation
confidence scores proved helpful in understanding what the model
learns and identified sources of model confusion. To improve
generalization, incorporating this information into the training process,
such as weighting samples by their confidence, could be beneficial.

Future work includes leveraging more data for the training and
evaluation of heterogeneous classification tasks. Since the introduction
of the BST in Freesound, contributors have been manually annotating
their newly uploaded sounds with BST classes, thereby providing
data for further experiments. Even though crowdsourced annotations
may be inconsistent, since edge cases can be interpreted differently
by each user, such models can still help identify potentially incorrect
labels. We also plan to explore the effect of inserting hierarchical
information directly into the embedding learning process.
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