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Abstract—Passive acoustic monitoring is a valuable tool for wildlife
research, but scheduled recording often results in large volumes of
audio, much of which may not be of interest. Selective audio recording,
where audio is only saved when relevant activity is detected, offers
an effective alternative. In this work, we leverage a low-cost embedded
system that implements selective recording using an on-device classification
model and evaluate its deployment for detecting penguin vocalization. To
address the domain shift between training and deployment conditions
(e.g. environment, recording device), we propose a lightweight domain
adaptation strategy based on fine-tuning the model with a small amount
of location-specific data. We replicate realistic deployment scenarios using
data from two geographically distinct locations, Antarctica and Falkland
Islands, and assess the impact of fine-tuning on classification and selective
recording performance. Our results show that fine-tuning with location-
specific data substantially improves generalization ability and reduces both
false positives and false negatives in selective recording. These findings
highlight the value of integrating model fine-tuning into field monitoring
workflows, in order to improve the reliability of acoustic data collection.

Index Terms—domain shift, bioacoustics, passive acoustic monitoring

1. INTRODUCTION

Passive acoustic monitoring (PAM) has become an essential tool in
ecological and environmental research. The deployment of autonomous
recording units (ARUs) enables long-term, non-invasive monitoring of
wildlife and ecosystems. Technological advances have made remote
sensing and monitoring tools increasingly accessible and efficient [1],
[2], reducing fieldwork time, minimizing ecosystem disturbance, and
significantly lowering operational costs [3]. These tools also allow
data collection at broad spatial and temporal scales, facilitating more
detailed and extensive studies of ecological change. This is particularly
valuable in regions where extreme conditions and remoteness pose
challenges for direct observation, as is the case for penguin colonies.

Penguins have been widely recognized as key bioindicators for mon-
itoring the health of marine ecosystems in the Southern Hemisphere
[4], [5]. In the Antarctic region, species such as the Adélie and Gentoo
penguins play a vital ecological role. These species breed in colonies
distributed along the Antarctic Peninsula and nearby islands, such as
Ardley Island, an Important Bird Area and a protected site under the
Antarctic Treaty System. As mesopredators, penguins reflect changes
in prey availability, primarily krill, and allow us to infer alterations
in the structure and functioning of the Antarctic marine ecosystem
[6], [7]. However, significant knowledge gaps remain regarding the
plasticity of their annual cycle. Some phases of the cycle have been
poorly documented due to the logistical challenges of monitoring,
especially in remote and hard-to-access environments. Since phenology
varies considerably between colonies and across years, it’s essential
to implement systematic long-term monitoring that can accurately
capture annual variation in the timing of all reproductive cycle phases.

Traditional PAM systems operate on fixed schedules, recording
at regular intervals regardless of acoustic activity [8], [9]. While
this approach maximizes data coverage, it often results in large
volumes of audio, much of which may be irrelevant or silent. This
creates challenges in terms of storage, power consumption, and
manual analysis. To address these limitations, we designed a selective

recording scheme using an audio recorder developed by our team,
introduced in [10]. This device runs an embedded classification model,
based on a convolutional neural network, and records data only when
relevant sound is detected.

Recent advances in deep learning have significantly improved the
ability to automatically detect and classify bioacoustic signals [11].
In particular, convolutional neural networks trained on spectrogram
representations have become a common and effective approach for
bird and animal sound classification [11], and can now be deployed on
resource-constrained hardware. This enables real-time inference and
automatic on-site sound event detection, demonstrated by lightweight
implementations such as TinyChirp [12]. In turn, this allows for the
development of smart audio recording tools. For example, frameworks
such as acoupi [13] provide open-source infrastructure for deploying
bioacoustic-related machine learning models on embedded devices.

However, while selective recording offers substantial advantages,
model performance is often limited by domain shift [14], [15]. Differ-
ences in background noise, species behavior or recording hardware
between training data and the conditions at the deployment site can
hinder network performance [16]. Recent work in domain adaptation
has explored strategies to mitigate these challenges, including transfer
learning [17], adversarial adaptation [18] and self-training methods
[19]. We propose addressing domain shift through lightweight domain
adaptation, fine-tuning the base model using a small amount of local
data. This approach has been shown to improve performance in bird
sound classification when compared to models trained solely on non-
local data [11], [20]–[22]. By incorporating even a small amount of
location-specific audio samples, fine-tuning helps the model adjust
better to local acoustic conditions.

This work is motivated by the need for realistic deployment
strategies in remote monitoring campaigns, involving ARUs left in the
field for extended periods of time. We focus on the scenario where
a pre-trained model is deployed to a brand new location and later
fine-tuned using a small amount of location-specific data, collected
automatically by the same device over a very brief interval. This
reflects a practical workflow in which researchers install recorders,
retrieve preliminary audio samples, fine-tune the model offline and
then re-deploy the updated system for improved selective recording
performance during the remainder of the monitoring campaign.

The key contributions of this work are three: (i) we present a
low-power selective recording system capable of real-time sound
classification tailored for remote acoustic monitoring; (ii) we evaluate
a lightweight domain adaptation strategy to improve performance in
new deployment conditions using minimal local data; and (iii) we
demonstrate a practical workflow for fine-tuning and redeploying the
system in the field. To enable reproducibility and further research, the
training and fine-tuning pipeline is openly available1, and all annotated
datasets used for training and evaluation are shared via Zenodo2.

1https://github.com/juliaazziz/aurora-domain-adaptation
2https://zenodo.org/records/17121978
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The remainder of this paper is organized as follows. Section 2
introduces the context and motivation of the application on which
this work is based. Section 3 describes the datasets used for training
and evaluation, including both public sources and field recordings.
Section 4 outlines the followed methodology, describing the employed
model architecture, features and domain adaptation strategy. Section 5
presents experimental results, analyzing the impact of fine-tuning, the
effect of varying the number of local samples and the performance of
the proposed selective recording system. Finally, Section 6 concludes
the paper and discusses the implications of our main findings.

2. APPLICATION OVERVIEW
2.1. Acoustic monitoring
Environmental monitoring in Antarctica is essential for detecting
and managing the impacts of human activity and climate change
in one of the world’s last near-pristine ecosystems [23], [24].
Given the continent’s remoteness, logistical challenges and strict
environmental protection under the Antarctic Treaty System, remote
sensing technologies have become increasingly important [1], [2].
Autonomous systems such as satellite platforms, trap cameras, and
acoustic recorders enable long-term, low-impact data collection across
vast and inaccessible regions. Acoustic monitoring, in particular, offers
powerful and non-invasive tools for tracking biodiversity, human
activity, and environmental change [25], [26]. It allows researchers
to detect and monitor vocal species, as well as anthropogenic noise,
providing insights into ecosystem dynamics and disturbance levels.
The Protocol on Environmental Protection to the Antarctic Treaty
(1991) encourages long-term environmental monitoring and the use of
innovative, low-impact methods. Recent initiatives aim to harmonize
and expand remote monitoring networks, including acoustic systems,
to better support continent-wide environmental management [27], [28].

2.2. Selective recording workflow
Acoustic wildlife monitoring in remote areas faces several challenges.
When systems are deployed in isolated or protected areas, they must
operate autonomously for extended periods of time with limited access
for maintenance. This places strict constraints on energy consumption
and data storage. Traditional approaches, such as continuous or
scheduled recording, consume substantial energy and generate large
volumes of data, most of which are irrelevant when the goal is to
monitor specific species with irregular vocal activity. These methods
often result in hours of recordings with no target sounds, leading to
inefficient power use and significant need for post-processing.

To overcome these limitations, our approach avoids both continuous
and duty-cycled recording modes. Instead, it employs an always-
listening, low-power acoustic trigger based on a convolutional neural
network trained to recognize vocalizations of the target species. This
model continuously scans the incoming audio for relevant patterns
and activates the recording mechanism only when a match is detected.

Existing PAM devices, such as AudioMoth [29] and other com-
mercially available recorders, lack the computational capacity to run
inference on embedded models. These devices are typically designed
for scheduled or threshold-based recording and do not support the
continuous inference required for selective recording. To enable real-
time, on-device classification, we developed a custom device that uses
a hardware accelerator [30]. This allows the system to remain energy-
efficient while leveraging an embedded neural network, and making
it suitable for deployment in remote, battery-powered scenarios.

Figure 1 illustrates a possible deployment workflow that leverages a
selective recorder and integrates a domain adaptation stage using local
data. Upon initial deployment, the device collects a small amount of

audio samples, which are then manually labeled and used to fine-tune
the classification model offline. The device is then re-deployed with
the updated model weights, and is left for an extended period of time
with improved detection performance.
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Fig. 1: Diagram of the proposed domain-adaptive deployment workflow for
acoustic monitoring.

3. DATA
To train the base model we construct a large training dataset composed
of public and controlled sources. We then fine-tune and evaluate
the model on a limited amount of controlled audio samples from
two geographically distinct Gentoo penguin colonies, which serve as
separate locations to test the proposed domain adaptation strategy.

3.1. Training data
The training and validation datasets consist of 1-second audio clips,
each one down-sampled to 16 kHz and labeled as either penguin or not
penguin. The positive class examples were sourced primarily from the
xeno-canto repository [31], focusing on annotated penguin vocalization
recordings, while negative examples were mostly extracted from the
FSD50K dataset [32], selecting clips without bird sounds. Additionally,
a small portion of the samples were recorded by team members using
AudioMoth devices in Ardley, Antarctica, as part of an in-house data
collection project. These recordings were manually labeled, resulting
in a total of approximately 10 hours for each class, evenly divided,
with 80% used for training.

3.2. Target domains
To assess domain generalization and the impact of location-specific
fine-tuning, we use three field datasets from two different Gentoo
penguin colonies, collected and manually labeled by team members.

Dataset A: this dataset consists of 17 minutes of field recordings
from a Gentoo penguin colony in Yorke Bay, Falkland Islands,
collected using our device. Of these, approximately 9.1 minutes contain
identifiable penguin vocalizations. This dataset represents an unseen
domain both in terms of acoustic environment and recording hardware.

Dataset B: this dataset includes 14 minutes of field recordings
of Gentoo penguin vocalizations in Ardley Island, Antarctica, of
which 6.5 minutes contain penguin vocalizations. For this dataset,
samples were recorded using AudioMoths. These samples share many
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characteristics with a portion of the original training set, as they were
recorded in a similar Antarctic environment using the same device.

Dataset C: this dataset contains 12 hours of uninterrupted audio
recordings with annotated vocalization intervals, collected using
AudioMoths at Yorke Bay. This allows us to replicate continuous audio
input in order to evaluate our selective recording system end-to-end.

The first two datasets enable us to contrast domain adaptation
performance in two distinct scenarios: one involving a fully novel
domain (Dataset A), and another that partially overlaps with the
training conditions in both location and recording device (Dataset B).

4. METHODOLOGY
We aim to evaluate whether lightweight fine-tuning on a small amount
of location-specific data improves the performance of an embedded
classification model deployed in new, unseen environments. To this
end, we first train a base classification model on a dataset that excludes
recordings from the target domains. We then fine-tune this pre-trained
model using a subset of recordings from each target domain and
evaluate its performance on held-out data from the same location.

4.1. Audio preprocessing
Each 1-second audio sample is transformed into a log-Mel spectrogram,
using a frame size of 30 ms and a hop size of 10 ms for the Short-
Time Fourier Transform. We also set the number of Mel bins to 96,
resulting in spectrograms of 98 by 96. Features are then quantized
to 8-bit integers, simulating embedded inference conditions. Two
exemplar spectrograms from Dataset A are shown in Figure 2.

Fig. 2: Two exemplar spectrograms of penguin vocalizations from Dataset A,
recorded in the Gentoo colony at Yorke Bay, Falkland Islands.

4.2. CNN architecture
For the classification task, we use a modified version of ResNet18
[33], where the number of filters in each convolutional layer is
reduced to one quarter of the original in order to decrease memory
and computation requirements. A full description of the modified
architecture can be found in Table 1. The final layer outputs a binary
classification, indicating the presence of penguin vocalizations. On
the recording device, the CNN is fully quantized to 8-bit integers for
efficient real-time inference. However, all training, fine-tuning, and
evaluation are performed using 32-bit floats on a desktop machine.

The original training is performed for 50 epochs with an initial
learning rate of 1×10−4, applying early stopping. We use a scheduler
to dynamically reduce the learning rate by a factor of 0.6 when the
validation loss plateaus, with a patience of 3 epochs.

4.3. Domain adaptation strategy
To adapt the model to a new environment, we fine-tune the pre-trained
base model using a small subset of data from the target domain. Each
location-specific dataset is randomly split into 30% for fine-tuning
and 70% for validation. Fine-tuning is performed for 15 epochs with
an initial learning rate of 1×10−4, and early stopping is applied to

Table 1: Modified ResNet18 architecture used for all experiments. Each row
represents the sequence of layers, with c channels and stride s.

Input Operator c s

98 × 96 × 1 Conv2D 16 2
49× 48× 16 MaxPool2D 16 2
25× 24× 16 Residual block ×2 16 1
25× 24× 16 Conv2D + Residual block 32 2
13× 12× 32 Conv2D + Residual block 64 2
7× 6× 64 Conv2D + Residual block 64 2
4× 3× 64 GlobalAvgPool - -
64× 1× 1 Dense (ReLU) 32 -
32× 1× 1 Dense (sigmoid) 1 -

prevent overfitting, given the reduced size of the training set. We use
a scheduler to dynamically reduce the learning rate by a factor of 0.6
when the validation loss plateaus, with a patience of 3 epochs. We
also use 5-fold cross-validation to select the optimal number of layers
to unfreeze during fine-tuning. To ensure robustness and mitigate bias
introduced by data selection, we repeat this process over 20 splits.

4.4. Recording hysteresis
In order to prevent frequent toggling between recording states, the
recorder device implements a simple hysteresis strategy: audio is
recorded when at least n = 2 consecutive frames indicate positive
detection, and stopped after m = 2 consecutive negatives. Part of
assessing the effectiveness of domain adaptation is evaluating whether
this mechanism also performs better when using the fine-tuned model.

To carry out this analysis, we use Dataset C to replicate continuous
audio input, processing the full audio stream using both the baseline
and fine-tuned models. The output predictions are used to trigger the
hysteresis logic, generating a set of recorded segments. These are
then compared against the annotated vocalization intervals to compute
false positives and false negatives, as well as precision and recall.

5. EXPERIMENTAL RESULTS
5.1. Impact of domain adaptation
We begin by evaluating how domain-specific fine-tuning impacts the
generalization ability of the classification model. For each target
dataset, we first assess the performance of the baseline model on the
validation split. We then fine-tune this model using the local training
data and re-evaluate its performance on the same validation split.

Results for the base and fine-tuned models on both locations
are shown in Table 2, averaged across all repetitions. These results
show that fine-tuning consistently improves performance across both
datasets, yielding gains of up to 20.8% in terms of accuracy and
15.2% in terms of F1-score. Standard deviations across repetitions
remain low, indicating that performance gains are stable and robust.

Table 2: Results obtained for the base and fine-tuned models on Datasets A
and B, averaged across all repetitions and using 30% of the dataset for training.

Dataset A Dataset B

Model Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Baseline 67.8 ± 0.6 74.7 ± 0.8 88.3 ± 0.5 87.9 ± 0.6
Fine-tuned 88.6 ± 0.5 89.9 ± 0.4 95.9 ± 0.4 95.4 ± 0.4

We observe that performance on Dataset B is consistently better
than on Dataset A, even before fine-tuning is applied, likely due to
two factors. First, Dataset B was recorded using the same device
as part of the original training data, reducing variability introduced
by differing hardware. Second, although Dataset B was collected
independently, it shares environmental context with the training set,
which included Antarctic samples from previous field campaigns.
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5.2. How many local samples are needed?

The previous section showed that simply fine-tuning on a reduced
amount of location-specific samples can improve model performance.
However, when local data is particularly limited and must be collected
during deployment, the question arises: how many local samples are
actually required to noticeably improve model performance?

This analysis is a crucial consideration for assessing the practicality
of the proposed deployment workflow, since collecting large volumes
of labeled local data may be infeasible due to logistical constraints.

To assess this aspect, we examine the relationship between
the number of fine-tuning samples and the improvement achieved
compared to the base model. We simulate different data availability
scenarios by fine-tuning using varying percentages of the dataset,
starting from 5% and up to the 30% employed in the previous section.

Figure 3 shows the results of fine-tuning the model using different
amounts of local data from Datasets A and B. All models were
evaluated on the full validation set. We observe that even small
amounts of local data increase performance and help overcome non-
fine-tuned models, particularly in the more challenging conditions of
Dataset A. With as little as 30 seconds of training data, the classifier
achieves a significant portion (90% or more) of the overall performance
gain observed when fine-tuning with 30% of all available data.
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Fig. 3: Results of fine-tuning the model using different amounts of local data
from Datasets A and B.

For Dataset B, the accuracy and F1-score curves begin to plateau
beyond the 2-minute mark, suggesting diminishing returns as more
data is added. This trend indicates that a relatively small amount of
labeled local data may be sufficient to adapt a pre-trained model to a
location that shares certain characteristics with the original training
dataset. For Dataset A, however, performance continues to improve
more steadily with increasing amounts of fine-tuning data, particularly
in terms of the F1-score, and no clear plateau is observed within

the tested range. The contrast between the two datasets highlights
the importance of acoustic similarity: when the target environment
closely resembles training conditions, minimal fine-tuning may suffice,
whereas more distinct domains benefit from additional adaptation data.

5.3. Recording hysteresis
To further evaluate the benefits of domain adaptation, we compare
the effectiveness of the recording hysteresis mechanism using the
baseline and fine-tuned models. Both models are evaluated on Dataset
C, replicating a continuous audio stream. Since the audio samples
from said dataset were collected at the Yorke Bay colony, for the
fine-tuned model we use the one re-trained on Dataset A.

Table 3 shows the results obtained for both models, presenting the
number of false positives, false negatives, true positives and F1-score,
all measured in total minutes of audio recorded from the full 12 hours.

Table 3: Results obtained for the base and fine-tuned models on the 12 hours
of Dataset C, replicating a recording scheme with the hysteresis mechanism.

Model True positives False positives False negatives F1-score

Baseline 4.3 min 14.8 min 2.8 min 32.5%
Fine-tuned 5.4 min 7.9 min 1.7 min 52.7%

While both models produce a considerable number of false positives,
the true positives rate remains high. In addition, the percentages of
true negatives is extremely high, given that, out of 12 hours, less than
twenty minutes are recorded. This is particularly important in selective
recording, where erroneous recordings would result in higher volumes
of irrelevant data. Moreover, the fine-tuned model achieves a better
performance, increasing the F1-score value by a net gain of 20.2%.
While this is mainly due to the reduction of false negatives, it also
responds to a slight rise in true positives. Despite the F1-score value
not being particularly high in absolute terms, the relative improvement
still highlights the effectiveness of domain adaptation in this context.
Overall, these results support the value of incorporating localized data
during training to enhance performance in novel field conditions.

6. CONCLUSION

In this work, we presented a domain-adaptive deployment workflow
for selective audio recording in wildlife acoustic monitoring. By
combining a low-power embedded recording device with an on-device
classification model, our system enables energy-efficient monitoring
in remote environments such as penguin colonies. To mitigate the
challenges introduced by domain shift, we proposed a lightweight
fine-tuning strategy based on a small amount of location-specific data.

Through experiments on field data, collected from two geographi-
cally distinct Gentoo penguin colonies, we show that domain-specific
fine-tuning leads to substantial gains in classification performance.
Notably, we find that even small amounts of local data (as little as
30 seconds) can yield meaningful improvements over the base model
while requiring minimal annotation effort. This result is particularly
relevant for remote monitoring deployments, where collecting large
amounts of labeled data during the initial stages is often infeasible.

We also demonstrate that these improvements translate into better
selective recording performance, reducing false positives and false
negatives in realistic deployment conditions. Future work will focus on
validating the proposed domain adaptation strategy in future recordings
campaigns in Ardley, Antarctica, as part of an ongoing research and
data collection project. This will involve effectively integrating the
proposed monitoring strategy into the regular campaign workflow,
including the mid-deployment fine-tuning stage with a few labeled
local samples.
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and D. Stowell, “Impact of transfer learning methods and dataset
characteristics on generalization in birdsong classification,” Scientific
Reports, vol. 15, no. 1, May 2025. [Online]. Available: http:
//dx.doi.org/10.1038/s41598-025-00996-2

[22] I. Nolasco, S. Singh, V. Morfi, V. Lostanlen, A. Strandburg-Peshkin,
E. Vidaña-Vila, L. Gill, H. Pamuła, H. Whitehead, I. Kiskin, F. H. Jensen,
J. Morford, M. G. Emmerson, E. Versace, E. Grout, H. Liu, B. Ghani,
and D. Stowell, “Learning to detect an animal sound from five examples,”
Ecological Informatics, vol. 77, p. 102258, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S157495412300287X

[23] D. W. H. Walton and J. Shears, “The need for environmental monitoring
in antarctica: Baselines, environmental impact assessments, accidents and
footprints,” International Journal of Environmental Analytical Chemistry,
vol. 55, pp. 77–90, 1994.

[24] K. A. Hughes, “How committed are we to monitoring human impacts in
antarctica?” Environmental Research Letters, vol. 5, 2010.

[25] L. Ziegler and A. Soutullo, “Anthropogenic noise in terrestrial
antarctica: a short review of background information, challenges and
opportunities,” Polar Research, vol. 43, Apr. 2024. [Online]. Available:
https://doi.org/10.1080/17518369.2024.2330203

[26] R. Gibb, E. Browning, P. Glover-Kapfer, and K. E. Jones, “Emerging
opportunities and challenges for passive acoustics in ecological
assessment and monitoring,” Methods in Ecology and Evolution,
vol. 10, no. 2, pp. 169–185, 2019. [Online]. Available: https:
//besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13101

[27] Committee for Environmental Protection, “Final report of the XXV
Meeting of the Committee for Environmental Protection, ATCM XLV,
Helsinki, Finland,” Presented at the Antarctic Treaty Consultative Meeting
XLV / CEP XXV, Helsinki, Finland, Jun. 2023.

[28] P. Newman, “Developing environmental monitoring approaches in
antarctica,” Presented at the Committee for Environmental Protection
(CEP), ATCM XLII – CEP XXII, Prague, Czech Republic, 2019.

[29] A. P. Hill, P. Prince, J. L. Snaddon, C. P. Doncaster, and A. Rogers,
“AudioMoth: A low-cost acoustic device for monitoring biodiversity
and the environment,” HardwareX, vol. 6, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2468067219300306

[30] Silicon Labs, MVP Accelerator, https://docs.silabs.com/gecko-platform/4.
1/machine-learning/tensorflow/mvp-accelerator.

[31] xeno-canto Foundation, “xeno-canto: Sharing bird sounds from around
the world.” [Online]. Available: https://www.xeno-canto.org

[32] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K: an
open dataset of human-labeled sound events,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 30, pp. 829–852, 2022.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

204


