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Abstract—The integration of intelligent systems into daily environments
increases the need for a robust understanding of the acoustic scene.
Applications such as assistive technologies, audio navigation, and public
safety rely on accurate localization and detection of sound events (SELD).
Commercially, embedding spatial audio intelligence into smart devices,
vehicles, healthcare tools, and surveillance systems, particularly where
visual input is limited, has generated significant interest. Traditional signal
processing methods struggle to meet the localization and classification
demands of compact, microphone-limited devices. As stereo and multichan-
nel audio become prevalent, developing SELD systems capable of joint
direction-of-arrival (DoA) estimation and real-world event detection is
essential. In response, we propose ReCoOP (ResNet-Conformer with ONE-
PEACE), a deep learning framework that combines a ResNet-Conformer
backbone with stereo spatial features and contextual embeddings. The
system incorporates Interaural Level and Phase Differences, Generalized
Cross-Correlation, alongside Mel spectrograms, to model spatial cues,
while global semantics are captured through pre-trained ONE-PEACE
embeddings. ReCoOP features specialized modules for direction and
distance estimation, with outputs fused via a joint head. Evaluated on
the DCASE2025 Task 3 dataset, our approach improves performance by
approximately 17.8% over the baseline, securing 3rd place in the DCASE
2025 Task 3 challenge.

Index Terms—Acoustic scene understanding, Sound event localization,
Stereo audio, Spatial audio features, ONE-PEACE embeddings

1. INTRODUCTION
Sound Event Localization and Detection (SELD) is a fundamental
task in Computational Auditory Scene Analysis (CASA), aimed at
interpreting acoustic scenes by jointly identifying what sound events
occur, when they occur, and where they originate. It comprises three
interrelated components: Sound Event Detection (SED) for temporal
classification, Direction-of-Arrival (DoA) estimation for spatial local-
ization, and Sound Distance Estimation (SDE) for inferring source
proximity. These capabilities enable structured scene understanding
across applications such as augmented reality, autonomous navigation,
surveillance, and assistive hearing.

The IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE) [1] has significantly advanced
SELD research by unifying sub-tasks and standardizing evaluation
protocols. Earlier editions focused on First-Order Ambisonics (FOA),
a 360° spatial audio format, which supported the development
of models such as SELDnet [2] (Convolutional Recurrent Neural
Network (CRNN)-based joint SED and Cartesian DoA), ACCDOA [3]
(regressing 3D DoA vectors for active events), and Multi-ACCDOA [4]
(handling overlapping sources from the same class). Event-Independent
Network [5], [6] further improved robustness via permutation-invariant
training. However, dependence on FOA - requiring specialized
microphone arrays - limits practicality for widespread deployment.

In contrast, stereo audio is pervasive in consumer devices such as
smartphones, laptops, and webcams, offering a practical alternative for
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SELD. However, it lacks elevation cues, exhibits front-back ambiguity,
and provides limited spatial resolution - particularly for overlapping
sources - making localization and distance estimation more challenging.
Despite these constraints, the accessibility of stereo microphones
renders them well-suited for real-world SELD applications beyond
controlled environments.

In response to the growing demand for practical SELD systems,
DCASE 2025 Task 3 [7] centers on stereo recordings, emphasizing
azimuth-only DoA and SDE. This shift introduces challenges in
modeling with limited spatial cues and adapting to two-channel real-
world audio. While FOA-based systems like the DCASE 2024 Task 3
Rank 1 system [8] - built on a ResNet-Conformer with multi-branch
outputs - achieved strong performance, they were not tailored for
stereo input and failed to leverage stereo-specific cues and semantic
priors. To address these limitations, we propose ReCoOP, a compact
and modular framework purpose-built for stereo SELD.

ReCoOP (ResNet-Conformer-OnePeace) integrates low-level in-
teraural cues - Interaural Level Differences (ILD), Interaural Phase
Differences (IPD), and Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) - with high-level contextual embeddings
from ONE-PEACE [9], a 4-billion-parameter multimodal transformer
pretrained on large-scale audio-text and vision-text datasets. It adopts
a task-decoupled ResNet-Conformer backbone with separate heads
for SED, DoA, and SDE, and employs a lightweight joint ensembling
strategy to enhance spatial robustness without additional computational
overhead. Evaluated on DCASE 2025 Task 3 [7], ReCoOP outperforms
the official baseline across all metrics. Ablation studies confirm the
complementary value of interaural spatial cues and pretrained semantic
context, highlighting their synergy in advancing stereo SELD.

The remainder of this paper is organized as follows: Section 2
provides an overview of the dataset and its characteristics, Section
3 outlines the acoustic and semantic feature extraction strategies,
Section 4 describes the data augmentation techniques, Section 5
details the ReCoOP architecture, Section 6 explains the experimental
setup including evaluation metrics, Section 7 presents the results of
the ablation studies, Section 8 reports the final system performance,
and Section 9 concludes the paper with future directions.

2. DATASET

We use the DCASE 2025 Task 3 Stereo SELD Dataset [7], derived
from the STARSS23 dataset [10], consisting of 5-second stereo clips
simulating realistic indoor acoustic scenes. STARSS23 provides First-
Order Ambisonics (FOA) recordings from 16 rooms with varied
layouts, participants, acoustic conditions, and spontaneous background
noise. For this task, FOA was converted to stereo via mid-side
emulation [11], combining the omnidirectional (W (n)) and left-right
dipole (Y (n)) FOA components at time index n to generate left and
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Fig. 1: Per-class frame coverage (%) in the STARSS23 development training
set, showing a highly skewed distribution dominated by speech and music
classes.

right cardioid microphone signals. The resulting stereo channels L(n)
and R(n) are computed as shown in (1):

L(n) = W (n) + Y (n)

R(n) = W (n)− Y (n)
(1)

Each audio clip is fixed at 5 seconds long and annotated at 100-ms
resolution (50 frames) with sound event class, azimuth angle (in
degrees), and source-to-microphone distance (in cm). The dataset is
challenging, with frequent overlapping events, up to three per frame
typically, and occasionally as many as six. To resolve front-back
ambiguity, azimuths are folded into the range [−90◦, 90◦], while
elevation is omitted due to top-bottom ambiguity in the stereo setup.

The dataset comprises 30,000 development clips (41.7 hrs) and
10,000 evaluation clips (13.9 hrs), with development audio recorded
in Tokyo (24%) and Tampere (76%) and split into training and testing
subsets to support generalization. All audio is recorded at 24 kHz, 16-
bit resolution. The 13 annotated target classes include speech (female,
male), clapping, telephone ringing, laughter, domestic appliances
(e.g., vacuum cleaner, boiling water), footsteps, door open/close,
music, instruments (e.g., guitar, piano, xylophone), water tap, bell, and
knocking. Classes often exhibit high intra-class variability, and speech
appears in multiple languages. Sound scenes exhibit significant real-
world variability, including non-target interferers such as keyboard
typing or clattering dishes, as well as fluctuating background noise
levels. Some clips do not contain target events, reflecting the natural
sparsity of real-world soundscapes. Stereo recordings are derived
from FOA using a length-weighted sampling strategy, producing a
frame-level class distribution closely aligned with STARSS23.

However, the distribution is highly skewed, as shown in Fig. 1:
male and female speech together comprise around 60% of labeled
frames, followed by music and domestic sounds. In contrast, classes
like clap, phone, door, faucet, bell, and knock each appear in under
2% of frames. This long-tailed distribution poses challenges for both
detection and localization, particularly for rare events with limited
temporal coverage and fewer overlapping contexts. Overlapping events
- including multiple instances of the same or different classes - are
represented by repeated frame entries, with each sound source assigned
a consistent identifier. Overall, the dataset offers a comprehensive and
realistic benchmark for joint SED and localization under acoustically
challenging and imbalanced conditions.

3. FEATURE EXTRACTION

This section outlines the acoustic feature extraction strategies used
for input representation. We adopt a dual-pronged approach: a
physics-inspired extractor for log-mel spectrograms and inter-channel

directional cues, and a transformer-based semantic encoder using
ONE-PEACE for global contextual representation.

3.1. Acoustic Features Extraction
We extract a compact and spatially-informative set of acoustic features
from each stereo waveform. A Short-Time Fourier Transform (STFT)
is applied using a Hann window of length 960 samples and hop size
of 480, followed by a non-trainable mel-filterbank projection with 64
mel bins. The log-mel spectrograms of the left and right channels,
computed by applying a logarithmic scale to the mel-spectrograms,
are retained as the first two channels in the feature tensor.

To model spatial cues, we compute three inter-channel directional
features [12]. The Interaural Level Difference (ILD) is defined as

ILD[n,m] =

∣∣∣∣Xmel,l[n,m]

Xmel,r[n,m]

∣∣∣∣ , (2)

where Xmel,l[n,m] and Xmel,r[n,m] denote the complex mel spectro-
gram coefficients at time frame n and mel bin m for the left and right
channels, respectively. This ratio captures the difference in magnitude
between channels, which is a key spatial cue above 1.5 kHz [12].

Next, we compute the Interaural Phase Difference (IPD) using

IPD[n,m] = arg (Xmel,l[n,m])− arg (Xmel,r[n,m]) , (3)

where arg(·) denotes the phase angle of the complex mel spectrogram
at time frame n and mel bin m. This difference expresses the relative
phase delay between the two channels. To obtain a more robust
representation that avoids discontinuities due to phase wrapping [12],
we additionally compute the sine and cosine of the IPD:

SI[n,m] = sin(IPD[n,m]), (4)

CI[n,m] = cos(IPD[n,m]), (5)

where SI[n,m] and CI[n,m] are the sine and cosine of the interaural
phase difference at each time-frequency point, enabling continuous
encoding of phase.

Finally, we include the Generalized Cross-Correlation with Phase
Transform (GCC-PHAT), defined as

GCC[n, d] = F−1

(
Xl[n, k] ·X∗

r [n, k]

|Xl[n, k]||Xr[n, k]|

)
, (6)

where Xl[n, k] and Xr[n, k] are the complex STFT coefficients for
the left and right channels at time frame n and frequency bin k,
X∗

r [n, k] is the complex conjugate of the right-channel STFT, | · |
indicates complex magnitude, F−1 is the inverse Fourier Transform,
and d denotes the discrete time lag. This feature captures inter-channel
time-delay cues critical for direction-of-arrival estimation.

The final feature tensor is constructed by concatenating the log-mel
spectrograms with ILD, IPD (both sine and cosine components), and
GCC-PHAT features, resulting in a multi-channel representation of
shape (6, 251, 64) for each audio clip, where 6 is the number of
feature channels, 251 is the number of time bins and 64 is the number
of mel bins.

3.2. ONE-PEACE Feature Extraction
To supplement the local spectral features with global semantic cues,
we extract contextual embeddings from the ONE-PEACE multimodal
transformer model [9]. Specifically, we use a 4B vision-audio-language
pretrained checkpoint, trained from scratch on LAION-2B [13]
(image-text dataset) and open-source environmental audio-text datasets
including AudioCaps [14], Clotho [15], AudioSet [16], FreeSound
[17], etc using cross-modal and intra-modal contrastive learning.

The raw stereo waveform is segmented into 100 ms chunks with
a hop size equal to the segment length. Each segment is passed
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through the ONE-PEACE model, which applies tokenization, attention-
based encoding, and feature projection to yield a fixed-length vector
embedding. These embeddings are then stacked temporally to form a
dense contextual representation of the entire audio file, resulting in a
tensor of shape (1, 50, 1536), where 1 denotes the batch size, 50 the
number of segments, and 1536 the embedding dimension.

These embeddings are designed to capture long-range dependencies
and event semantics, making them suitable for hybrid architectures
where local spectral features are fused with global context for
downstream tasks such as sound event detection or localization.

4. DATA AUGMENTATION

To enhance model robustness and generalization, we incorporated
the publicly released synthetic SELD mixtures from DCASE 2024
[18], generated by convolving isolated events with real room impulse
responses recorded at Tampere University. We downmixed this dataset
using the mid-side stereo procedure described in Section 2 to produce
30,000 stereo clips aligned with the DCASE2025 Task 3 format,
effectively doubling the development set duration to 83.4 hours. To
further introduce spatial diversity, we applied Audio Channel Swapping
(ACS) [19] - a lightweight augmentation that permutes FOA channels
to simulate directional variation [20] - on the original FOA-format
STARSS23 dataset, increasing its size sevenfold. This ACS-augmented
data was then similarly downmixed into 30,000 stereo clips, bringing
the development set duration to 125.1 hours in total - tripling its
original size.

5. RESNET-CONFORMER-ONEPEACE (RECOOP) DEEP
LEARNING FRAMEWORK

ReCoOP, a unified framework for joint sound event detection (SED),
direction-of-arrival estimation (DOA), and source distance estimation
(SDE) was proposed. Inspired by top-performing systems in DCASE
2024 Task 3, ReCoOP is built on a shared architecture comprising
a ResNet-18 encoder [21] without final pooling to extract localized
spatial features from the input multichannel acoustic feature tensor.
These features are then passed through a linear projection layer to
map them to a fixed embedding dimension of 256, followed by a
stack of eight Conformer blocks [22] that capture long-range temporal
dynamics and cross-channel spatial dependencies. A temporal max-
pooling layer with kernel size 5 reduces the sequence length by
retaining the most salient activations over short temporal windows,
facilitating more efficient downstream processing.

From this backbone, ReCoOP instantiates two specialized variants
[8]. The first, shown in Fig. 2, is the SED-DOA model, which
augments the pooled acoustic representation by concatenating it
with contextual embeddings from ONE-PEACE, providing high-
level semantic information. The fused features are passed through
another projection layer and two additional Conformer blocks with an
embedding dimension of 256, which refine the fused representation
by aligning semantic and acoustic contexts. The output is then fed
into two parallel heads. The SED prediction head comprises two fully
connected (FC) layers with a LeakyReLU nonlinearity, followed by a
final FC layer with sigmoid activation to predict the probabilities of
each of the 13 sound event classes being active. The DOA prediction
head follows the same structure but ends with tanh activation to
produce azimuthal direction estimates.

The second variant, the SED-SDE model (Fig. 3), shares the same
ResNet-Conformer backbone but omits the ONE-PEACE integration.
This variant excludes external semantic embeddings and instead
focuses entirely on exploiting the full set of spatial and spectral cues
present in the audio input. This design ensures that both detection and

Fig. 2: Architecture for SED-DOA prediction

Fig. 3: Architecture for SED-SDE prediction

distance estimation are guided directly by physically grounded acoustic
features. It uses two output heads: a SED prediction head, identical
in structure to that in the SED-DOA model, and an SDE prediction
head, consisting of two FC layers with LeakyReLU, followed by a
final FC layer with ReLU activation to estimate class-wise source
distances.

Final predictions are obtained through task-specific ensembling:
SED outputs are averaged across both models to leverage comple-
mentary strengths; DOA predictions are taken from the semantically
enriched SED-DOA model; and SDE values are obtained exclusively
from the physically grounded SED-SDE model. This hybrid design
allows ReCoOP to combine semantic context with spatial fidelity,
yielding strong performance across all subtasks.

6. EXPERIMENTAL SETUP
The ReCoOP framework was trained using task-specific composite
loss functions. For the SED-DOA-OnePeace model, binary cross-
entropy loss was used for sound event detection, and mean squared
error loss was applied to DOA estimation, gated by SED predictions
to focus localization only on active events. For the SED-SDE model,
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binary cross-entropy loss was similarly used for detection, while the
distance regression loss was computed using mean squared percentage
error (MSPE) and masked by active event labels to ensure stability.
In both cases, the SED and localization losses were weighted with a
ratio of 0.1 to 1.

Training was conducted for 300 epochs with a batch size of 32, using
the Tri-Stage Learning Rate Scheduler to ensure stable convergence.
Final evaluation was based on the macro-averaged location-dependent
F1-score (F@20), which captures joint detection and localization
performance under thresholds of 20 degrees for azimuth and 1 for
relative distance error. In addition, we report DOA error (DOAE)
and relative distance error (RDE), both class-dependent metrics that
measure unthresholded localization accuracy in azimuth and distance,
respectively. Higher F@20 and lower DOAE and RDE values indicate
better performance.

During training, the best model checkpoints were selected based
on their F@20 performance on the dev-test split, which was used as
the validation set throughout the training process.

7. ABLATION STUDY
To assess the individual contributions of each architectural component
and training strategy, we conducted an ablation study on the stereo
SELD task using the dev-test split of the DCASE2025 Task 3 Stereo
SELD dataset. Results are presented in Table 1.

Table 1: Comparison of SELD performance across different experimental
configurations

Experiment F@20 (%) DOAE (deg) RDE

Baseline 22.78 24.5 0.41

Baseline +
Directional Features

24.70 19.5 0.32

ResNet-Conformer 46.30 13.0 0.37

ReCoOP
[submitted system]

48.20 13.3 0.36

ReCoOP + ACS 47.50 13.7 0.36

The baseline system employed a lightweight convolutional-recurrent-
attention architecture using only log-Mel spectrograms, achieving
an F@20 of 22.78%, though with high localization and relative
distance errors. Incorporating spatial acoustic features - specifically
interaural level and phase differences (ILD, IPD) and GCC-PHAT -
led to measurable improvements: the F@20 increased to 24.70%, and
localization performance improved, highlighting the importance of
spatial cues.

A substantial performance gain was observed upon adopting the
ResNet-Conformer framework, which had shown strong results in
previous DCASE challenges. This configuration reached an F@20 of
46.30%, with further reduction in localization error.

Building on this, we integrated pretrained ONE-PEACE embeddings
into the ResNet-Conformer setup to form the proposed ReCoOP
system. This resulted in the highest detection accuracy, with an F@20
of 48.20% and improved distance estimation - a strong result given
its modest 26M parameter size.

Finally, we applied Audio Channel Swapping (ACS) augmenta-
tion to ReCoOP, achieving a comparable F@20 of 47.50%. This
demonstrated that ACS acts as an effective regularizer, preserving
both detection and localization performance.

All experiments included synthetic audio data augmentation, with
ACS uniquely applied in the final configuration.

8. RESULTS
This section presents the official evaluation results of our proposed
ReCoOP framework on the hidden test set of DCASE 2025 Task
3A, with comparisons to other top-performing submissions. System
rankings were based on F@20, and a summary of key metrics is
provided in Table 2.

Table 2: Official DCASE2025 Task 3a challenge results. The submitted system
Banerjee NTU task3a 1 corresponds to the ReCoOP system in Table 1.

System System Info Evaluation Metrics

Rank Size F@20↑ DOAE↓ RDE↓

Du NERCSLIP task3a 4 1 58M 50.4 12.2 26.9
He HIT task3a 1 2 104M 47.0 13.3 38.6
Banerjee NTU task3a 1 3 26M 43.9 14.0 35.2
AO Baseline 13 734k 26.1 23.0 33.2

Our submission, Banerjee NTU task3a 1, ranked third overall,
achieving an F@20 of 43.9%, a DOAE of 14.0°, and an RDE of
35.2%. Importantly, ReCoOP accomplished this using only 26 million
parameters - less than half the size of the top-ranked system and just
one-quarter of the second-ranked - demonstrating a highly favorable
F@20-to-model-size trade-off.

The top-ranked Du NERCSLIP task3a 4 [23] attained an F@20
of 50.4% using a 58M-parameter ResNet-Conformer ensemble trained
on log-mel spectrograms with extensive augmentation. The second-
ranked He HIT task3a 1 [24] reached 47.0% with a much larger
104M-parameter ensemble and synthetic audio strategies. While both
systems demonstrated higher detection accuracy, their substantially
larger footprints highlight the efficiency advantage of ReCoOP.

Relative to the official AO Baseline system, which reported an F@20
of 26.1%, ReCoOP achieved a substantial 17.8-point improvement in
detection accuracy. This highlights the strength of our approach in
bridging the performance gap through architectural and feature-level
innovations.

Thus, by integrating directional acoustic cues with contextual
ONE-PEACE embeddings , ReCoOP demonstrates that high SELD
performance can be achieved within a compact and efficient architec-
ture. This underscores its potential for real-world deployment where
computational efficiency is paramount.

9. CONCLUSION
In this work, we proposed ReCoOP, a compact two-model SELD
ensemble that combines a rich acoustic feature set - including log-mel
spectrograms and interaural directional cues (ILD, IPD, GCC-PHAT)
- with contextual embeddings from ONE-PEACE, using a lightweight
ResNet-Conformer backbone.

ReCoOP achieved a 25.42% F@20 improvement over the baseline
on the validation set and ranked third overall on the official test
set, with a 17.8-point F@20 gain. With just 26 million parameters, it
achieves competitive performance, demonstrating an efficient F@20-to-
model-size trade-off. Future work includes better temporal integration
of semantic features, cross-dataset generalization, and self-supervised
spatial learning.
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