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Abstract—Unsupervised anomalous sound detection (ASD) under
domain shift remains a key challenge for real-world deployment. We
introduce a two-stage “first-shot” pipeline for DCASE 2025 Task 2 that
leverages optional clean-only or noise-only supplemental recordings to
improve robustness to unseen background noises. First, a correlation-
based filter is trained separately on clean or noise data, separating each
test mixture x = C+N +A into a cleaner signal x′ = C+A. Second, a
mel-spectrogram autoencoder, augmented with SMOTE and mixup on x′,
detects anomalies. On the development set, our method achieves a high
SI-SDR for the separation task and improves the detection metrics for
three out of seven components compared to the baseline. These results
validate that assuming statistical independence between machine sound,
background noise, and anomalies can enhance first-shot ASD. Future
work will explore automated correlation estimation and integration with
more advanced anomaly detection methods for the second stage.

Index Terms—anomalous sound detection, signal correlation, DCASE,
source separation, audio

1. INTRODUCTION

Anomalous sound detection (ASD) has emerged as a critical technol-
ogy for non-intrusive monitoring of industrial machinery, enabling
early warning of mechanical faults through audio analysis [1],
[2]. Unsupervised ASD, which relies solely on normal-condition
recordings, was first standardized in the DCASE 2020 Challenge Task
2 to address the scarcity and diversity of anomalous examples in real
factories [3]. Subsequent editions have progressively incorporated
domain-shift and “first-shot” scenarios, in which systems must
generalize to unseen operating conditions or entirely new machine
types without task-specific tuning [3], [4].

Building on the first-shot unsupervised ASD framework of DCASE
2023 and 2024, the 2025 Task 2 challenge retains the requirement
to train exclusively on normal data and to detect anomalies under
unknown domain shifts, while introducing optional use of clean-
only or noise-only supplementary recordings [4]. Participants must
also handle completely novel machine types at evaluation, with no
access to anomalous test data for hyperparameter tuning. This “first-
shot” setting reflects real-world constraints where rapid deployment
precludes exhaustive data collection or manual calibration.

We propose a two-stage pipeline for first-shot ASD: (1) a correlation-
based separator that, given clean-only or noise-only supplemental data,
filters each test mixture x = C+N +A into x′ = C+A as depicted
in Figure 1; (2) a mel-spectrogram autoencoder, augmented with
SMOTE and mixup trained on x′, to detect anomalies. By leveraging
correlation-based filtering, our method enhances robustness to unseen
background noises in the DCASE 2025 Task 2 setting.

2. METHOD

We denote clean machine sound by C, background noise by N ,
and anomalous sound by A. Artificial noise augmentations, NA, are
sampled from diverse sources. We use ρ(S1, S2) as the correlation
between two signals S1 and S2, where the threshold ε denotes a
significant correlation between them. In our two-stage methodology,
a first step trains a filtering model which can separate the mixture

x = C +N + A into x′ = C + A. The second step then involves
training an anomaly detection model based on the filtered x′.

(a) Bearing (b) Slider

Fig. 1: Correlation-based filtering for two components. In (a) we have
supplemental = C, thus we perform machine sound extraction. In (b)
we have supplemental = N , thus we perform noise extraction.

2.1. Correlation-based Filtering

In the DCASE challenge 2025, we are provided with additional
supplemental data which consists of either C or N . For both cases
we developed separate filtering strategies. For the evaluation of the
filtering quality, we report the scale-invariant signal-to-distortion ratio
(SI-SDR), which is commonly used in source separation tasks [5].

2.1.1. Machine Sound Extraction: If we are provided with sup-
plemental data containing the clean machine sound C, we train a
source-separation network

fθ(C +NA) ≈ C (1)

to recover the clean sound C from noise-augmented inputs C +NA.
At inference time on mixture x this will allow us to filter:

ŷ = fθ(x) ≈ C +A = x′ (2)

For this filtering to work we introduce the following assumptions:

1.1 ρ(C,NA) < ε (artificial noise uncorrelated with C)
1.2 ρ(C,N) < ε (background noise uncorrelated with C)
1.3 ρ(C,A) > ε (anomalies strongly correlated with C)
1.4 ρ(N,A) < ε (anomalies uncorrelated with N )
1.5 ρ(Csource, Ctarget) > ε (machine sound of source is strongly

correlated with target)
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2.1.2. Noise Extraction: If we are provided with supplemental data
containing the background sound N , we train a source-separation
network

fθ(N +NA) ≈ N (3)

to extract background noise N from N +NA. At inference time on
mixture x this will allow us to filter:

ŷ = fθ(x) ≈ N → x− ŷ = x′ (4)

For this filtering to work we introduce the following assumptions:

2.1 ρ(N,NA) < ε (artificial noise uncorrelated with N )
2.2 ρ(A,NA) < ε (artificial noise uncorrelated with A)
2.3 ρ(C,N) < ε (background noise uncorrelated with C)
2.4 ρ(N,A) < ε (anomalies uncorrelated with N )
2.5 Nsource = Ntarget (background sound of source is equal to target)

Assumptions 2.1, 2.2, and 2.5 are new; 2.3 and 2.4 overlap with 1.2
and 1.4, respectively.

2.2. Anomaly Detection

Once we have x′ we can theoretically use any of the methods presented
in the DCASE challenges 2020-2024, ranging from outlier exposure
to inlier modeling and a large diversity of combinations of the two [6]–
[9]. We choose to use a similar approach as the baseline of the 2025
challenge, consisting of an autoencoder based on Mel-spectrograms.
Additionally, we employ SMOTE [10] for oversampling the target
domain and mixup [11] to augment our data. For anomaly detection,
we evaluate using the area under the ROC curve (AUC) and partial
AUC (pAUC), following the official DCASE challenge metrics [4].

3. EXPERIMENTAL SETUP

We adhere to the DCASE 2025 Task 2 protocol [4]. The development
dataset provides training and test splits for seven machines: Valve,
Bearing, ToyCar, ToyTrain, Slider, Gearbox and Fan, where we have
supplemental C in the first three and N in the others. For each
component, we first train a correlation-based filter model with the
strategy depending on the provided supplemental data. The model is a
standard U-Net with input and output being the complex spectrograms
of the respective signals using a 64-ms window and 32-ms hop size
[12]. U-Net has proven effective for source separation, especially
when the thresholds ε in assumptions 1.1 and 2.1 are small. We use
a batch size of 32 and a learning rate of 0.0005 to optimize over a
multi-resolution STFT loss [13] for 300 epochs with early stopping.
To counteract potential violations of assumptions 1.1 and 2.1, we
sweep over various SNR ranges and NA sources and choose the run
resulting in the highest adjusted SI-SDR (= SI-SDR − E

[
SNR

]
) on

a 10% holdout validation set, to ensure we cover realistic SNR ratios
that are not known in advance.

• NA sources: {AudioSet full, AudioSet no tools, AudioSet only
tools, DCASE Clean (supplemental clean-only), DCASE Noise
(supplemental noise-only)},

• SNR windows: [-30,30], [-10,30], [-10,10], [-5,5] dB.

The anomaly detection autoencoder is trained with very similar
parameters as the DCASE 2025 baseline. We use a 64-ms window
with a 128-bin mel spectrogram over five consecutive windows as a
feature vector. The encoder-decoder architecture is a symmetric MLP.
We train the model over 100 epochs with a learning rate of 0.001 and
a batch size of 64.

4. RESULTS

We evaluate our two-stage pipeline on the DCASE 2025 Task 2
development set in three parts: correlation-based filtering on the
development data, filtering performance on the additional evaluation
data, and anomaly detection on the development set.

Component SNR [dB] NA Source SI-SDR [dB]

Valve [-10, 10] AudioSet full 11.4
ToyTrain [-10, 10] DCASE Clean 6.3
ToyCar [-5, 5] AudioSet full 5.8
Slider [-5, 5] DCASE Clean 6.9
Gearbox [-5, 5] DCASE Clean 5.7
Fan [-5, 5] DCASE Clean 7.4
Bearing [-5, 5] AudioSet full 9.1

Table 1: Best Adjusted SI-SDR results for correlation-based filtering
per component in development dataset

First, Table 1 reports the optimal filtering settings and adjusted SI-
SDR for each of the seven development components. Valve achieves
the highest SI-SDR of 11.4 dB using full AudioSet noise at ±10 dB,
while Bearing achieves 9.1 dB under a narrower ±5 dB range with the
same noise source. ToyTrain (6.3 dB) and ToyCar (5.8 dB) similarly
leverage wider SNR windows (±10 dB and ±5 dB) with DCASE
Clean or AudioSet full augmentations, reflecting their varied spectral
content. The remaining components Slider (6.9 dB), Gearbox (5.7
dB), and Fan (7.4 dB) attain the best separation under narrow (±5
dB) clean-only noise, indicating limited noise variability suffices for
these cases.

Component SNR [dB] NA Source SI-SDR [dB]

AutoTrash [-5, 5] AudioSet full 15.29
BandSealer [-10, 10] DCASE Clean 6.79
CoffeeGrinder [-5, 5] DCASE Clean 11.38
HomeCamera [-5, 5] DCASE Clean 12.07
Polisher [-10, 10] AudioSet full 5.82
ScrewFeeder [-5, 5] AudioSet no tools 8.84
ToyPet [-5, 5] DCASE Clean 9.16
ToyRCCar [-5, 5] DCASE Clean 8.67

Table 2: Adjusted SI-SDR for correlation-based filtering per compo-
nent in additional training dataset

Next, Table 2 presents SI-SDR results on eight novel components
in the additional evaluation set. Here, SI-SDR ranges from 5.82 dB
(Polisher) up to 15.29 dB (AutoTrash), with most components favoring
±5 dB clean or full-AudioSet noise. This consistency confirms that
our correlation-based filter generalizes effectively to unseen machine
types in a first-shot scenario.

Component Baseline Best 2024 Unfiltered Filtered

Valve 0.611 0.771 0.669 0.848
ToyTrain 0.557 0.651 0.590 0.564
ToyCar 0.567 0.594 0.588 0.405
Slider 0.561 0.593 0.542 0.600
Gearbox 0.553 0.704 0.547 0.566
Fan 0.499 0.639 0.541 0.545
Bearing 0.598 0.691 0.582 0.734

hmean 0.5617 0.6582 0.5771 0.5775

Table 3: Development dataset detection results. Scores correspond to
the harmonic mean of AUC and pAUC. Best 2024 corresponds to
[14], best results per row are highlighted in bold.
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Finally, Table 3 compares anomaly detection metrics before
(”Unfiltered”) and after filtering (”Filtered”), alongside the baseline
and the Best 2024 system. We would expect ”Filtered” to be similar or
better than ”Unfiltered” if the filtering indeed transforms our mixture
x = C + N + A to fθ(x) = C + A = x′. After filtering, Valve
improves from 0.669 to 0.848 (+0.179), Bearing from 0.582 to 0.734
(+0.152), Slider from 0.542 to 0.600 (+0.058) and Gearbox from
0.547 to 0.566 (+0.019), demonstrating that isolating C+A enhances
anomaly detection as expected.

Conversely, ToyTrain (0.590 → 0.564, –0.026) and ToyCar (0.588
→ 0.396, –0.183) degrade, indicating their anomalies may not align
with our independence assumptions. Overall, the harmonic mean
across components increases slightly from 0.5771 to 0.5775 (+0.0004),
evidencing modest benefits of filtering on average across all machines,
which is mostly due to the bad results on the ToyCar and ToyTrain
components.

5. DISCUSSION

The experimental results demonstrate that our correlation-based
filtering effectively enhances anomaly detection when the underlying
independence assumptions hold. For components such as Valve,
Bearing, and Slider, the filter succeeded in isolating the machine signal
plus anomaly, leading to clear gains in anomaly detection (Table 3,
Figure 1). This indicates that, for these machines, (1) background
noise and artificial augmentations remain uncorrelated with the clean
sound (ρ(C,NA) < ε and ρ(N,NA) < ε), and (2) anomalous events
retain sufficient correlation with the machine signature (ρ(C,A) > ε)
to survive filtering.

(a) ToyCar (b) ToyTrain

Fig. 2: Both components in (a) and (b) produce non-stationary sounds
that are correctly filtered. However, they may violate assumptions 1.3,
1.4, and 2.4 because the anomalous sound may be weakly correlated
with the machine sound, for example, by only occurring during the
ramp-up or ramp-down phase.

In contrast, ToyTrain and ToyCar exhibit performance degradations
after filtering, with detection scores falling by 0.026 and 0.183
respectively. Their non-stationary operating cycles with ramp-up,
steady, and ramp-down phases appear to violate the assumption that
anomalies strongly co-vary with the baseline machine sound. As a
result, the filter may remove or attenuate anomalous components
along with noise, harming detection (Figure 2). Introducing additional

transformations such as windowing could help with this issue
but requires further work. Fan and Gearbox exhibit only modest
detection gains after filtering, indicating partial alignment with our
independence assumptions. We attribute this to an under-representation
of background noise in the supplemental data (see Figure 3): for Fan,
the supplemental recordings contain only stationary noise which might
be easier to detect in STFT, whereas the development and evaluation
sets also include non-stationary events such as hammering and
grinding. Consequently, the filtering model cannot learn to suppress
these dynamic noise components, leaving residual interference in
x′ and limiting the achievable improvement. We made very similar
observations for Gearbox.

(a) Sample of fan supplemental
background noise

(b) Sample of fan training data

Fig. 3: In (a) we see a representative sample from supplemental
data for Fan, which is stationary. In (b) we can see that the actual
training data contains obvious non-stationary background events, such
as grinding. The correlation-based filter model does not remove these
events because it has never encountered them before.

On the additional evaluation set, the filter generalizes effectively to
eight novel components, yielding SI-SDR scores between 5.82 dB and
15.29 dB (Table 2). Although absolute separation quality varies with
machine-noise spectral overlap, the consistent performance across
unseen machines confirms the robustness of our first-shot filtering
approach.

6. CONCLUSION
We have presented a two-stage “first-shot” pipeline for unsupervised
anomalous sound detection, combining correlation-based filtering with
a mel-spectrogram autoencoder. By grid-searching SNR windows
and noise-augmentation sources, our method adaptively separates
each mixture into machine-plus-anomaly signals before a simple
reconstruction-based error detection. On the DCASE 2025 Task 2
development set, filtering improved detection metrics for the majority
of components. On the eight unseen machines we find a similar
separation performance range as for the development dataset using
the same hyperparameter grid. Future work will explore automated
estimation of signal correlations to select augmentations per machine
and integration with more sophisticated anomaly detectors that can
tolerate partial assumption violations.
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