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Abstract—We present our submission to Task 6 of the DCASE 2025
Challenge on language-based audio retrieval, where our team ranked
second overall, with our best single system achieving the fifth-highest score
among all individual submissions. Our approach investigates multiple
cross-modal architectures, including both standard dual-encoders and
attention-based models that leverage fine-grained interactions between
audio and text embeddings. All models are trained with contrastive
learning on a combination of large-scale captioned audio datasets, using
PaSST and RoBERTa as backbone encoders. While each system achieves
competitive results on its own, we observe consistent improvements when
combining them in an ensemble, suggesting that the architectures capture
complementary audio-text relationships. We support this finding with
initial representational analyses, which point to differences in how these
models structure the shared embedding space. Our results highlight the
benefits of architectural diversity in modeling semantic similarity across
modalities.

Index Terms—Language-based Audio Retrieval, Audio transformer,
Cross-modal attention

1. INTRODUCTION

Language-based audio retrieval (LBAR) systems aim to retrieve
relevant audio recordings from a large corpus based on free-form
natural language queries. Unlike traditional sound event detection or
tagging systems that rely on predefined taxonomies, LBAR enables
flexible and intuitive access to audio content by aligning auditory
signals with descriptive semantics. This task remains technically
challenging due to the need to bridge heterogeneous modalities—raw
waveforms and text—within a unified embedding space where
semantic similarity is meaningfully preserved.

At the core of this task lies a challenging multimodal alignment
problem: systems must learn to associate raw audio signals with
textual descriptions, despite the inherent differences in structure and
modality. The dominant approach involves contrastive learning within
a dual-encoder framework, where separate encoders project audio and
text inputs into a shared embedding space. Relevance is then computed
based on the cosine similarity between these embeddings. While this
method has proven effective, its reliance on global representations
limits its ability to capture fine-grained semantic alignments, such
as correspondences between specific acoustic events and words or
phrases.

Recent work [1], [2] suggests that richer modeling of cross-modal
interactions, particularly via attention mechanisms, can address this
limitation by incorporating Token-level correspondences into the
retrieval process. Motivated by these insights, we explore a diverse
set of architectures for LBAR, including both standard dual-encoders
and attention-based models that explicitly model interactions between
audio and text embeddings.

Our results demonstrate that while each individual model performs
competitively, their combination in an ensemble yields consistent
improvements across metrics. We further analyze the representations
learned by these systems and find evidence that they capture com-
plementary aspects of audio-text semantics. Our findings underscore
the value of architectural diversity in modeling cross-modal semantic
similarity and contribute insights towards the development of more
robust and expressive LBAR systems.

2. CROSS MODAL ATTENTION IN TEXT TO AUDIO
RETRIEVAL

We present a cross-modal attention-based method for text-to-audio
retrieval that aims to effectively align textual and audio representations
following already existing proposals [1].

Given textual embeddings 7' € R™*% and audio embeddings
A € RM*da where N denotes the number of embeddings of a
sentence, d; the dimension of the text embeddings, M the number
of embeddings of an audio and d, the dimension of the audio
embeddings, we first project them into a common space of dimension
d. Specifically, textual embeddings 7" are projected through a linear
transformation to obtain the query vector (Q):

Q=WwW,T QeRV* )
where W, € R**% are learned parameters.
Audio embeddings are projected independently using two separate
linear transformations to generate key (X) and value (V') vectors:
K =WiA, KeRM* )
V=W,A4, VeRY 3)

where Wy, W, € R4¥%a gre also trainable parameters.

Next, we apply multi-head attention, defined as:
MultiHead(Q@, K, V') = concat(head,, . . . ,headh)Wo (€)]

where h indicates the number of heads, WO € R*™? are trainable
parameters and each attention head is implemented following the
standard definition [3]:

head; = Attention(QW2, KW/ VW) 5)

where WiQ, WiK, Wiv € R¥¥9n are all trainable parameters and dj,
denotes the head size.

The output of the attention module is passed through another
linear layer:

H = W, - MultiHead(Q, K, V), H e RV*¢ (6)

with parameters W, € R%*¢ also being trainable.

Finally, we compute the similarity between these refined cross-modal
representations H and the original textual embeddings 7" using the
average cosine distance between them as follows:

N

1 T; - H;

sim(T, H) = — g —_— @)
N & |5 || Hs|

To train our models we rely on the normalized temperature
cross-entropy loss [4], which transforms the similarities into
conditional probabilities using a temperature-scaled softmax.
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3. EXPERIMENTAL SETUP

To evaluate the effectiveness of our retrieval systems and to ensure
fair comparison with state-of-the-art (SOTA) methods, we adopt
a comprehensive experimental protocol that follows the standards
established in recent benchmark efforts. Our setup covers training
data, preprocessing, model implementation, and evaluation strategy,
including both the conventional Clotho split and the extended
evaluation with improved caption-to-audio correspondences.

3.1. Datasets

All models are trained using a combination of four large-scale
captioned audio datasets: ClothoV2, AudioCaps, WavCaps, and
TACOS. This unified training set provides both human-annotated
and synthetic captioning data, covering a broad range of sound types
and textual styles, thereby supporting robust and generalizable retrieval
capabilities.

ClothoV2 [5] serves as our primary benchmark for evaluation. It
consists of audio clips ranging from 10 to 30 seconds, each paired with
five natural language captions. The dataset is divided into training,
validation, and test sets, comprising 3840, 1045, and 1045 audio
files, respectively. We train only on the training subset, monitor
performance on the validation split, and report results on the test
split. In addition to the standard evaluation setup, we also utilize the
improved caption correspondences recently introduced, which provide
human-verified many-to-many relevance annotations between queries
and audio files. This enhancement allows for a more fine-grained and
realistic assessment of retrieval performance.

AudioCaps [6] contributes over 50,000 audio clips, each paired with
a single human-written caption. The audio is derived from AudioSet
and spans a wide variety of acoustic scenes and events. We aggregate
the training, validation, and test splits of AudioCaps into a single
dataset, using it as part of the pretraining corpus to increase model
generalization.

WavCaps [7] extends the scale of training by providing weakly
labeled captions for over 400,000 audio clips collected from multiple
online repositories. The captions are synthetically generated using
a large language model (GPT-3.5) and capture high-level sound
descriptions. Despite their automatic nature, the diversity and volume
of WavCaps provide valuable learning information when combined
with human-annotated corpora.

TACOS (Temporally-Aligned Audio CaptiOnS) [8] introduces
frame-level supervision by aligning captions to specific regions
of audio clips. While the dataset includes detailed time-segment
annotations, our current experiments use only the weak labels—i.e.,
global clip-level caption associations—to remain consistent with the
global retrieval task. TACOS contains more than 12,000 real-world
audio files with approximately 48,000 region-level captions.

To ensure fair benchmarking and avoid evaluation leakage, we
follow dataset-specific guidelines for removing overlap with Clotho
test sets during training. This step is particularly relevant for synthetic
datasets like WavCaps, which aggregate clips from sources such as
AudioSet and Freesound.

3.2. Pretrained Embedding Models

Audio is processed using the PaSST [9] transformer encoder, a
pretrained audio model based on the vision transformer architecture.
PaSST is designed to efficiently handle long audio sequences through
patch-wise input and temporal patch dropout. Each audio clip is
transformed into a sequence of token embeddings, with one embedding
approximately every 10 seconds. During training, audio inputs longer
than 30 seconds are truncated, while shorter ones are zero-padded
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to a fixed maximum duration to ensure consistent batch sizes. The
tokens produced by PaSST have length d, = 768.

Text inputs are encoded using RoBERTa-large [10], a transformer-
based language model with 24 layers and 355 million parameters.
RoBERTa is well-established for Sentence-level and Token-level repre-
sentation learning and has shown strong results in multimodal retrieval.
Captions are normalized to lowercase, stripped of punctuation, and
tokenized using the RoBERTa tokenizer. Token sequences are padded
or truncated to a fixed length of 32 tokens, which we found sufficient
to capture most captions without loss of information. The text tokens
produced by the model have length d; = 1024.

3.3. Model Training and Optimization

We trained three different configurations consisting of the standard
dual-encoder architecture (hereafter referred to as Dual-encoder) which
is exactly the same as the one used for the challenge benchmark [11], a
cross-attention system which only used the Sentence-level embedding
token from RoBERTa (Sentence-level attention model from now on),
and finally another cross-attention system which utilized all the text
embeddings (Token-level attention model from now on). We used 8
attention heads and a joint embedding space of dimension 1024.

To properly isolate the impact of architectural design while
enabling a fair comparison with state-of-the-art methods, we conducted
experiments both using only the Clotho dataset and the full combined
training set comprising Clotho, AudioCaps, WavCaps, and TACOS.

We trained both encoders, the embeddings projection layers and the
cross-modal attention heads employing the Adam optimizer. When
training on Clotho alone, we used a fixed batch size of 64 audio-text
pairs; for the combined datasets experiments, batch sizes of 128 were
used for the PaSST-RoBERTa Large and Sentence-level embedding
systems and 96 for the full text embeddings model due to memory
limitations. After one warm-up epoch, a cosine annealing schedule
was used to decrease the learning rate from 2 x 1075 to 10~ over
ten epochs. All models are trained end-to-end, including the encoders
and cross-modal attention layers where applicable.

After pretraining, fine-tuning with knowledge distillation was
performed following the approach of [12]. For models trained on
the full dataset, distillation was applied using ClothoV2, AudioCaps,
and TACOS weak, with the same training setup. In contrast, models
trained solely on Clotho were fine-tuned exclusively on that dataset.
In all cases, predictions from the three models were averaged
to estimate caption—audio correspondences, using a temperature
parameter 7 = 0.05 and a loss balancing factor A = 1.

4. EMBEDDING SPACE ANALYSIS

To better understand how each architecture encodes and aligns audio
and textual information, we analyze the structure of the shared
embedding space across the three model variants. For each model, we
extract the final representations of audio and text from the ClothoV2
test set and visualize their projections using dimensionality reduction
techniques.

In all models, PaSST produces a sequence of patch-based embed-
dings for the input audio, while RoBERTa yields either a single CLS
token (for Sentence-level models) or a sequence of token embeddings
(for the Token-level attention model). For the dual-encoder and
Sentence-level attention models, a single embedding per modality is
directly available or easily extracted, and cosine similarity between
these vectors is used for retrieval. However, in the Token-level model,
where multiple token or frame-level embeddings exist, we compute
the mean of the audio and text embeddings respectively to obtain a
single global representation suitable for analysis and comparison.
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Fig. 1: UMAP projections of the shared embedding space for each model architecture. Top-left: dual-encoder baseline showing highly intermixed audio (blue)
and text (orange) embeddings. Top-center and top-right: Sentence-level attention model’s key and value projections, respectively, showing strong modality
separation. Bottom-left and bottom-center: Token-level attention model’s key and value projections, likewise exhibiting distinct clustering by modality. For
attention-based models, audio embeddings were projected separately as keys and values; when needed, audio and text representations were averaged to produce

global embeddings for visualization.

We analyze the structure of the learned embedding spaces by
projecting the global audio and text embeddings from each model
into two dimensions using Uniform Manifold Approximation and Pro-
jection (UMAP) [13]. These visualizations expose notable differences
in how each architecture organizes multimodal data. In the case of
the dual-encoder model, audio and text embeddings form relatively
well-aligned clusters, with no sharp separation between modalities,
indicating that the shared space effectively captures coarse semantic
alignment. However, the modality boundaries remain somewhat diffuse,
and visual inspection alone is insufficient to evaluate alignment
quality. To quantify the degree of semantic correspondence, we
perform a statistical comparison of cosine distances between matching
audio—caption pairs and randomly sampled mismatched pairs. A two-
sample t-test reveals a highly significant difference (p < 107'°),
confirming that matched pairs are substantially closer in the embedding
space, and that the model has learned a discriminative structure that
reflects semantic similarity.

In contrast, both attention-based models exhibit clearly segregated
clusters for audio and text. We include visualizations of the key (K)
and value (V) projections not because we expect them to align directly
with the textual embeddings (Q), but to illustrate how the attention
mechanism organizes modality-specific intermediate representations.
By construction, K and V are audio-derived projections that mediate
the interaction with textual queries Q, and their structure is informative
about the degree of specialization of the audio pathway prior to
attention. This behavior differs from the dual-encoder setup, where
training directly enforces cross-modal embeddings to be close in
cosine distance. In that case, similarity is imposed at the level of
the raw embeddings, which pushes audio and text to occupy a
common latent space and leaves little room for modality-specific
clustering. By contrast, in attention-based models alignment is not
enforced on K and V themselves, but only after the attention operation,

through the output H compared to Q. As a result, K and V remain
organized in modality-specific subspaces, and alignment with text
emerges only after this intermediate transformation. The observed
clustering should therefore not be interpreted as evidence against cross-
modal learning, but rather as an indication that attention preserves
distinct pathways internally while deferring semantic alignment to later
stages. More broadly, this suggests that cross-modal attention layers
might increase representational capacity by allowing each modality to
maintain its own structure while still producing compatible semantic
representations when required for training.

These differences suggest that each architecture encodes comple-
mentary aspects of cross-modal similarity—global fusion versus local
alignment—which likely contributes to the performance gains observed
in our ensemble system. Nevertheless, this analysis is an initial
exploration and further experiments will be needed to corroborate the
observed behaviors.

5. RESULTS & DISCUSSIONS
5.1. Comparison to state-of-the-art systems

To contextualize the performance of our proposed models, we compare
them against the current state-of-the-art systems presented at the
DCASE 2024 Challenge [14]. The winning system from that challenge
achieved a mAP@10 of 41.91, R@1 of 29.33, R@5 of 59.311, and
R@10 of 71.923 on the ClothoV?2 test set using an ensemble of three
distilled models each using a different audio encoder: PaSST [9], AST
[15], and MobileNetV3 [16] architectures, and RoOBERTa as the text
encoder.

In comparison, our best ensemble system, combining Dual Encoder,
Sentence-level attention, and Token-level attention models trained with
knowledge distillation, achieves 40.423 mAP@10, R@1 of 27.732,
R@5 of 58.201, and R@10 of 71.732 when trained on the full dataset.
While these results are below the 2024 SOTA across all metrics,
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Table 1: Retrieval performance of different model architectures, including a baseline dual-encoder and two attention-based systems (Sentence-level and
Token-level), trained with and without knowledge distillation. Results are reported for models trained solely on the Clotho dataset and on a combined dataset
(Clotho, AudioCaps, WavCaps, and TACOS). Metrics include mAP@16 and mAP@10 using improved caption correspondences, as well as mAP@10, R@1,
R@5, and R@10 for original caption—audio pairs. Distilled models and their ensemble demonstrate the performance gains from architectural diversity and

teacher-student training.

Clotho Only

All Datasets

Improved Captions

Original Captions

Improved Captions Original Captions

mAP@16 mAP@I0 mAP@I0 R@I R@5 R@I0 mAP@I6 mAP@I0 mAP@I0 R@l1 R@5 R@I10
Dual Encoder 34.943 32.532 30413 18.756 45.876 60.268  42.324 39.664 37.389 24976 54.086 68.172
Sentence-level Attention 35.151 32.730 29.431 18.086 44.708 58.947 42434 39.827 35769  23.655 52766 66.258
Token-level Attention 35.195 32.931 29582 18201 45378 59273  41.375 38.908 35770 23.828 52.057 65.742

Knowledge Distillation

Dual Encoder! 34.354 32.119 29918 18220 45378 59.273  44.203 41.662 38.293 25263 56.000 69.282
Sentence-level? 33.042 31.009 28.816  17.952 43254 57.627  43.926 41332 37495 24784 54.947 68.650
Token-level® 33.000 31.034 28.722  17.589 43502 57914 42457 40.061 37.901 25818 5443  67.617
Ensemble!»2:3 35.304 33.161 30.758  19.254 45.856 60.785 46.864 44.176 40.423  27.732 58.201 71.732

Table 2: Retrieval performance (mAP@ 16 and mAP@10) for the two attention
architectures presented on this paper trained with both the text and audio
encoders frozen. The models are only trained on the Clotho dataset and
evaluated on the improved captions.

Model Architecture mAP@16 mAP@10
Sentence-level Attention 23.732 21.901
Token-level Attention 26.130 24.184

particularly in terms of early precision (R@1), they demonstrate that
our approach remains competitive, especially considering that it relies
on a single audio encoder (PaSST) across all models and does not
leverage multiple specialized backbones.

Although our system does not surpass the 2024 SOTA in raw
performance, it achieves strong results without relying on encoder
heterogeneity or handcrafted ensemble tuning.

5.2. Importance of Encoder Fine-Tuning

A central design consideration in multimodal retrieval is whether
fine-tuning large pretrained encoders is necessary, or whether task
performance can be achieved by training only the cross-modal
interaction layers. This question is particularly relevant for our
attention-based architectures, which preserve distinct embedding
spaces for audio and text. One might hypothesize that the attention
mechanism alone could serve as a sufficient alignment module.

To test this hypothesis, we conducted experiments where the audio
and text encoders (PaSST and RoBERTa) were frozen, and only the
projection and attention layers were trained. The results, summarized in
Table 2, show a consistent and significant drop in retrieval performance
across all architectures when fine-tuning is disabled.

These findings suggest that while attention mechanisms do enable
cross-modal interaction, they are not sufficient on their own to fully
bridge the modality gap, especially when the encoders remain fixed to
their pretraining objectives. Fine-tuning allows the encoders to adapt
their representations to the retrieval task and dataset characteristics,
resulting in more semantically aligned embeddings and better overall
performance.

5.3. Pairwise Ensemble Analysis

To further investigate the individual contributions of each model
architecture within the ensemble, we conducted an ablation study by
evaluating all possible pairwise combinations of the three systems.
Specifically, we assessed the performance of the following two-model
ensembles: Dual Encoder + Sentence-level Attention, Dual Encoder
+ Token-level Attention, and Sentence-level Attention + Token-level
Attention. The results are presented in Table 3.

Table 3: Retrieval performance (mnAP@16 and mAP@10) for pairwise model
ensembles using improved caption correspondences. All models are trained
on the combined dataset.

Model Ensemble mAP@16 mAP@10
Dual Encoder + Sentence-level Attention 46.521 43.894
Dual Encoder + Token-level Attention 46.005 43.323
Sentence-level + Token-level Attention 44.872 42.270

This analysis revealed that the combination of the Dual Encoder
and Sentence-level Attention models consistently achieved the highest
retrieval performance among the pairwise configurations. This suggests
that these two architectures capture highly complementary cross-
modal features, likely owing to their distinct alignment mechanisms.
These findings are consistent with our embedding space visualizations
in 4, which indicate that the Dual Encoder produces a more
intermixed embedding space, whereas the Sentence-level Attention
model preserves stronger modality-specific structures.

The ensemble composed solely of the Sentence-level and Token-
level Attention models yielded smaller gains compared to individual
performance. This outcome suggests a degree of representational
redundancy, potentially due to the shared attention-based architecture
and similar alignment strategies. Overall, these pairwise ensemble
results support our central hypothesis: architectural heterogeneity,
particularly combining models with fundamentally different cross-
modal interaction paradigms, plays a critical role in enhancing retrieval
accuracy through ensembling.

6. CONCLUSION

This work explored a set of cross-modal architectures for language-
based audio retrieval, including a standard dual-encoder model and
two attention-based variants. All models were built using a common
set of backbone encoders (PaSST and RoBERTa) and trained with
contrastive learning on a diverse collection of captioned audio datasets.

While none of the individual models outperform the current state-of-
the-art, they each demonstrated competitive performance. Importantly,
combining them in an ensemble led to consistent performance
improvements, suggesting that the models capture complementary
aspects of the retrieval task. Pairwise ensemble analysis supported this
interpretation, with the most notable gains observed when combining
the Dual Encoder with the Sentence-level Attention model.

Our results also emphasized the necessity of fine-tuning the
pretrained encoders, as freezing them during training significantly
reduced retrieval accuracy across all model types.
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