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Abstract—The BioDCASE initiative aims to encourage the invention
of methods for detection and classification of acoustic scenes and events
(DCASE) within the domain of bioacoustics. We have contributed to
the first edition of the BioDCASE challenge by means of a task named
“bioacoustics on tiny hardware”. The motivation for this task resides in
the growing need for operating bioacoustic event detection algorithms on
low-power autonomous recording units (ARU’s). Participants were tasked
with developing a detector of bird vocalizations from the yellowhammer
(Emberiza citrinella), given two hours of audio as a training set. The
detector had to run within the resource constraints of an ESP32-S3
microcontroller unit. By evaluating the submitted models on a withheld
dataset, we conducted an independent benchmark that assessed both
classification performance and resource efficiency through multiple metrics:
average precision, inference time, and memory usage. Our reported
results confirm that recent advances in “tiny machine learning” (TinyML)
have transformative potential for computational bioacoustics. For more
information, please visit: https://biodcase.github.io/challenge2025/task3

Index Terms—Acoustic event detection, autonomous recording units,
bioacoustics, edge computing, passive acoustic monitoring.

1. INTRODUCTION

Bioacoustics, understood as the science of sonic interaction in and
between animals, requires sensors for data collection [1]. For animal
behavior research [2] or biodiversity surveys [3], these sensors are
typically deployed onto remote locations, off the electrical grid. As
of today, most commercially available sensors for birds and land
mammals are battery-powered, with a battery life of 200-500 hours and
a cost of $100-$700 [4]. They record digital audio, either continuously
or according to an intermittent schedule, and store it onto an SD card.
Although they are often referred to as “autonomous recording units”
(ARU), they are not fully autonomous: indeed, frequent round trip
from the lab to the deployment site are necessary, in order to replace
batteries, transfer the recorded data, and reset the SD card.
Previous publications have alerted on the lack of autonomy of
current-generation ARU’s and its negative consequences [5]-[7]:
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1) An insufficient uptime or ill-suited schedule may cause the
ARU to misportray these dynamics of vocal activity, eventually
reducing its usefulness for statistical hypothesis testing [8].

2) The cost of battery replacement and the weight of hardware is
a serious challenge for practitioners [9], [10].

3) Although they do not require direct contact or manipulation
of the animals, ARU’s may still be considered invasive if its
maintenance raises the level of anthropogenic pressure; that is,
the stress induced by the presence of humans [11].

4) The same data which are collected for research may be used for
surveillance; an effect known as surveillance creep [12]. Some
terrestrial bioacoustic datasets contain voices from people who
are unaware of being recorded [13]. In the age of automated
audio content analysis, the surveillance creep of acoustic sensors
is not only a risk but a documented reality [14].

5) As technological advancements accelerate and costs decrease,
the ecological impact of production and the growing issue of
electronic waste (e-waste) have emerged as critical sustainability
challenges [15]. For lack of a better end-of-life management
[16], it would be prudent to strive for a lower dependency on
batteries, or even switch to batteryless hardware [17].

Facing the drawbacks of current-generation ARU’s, we propose to
explore an alternative design: on-device sound event detection (SED).
The key idea is to develop an algorithm which is able to analyze the
audio stream in real-time and record sound event selectively. In the
context of wireless acoustic sensor networks, this is known as edge
computing as opposed to cloud computing. The main argument in favor
of edge computing on ARU’s is that the bioacoustic events of interest
are typically few, while storing audio permanently is costly in terms
of energy. If SED can be made efficient enough, the energy savings
of selective storage can cover and outweigh the energy expenditure of
edge computing [18]. Beyond the net gain in uptime, this simple idea
has the potential to make the next generation of ARU’s cheaper to
maintain, less invasive, more privacy-preserving, and more durable.

Machine learning algorithms allow to automate various bioacoustics
tasks, including call detection or species classification. Previous
works demonstrate the feasibility of running these algorithms on
“tiny hardware” such as microcontroller units (MCU’s). For example,
[19] have trained a MFCC-based classifier for species-specific call
detection on a low-power MCU, with a memory usage of the order of
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Fig. 1: Spectrogram representations of yellowhammer (Emberiza citrinella) song. Brighter colors denote relatively larger time—frequency magnitudes after
normalization of visual contrast. Rows illustrate inter-individual variation while columns illustrate the effect of distance. See Section 2 for details.

one kilobyte. Another example is [20], who have shown the feasibility
of SED on the AudioMoth, a widespread and open-source ARU [21]:
the proposed algorithms rely on MFCC and Goertzel filtering and are
applied to cicadas and gunshots.

Recent work at the intersection of “tiny machine learning” (TinyML)
and bioacoustics has proposed to embed deep neural networks,
particularly convolutional networks (convnets), onto low-cost hardware.
For example, [22] have trained a convnet to recognize 50 classes of
environmental sounds on a Sony Spresense MCU.

2. DATASET

The development set for task 3 of BioDCASE 2025 “Bioacoustics
for Tiny Hardware” consists of 2 hours and 37 mins worth of audio
recordings. See Table 1 for a breakdown.

2.1. Data collection

Yellowhammers are widespread across Eurasia and their songs have
attracted the attention of naturalists and scientists for over one and
a half centuries (e.g. [23]). They have long been a popular model
species, especially for studying dialects in birdsong [24]. They are also
an indicator of healthy farmland showing rapid population declines
around Europe (e.g., [25]), and their individually specific songs might
offer detail noninvasive insights into fast population changes. The
yellowhammer songs used for BloDCASE 2025 were initially recorded
as a part of sound transmission experiments that investigated how
far it is still possible to identify Yellowhammer individuals by their
songs. To collect the songs, AudioMoth recorders were placed near
the bird’s favorite singing posts less than 5 m from the singing birds.
The best quality songs were selected and put into one track. The
track contained in total 209 songs from 10 individuals, including in
total 21 different song types (23 song types per male), with c.a. 10
repetitions of each song type.

The track was then played back and re-recorded at 7 different
distances ranging from 6.5 to 200 m (see Figure 1 for representative
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examples of songs at different distances). Taking into account the
original recording distance ( < 5m), the songs in the closest distance
category simulate birds being anything between 6.5m to 11m far away.
Note that the signal-to-noise ratio (SNR) is quite low in the last two
distance categories, and songs that were not visible on the spectrogram
were not included in the dataset, which means that these distance
categories may have fewer than 209 samples. The playback was carried
out in two different environments (forest and grassland). Altogether,
each song is repeated up to 15 times in the dataset (original distance +
7x forest + 7x grassland). These re-recorded songs were annotated and
split into separate files and used in the challenge as positive files. In
addition, the original recordings of live Yellowhammers were screened,
annotated and split to obtain negative files of similar duration. These
included songs from other known species or background noise only.

2.2. Data curation

All audio recordings were clipped to 2 seconds and resampled at
16kHz. The dataset was divided into training and validation sets.
Yellowhammer recordings were split by individual: 6 for training, 2
for validation, and 2 held out for evaluation. Negative samples were
randomly split.

3. CHALLENGE
3.1. Rules

The challenge tasked participants with developing a Yellowhammer
bird vocalization detection system for the ESP32-S3-Korvo-2 micro-
controller, using the training and validation sets from the Yellowham-
mer dataset (Section 2), and our baseline framework (Section 3.3).
Submissions had to be deployable on the target hardware and capable
of real-time audio processing. The submitted models would then
be evaluated by organizers on the (hidden) evaluation set using
the benchmarking facilities of the baseline framework, on a range
of metrics to do with model classification performance as well
as its resource efficiency, described in the next section. Rankings
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Dataset Component | Recordings [ Duration
Training Set
Total 3,562 1h 58min
Yellowhammer 1,321 44min
Negatives (known species) 956 31min
Negatives (background noise) 1,285 42min
Validation Set
Total 1,156 37min
Yellowhammer 408 13min
Negatives (known species) 319 10min
Negatives (background noise) 429 14min
Evaluation Set
Total 1,140 37min
Yellowhammer 394 13min
Negatives (known species) 317 10min
Negatives (background noise) 427 14min

Table 1: Detailed statistics of the BioDCASE 2025 Task 3 dataset. All
recordings have 2 second length at 16KHz.

were provided separately for each evaluation metric, encouraging
diverse approaches to the performance-efficiency tradeoff inherent in
embedded machine learning applications.

3.2. Metrics

Reflecting the real-world tradeoffs of model performance vs computa-
tion space and time constraints in embedded devices, the benchmarks
measured the following metrics:

« Average Precision: A metric that summarizes the precision-recall
curve by computing the weighted mean of precisions at each
threshold, with the increase in recall from the previous threshold
used as the weight. This provides a comprehensive measure of
the model’s detection accuracy across all confidence levels and
object classes.

« Preprocessing time (ms): The total execution time of audio
preprocessing and feature extraction.

o Model time (ms): The total execution time of model inference
on the extracted features.

o Model size (bytes): The storage footprint of the model weights
and architecture.

o Peak RAM usage (bytes): The maximum amount of RAM
consumed during inference.

3.3.

To lower the entry barrier and establish fair performance benchmarks,
we provided a comprehensive baseline framework through the
BioDCASE-Tiny 2025 repository [31]. This framework implements
an end-to-end pipeline for developing bird species recognition
models in Python and deploying them for benchmarking on an
ESP32-S3-Korvo-2 development board. The baseline framework
serves as both a starting point for participants unfamiliar with
embedded ML development and a reference implementation that
demonstrates the expected integration between model development
on the host and the deployment and execution of the model on the
embedded device.

Baseline

The system consists of five stages integrated into an automated
pipeline (see Figure 2). First, in the data preprocessing stage, the
pipeline handles the ingestion and preparation of raw audio files from
the Yellowhammer dataset. Second, a feature extraction step transforms
the preprocessed audio into log-mel spectrograms for model training,
with configurable parameters that participants could adjust to optimize
their approaches.

These features were implemented both on the host system and the
embedded target in a numerically equivalent manner, ensuring that
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Fig. 2: Flowchart of the baseline development and deployment pipeline for
yellowhammer detection, from raw audio input and log-mel spectrogram
extraction to model training, deployment, and benchmarking on a constrained
embedded device (ESP32).

the deployed model receives identical inputs to those used during
training. Third, at the model training stage, participants could define
custom architectures as well as a custom training loop if needed.
Fourth, at the deployment stage, the pipeline automatically converts
the model to TensorFlow Lite format, generates optimized C++ code
for the ESP32-S3 platform, and handles firmware compilation and
flashing using a Docker-based ESP-IDF tool chain. Finally, at the
fifth stage, a benchmarking firmware runs on the embedded target to
measure feature extraction time, model inference time, and memory
usage, enabling participants to optimize their solutions against the
competition’s evaluation criteria.

A baseline model was also included as a reference for participants.
The model is a lightweight CNN starting with a mobile-net style
convolutional and depth-wise convolutional block, followed by a
global max pooling layer, dropout and finally a dense layer with
softmax activation. The model achieves high average precision on the
evaluation data. However, this comes at a rather high cost in terms
of model size, RAM usage, and execution time.

Participants in the BioDCASE-Tiny 2025 challenge employed a
range of approaches to address the challenge’s constraints, and explore
different trade-offs to improve on the baseline.

3.4. Neural network architectures

The submitted models demonstrated significant variation in archi-
tectural complexity and design philosophy. Three participants built
upon MobileNet-inspired architectures for computational efficiency.
[26] implemented a slimmed MobileNet V2 with three depthwise
separable convolution blocks, while [29] and [30] employed a further
stripped-down MobileNet-style CNN.

In contrast, [27] and [28] pursued extreme minimalism through very
shallow CNN architectures, with [28] further venturing into SVMs.
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Model Avg. Precision ~ Model size  Peak RAM usage  Preprocessing time  Model time  Total execution time
(%) (bytes) (bytes) (ms) (ms) (ms)
Baseline 99.68 14,564 58,360 191.84 302.827 494,667
[26]  Enriched 97.98 16,600 26,844 176.11 24.417 200.527
[26]  Non-enriched 94.49 16,600 26,844 176.22 24.418 200.638
[27] 74.47 7,020 6,744 1.62 16.449 18.067
[28]  Mel-based 97.31 4,192 18,364 34.28 7.387 41.667
[28]  Flux-based 96.52 1,848 780 16.54 0.185 16.725
[29] 98.57 7,776 20,924 73.42 15.164 88.58
[30]  SlimCNN-student 73.68 12,920 30,328 64.84 112.779 177.622

Table 2: Model performance comparison. In the case of multiple submissions from a participant or team, a model identifier is also reported in the Model
column. The table reports a range of performance vs resource efficiency tradeoffs explored by the participants, reflecting the range of requirements and

constraints in the usage of TinyML for autonomous recording units.

Finally, [32] explored convolutional-recurrent hybrid architectures,
demonstrating the potential of temporal modeling for bioacoustic
tasks. However, due to the limited amount of operations supported
by TensorFlow Lite, their model could not be benchmarked on the
embedded target.

3.5. Data augmentation

Several participants recognized the importance of data augmentation
for improving model robustness, particularly for low signal-to-noise
ratio conditions. [26] compared models trained with and without
augmentation, applying pitch shifting (£2 semitones) and white noise
addition. [32] implemented a sophisticated dynamic augmentation
strategy that adjusted intensity based on SNR estimates, using
SpecMixup and Gaussian noise selectively on high-SNR samples
to create realistic training scenarios.

3.6. Feature engineering and preprocessing

Participants employed varied feature extraction strategies, with most
utilizing log-mel spectrograms but differing significantly in their
parameter choices. The majority processed audio to extract mel
spectrograms with filter counts ranging from 16 to 64, with window
sizes varying from 512 to 2048 samples. Sampling rates and frequency
ranges were carefully selected based on domain knowledge, with e.g.
[29] focusing on the 3-8 kHz range based on ornithological literature,
while [28] resampled the recordings at 14 kHz and targeted specific
frequency bands for different models. Notably, [28] also explored
alternative features, achieving strong results with spectral flux statistics,
while drastically reducing processing time as well as memory footprint.

3.7. Model compression and optimization

Participants employed various strategies to meet the heavy resource
constraints. While some focused on architectural simplification and
careful hyperparameter selection, limiting compression to post-training
model quantization, others implemented sophisticated compression
pipelines. [30] demonstrates a comprehensive approach combining
knowledge distillation, magnitude-based pruning, and quantization-
aware training.

3.8. Computational performance and resource usage

The submitted models achieved a wide range of performance-efficiency
tradeoffs: see Table 2. These results collectively demonstrate that
effective yellowhammer detection can be achieved across a broad
spectrum of computational budgets, with the optimal choice depending
on specific deployment constraints and precision/recall requirements.

4. CONCLUSION

Bioacoustics researchers and practitioners have expressed a demand
for accurate and energy-efficient algorithms which can operate “on the
edge”, i.e., on autonomous recording units [18]. From the standpoint
of DCASE, meeting this demand requires to rethink the deployment
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of machine learning systems with hardware constraints in mind. As
part of the first edition of the BloDCASE challenge and workshop, we
have organized a task of SED on tiny hardware (ESP32-S3) for the
yellowhammer (Emberiza citrinella). Certainly, edge computing does
not erase all the harms of cloud computing: risks such as rebound
effects [33] and human bycatch [34] remain present. Yet, we believe
that bioacoustics on tiny hardware is worth exploring in future years.
Indeed, as a collective, the participants of BioDCASE 2025 Task 3
have shown that a more ethically responsible practice of computational
bioacoustics is technically within reach.
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