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Abstract—Self-supervised speech models have demonstrated impressive
performance in speech processing, but their effectiveness on non-speech
data remains underexplored. We study the transfer learning capabilities
of such models on bioacoustic detection and classification tasks. We show
that models such as HuBERT, WavLM, and XEUS can generate rich
latent representations of animal sounds across taxa. We analyze the
models’ properties with linear probing on time-averaged representations.
We then extend the approach to account for the effect of time-wise
information with other downstream architectures. Finally, we study the
implication of frequency range and noise on performance. Notably, our
results are competitive with fine-tuned bioacoustic pre-trained models
and show the impact of noise-robust pre-training setups. These findings
highlight the potential of speech-based self-supervised learning as an
efficient framework for advancing bioacoustic research.

Index Terms—Computational bioacoustics, Transfer learning, Self-
supervision, Linear probing

1. INTRODUCTION
Self Supervised Learning (SSL) of speech features has led to state-
of-the-art performances on linguistic and paralinguistic tasks [1].
SSL methods leverage large volumes of unlabeled data by solving
general-purpose pretext tasks and learn contextual and meaningful
acoustic representations from the inherent structure of speech. One
valid question, given the massive amounts of available speech data,
is whether these performances extend to the comparatively under-
resourced analysis of non-human animal vocalizations. Recent research
has shown that SSL speech models can reach high performance on a
range of tasks such as species recognition [2], caller identification [3],
or call-type classification [4], [5]. Many such studies have investigated
a specific selection of these models with different perspectives,
methods, and datasets but lack a comprehensive understanding of how
pre-trained speech representations transfer across tasks and taxa.

Drawing from previous work, we thus propose a formal study of
speech features’ transferability:

• We benchmark speech models on a set of 10 different bioacoustic
tasks, spanning a diversity of taxa, including birds, mammals,
and insects.

• We explore three comparable speech models, showing that
robustness to noise and multilingual pre-training are key aspects
of bioacoustic transferability.

• We compare a set of probing approaches, including linear probing
as well as recurrent neural networks, and introduce time-weighted
averaging of representations to leverage their contextual nature.

• We confirm the superiority of shallow transformer layers over
deeper ones in the context of speech features transferability.

• We further analyze the effect of background noise and vocal
frequency ranges on a selected dataset.

2. METHODS
This study unfolds as a set of bioacoustic knowledge transfer
experiments from three pre-trained SSL speech models. Regardless
of the selected downstream approach, we initially extract pre-trained
representations from each layer of frozen speech models. These

representations are subsequently given as train, development, and
test sets to a downstream model. The observed performances are
taken as a proxy of the speech model’s ability to extract the acoustic
information necessary to accomplish the task (see Figure 1). We
extend this method, referred to as linear probing [6], to both non-linear
and time-wise analysis of pre-trained representations through other
downstream approaches described in Section 2.3. The code is available
for replication on GitHub at https://github.com/jcauzi/speech2bio.git.
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Fig. 1: Workflow of the transfer learning method

2.1. Tasks and datasets
The 11 datasets used in this experiment are publicly available as the
BEANS benchmark [7]. They include bioacoustic classification and
detection tasks, namely “Watkins” [8] (31 aquatic mammal species
classification), “CBI” [9] (264 bird species classification), “Bats” [10]
(10 individuals Egyptian fruit bats classification), “Humbug” [11] (14
mosquito species classification), “Dogs” [12] (10 individuals dogs
classification), “Dcase” [13] (20 bird and mammal species detection),
“Enabirds” [14] (34 bird species detection), “Hiceas” [15] (Minke
whale detection), “Gibbons” [16] (three gibbon call-types detection),
“RFCX” [17] (24 bird and frog species detection) and “ESC-50” (50
environmental and animal sounds classification).

For classification, each sample is assigned one or more labels,
and evaluation is reported in terms of accuracy. Detection implies
identifying subsections of interest and their labels from long recordings
with a sliding window approach. Each produced segment may contain
multiple labels. Detection evaluation is reported in terms of Mean
Average Precision (mAP). All datasets are first down-sampled to the
required 16 kHz sample rate of pre-trained speech models. They
are split into predefined train, development, and test sets with a
6:2:2 ratio, as in [7]. Although all tasks are not directly comparable
due to the nature and balance of their labels, dataset sizes, or
acoustic environments, they allow a broad overview of speech models’
performances in an array of bioacoustic scenarios.

2.2. Pre-trained models
SSL pre-training consists in leveraging large non-labeled data to pre-
train foundation models optimized to extract general-purpose latent
representations. With or without fine-tuning, these representations can
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be given to so-called downstream models, or classification heads, to
achieve competitive performance on tasks with small labeled datasets
[18]. In speech processing, HuBERT [19], WavLM [20], and XEUS
[21] are SSL models originally designed for downstream speech
recognition. Additionally, they show high performance on paralin-
guistic tasks such as speaker identification or emotion recognition,
among others [1]. Both HuBERT and WavLM were successfully
implemented in similar bioacoustic experiments [2]–[5], demonstrating
performance that matches or surpasses that of bioacoustic models
such as AVES [22], as well as pre-trained bird species classifiers
[23] and general-purpose audio taggers. Further details on the three
models’ architectures are presented in Table 1.

Table 1: Pre-trained model specificities

Model Pre-train Data Arch. Task #param.

HuBERT large
60k hours

English only 24 TL MP 317M

WavLM large
94k hours

English only 24 TL MP+NR 90M

XEUS
1M+ hours

4k+ languages 18 EBL
MP+NR

+Rev 577M

TL = transformer layers, EBL = E-Branchformer layers, MP = masked
prediction, NR = noise robustness, Rev = reverberation robustness.

2.3. Downstream setups
We use linear probing [24], i.e., training a shallow downstream model
on a given layer of the SSL models, to assess the linear separability
of bioacoustic information in their latent representation space. Our
first experiment involves training a linear layer on Time-Averaged
(T-A) representations as

x̄ = 1
T

∑T
t=1 xt, (1)

where xt ∈ Rd is the embedding of the t-th time frame in the
full representation (all model representations are 2-D tensors with
embeddings of size 1024 for each 20-millisecond frame). This method
allows extracting a single input vector of size 1024 for each example
in the dataset and is a preferred option in similar transfer learning
experiments [1]. We hypothesize that averaging latent representations,
particularly in such out-of-domain contexts, might end up diluting
relevant time-wise information, potentially leading to suboptimal
performance for long sound segments.

In a second experiment, we thus introduce Time-Weighted Averag-
ing (T-WA), a form of soft attention that consists of adding a layer of
learnable attention weights before averaging all frame representations
to better leverage their variability over time. Raw attention scores are
obtained as

αt = w⊤
α xt + bα, (2)

where wα ∈ Rd and bα ∈ R are learned parameters. We then compute
a weighted average of feature representations as

α′ = softmaxT (α), (3)

x̃ =
∑T

t=1(α
′
t)xt, (4)

where αt determines the contribution of each frame. This weighted
representation is given to a linear layer as in the Time-Averaged
(T-A) version. The attention weights and the linear probe are trained
simultaneously on a single loss. Note that this only adds 1024+1

parameters to the downstream model compared to T-A, no matter the
input sound length.

All training procedures were conducted on predefined dataset splits
from [7] for 100 epochs. Hyper-parameters such as batch size are
empirically determined for each dataset by comparing metrics on the
validation set. We test three learning rates (1e-5, 5e-5, and 1e-4) with
an Adam optimizer and weight decay for each experiment and display
the best observed result for the best layer. Classification tasks are
conducted with cross entropy loss and evaluated in terms of accuracy.
Multi-label detection tasks are conducted with BCE loss and evaluated
in terms of mAP. Random baselines are computed by selecting the
highest possible score between predictions of only the most frequent
label (for highly unbalanced datasets) or random predictions.

3. RESULTS

Table 2 shows accuracy and mAP of the best performing layer on the
validation set for each dataset, model, and linear probing approach,
as well as the results from fully fine-tuned AVES bio [22], a Vggish
model, and the best supervised CNN-based approach taken from the
BEANs benchmark [7]. Underlined results inform on performance
gains between our solution and previous BEANs results.

The results show the intrinsic ability of pre-trained speech repre-
sentations to encode enough information to resolve bioacoustic tasks
across taxa with linear probing. All models show variable results across
layers. Depending on the dataset, performances increase in the initial
layers, reach a maximum between layer 3 and 11 for HuBERT, layer
4 and 15 for WavLM, and layer 2 and 6 for XEUS, then consistently
drop in deeper layers. This behavior was previously observed in
similar experiments [2], [3], [5] and is consistent with speech models’
layer-wise acoustic information encoding as described in [25]. Both
WavLM and XEUS show higher probing performance than HuBERT,
which we discuss in Section 4.1. Time-Weighted Averaging (T-WA)
representations marginally improve results compared to T-A ones.

In such cross-species transfer learning experiments, one could
make the hypothesis that the phylogenetic proximity of a species
with humans results in similarities between the vocalizations of said
species and speech. This can be based on the resemblance of vocal
tracts, anatomical sizes, vocal frequencies, degrees of sequentiality,
etc. Although the tasks presented here are difficult to compare due to
differences in dataset sizes, annotations, label distribution, and acoustic
environments, there seems to be no effect of species proximity with
humans on the observed performances. Pre-trained speech models
show a general ability to encode bioacoustic information regardless of
the species.We thus extend this experiment to account for the effect of
time, noise, and pre-training setup in an attempt to better understand
the mechanisms underlying such results.

4. DISCUSSION AND PERSPECTIVES

We identify four factors that may account for performance variations
between models and datasets. The effect of background noise is
discussed in Sections 4.1, and 4.3, species vocalization overlap is
investigated in Section 4.1, time-related factors in Section 4.2 and
frequency range mismatch with speech in Section 4.3.

4.1. Model comparison
WavLM and XEUS include noise robustness solutions by being
pre-trained with dynamic mixing of artificial noise and speech
overlap (as well as simulated reverberant conditions for XEUS). This
improves resilience to background noise, a significant limiting factor
in bioacoustic tasks, since animal recordings typically have much
lower sound-to-noise ratios than speech datasets. Although all three
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Table 2: Probing Results

accuracy mAP accuracy
Datasets Watkins CBI Bats Humbug Dogs Dcase Enabirds Hiceas Gibbons RFCX ESC-50

HuBERT T-A 0.89 0.28 0.62 0.76 0.79 0.32 0.48 0.54 0.19 0.14 0.72
WavLM T-A 0.90 0.34 0.68 0.79 0.84 0.33 0.51 0.54 0.18 0.10 0.76
XEUS T-A 0.89 0.25 0.73 0.79 0.86 0.30 0.44 0.54 0.26 0.08 0.81

HuBERT T-WA 0.85 0.37 0.74 0.75 0.90 0.33 0.44 0.58 0.23 0.13 0.57
WavLM T-WA 0.84 0.38 0.76 0.74 0.93 0.39 0.44 0.64 0.32 0.12 0.65
XEUS T-WA 0.78 0.28 0.77 0.75 0.95 0.32 0.47 0.52 0.28 0.10 0.68
AVES bio ft 0.88 0.60 0.75 0.81 0.95 0.39 0.56 0.63 0.28 0.13 0.77

Vggish 0.85 0.44 0.74 0.81 0.91 0.34 0.54 0.46 0.15 0.14 0.77
CNN (best) 0.80 0.57 0.74 0.70 0.76 0.22 0.46 0.30 0.31 0.09 0.59

random 0.07 0.01 0.10 0.35 0.22 0.03 0.48 0.27 0.02 0.01 0.02

(ft: fine-tuning) Best speech model’s layer performance is in bold, best performance between speech and other is underlined.

models show additional differences in their pre-training data (see
Table 1), the noise robustness of WavLM and XEUS seems to play
an important role in their higher performances. WavLM, in particular,
with significantly fewer parameters, outperforms both other models
in six out of the 11 tasks. Similarly to background noise, overlapping
animal vocalizations may also harm performance in some datasets.
For Enabirds and RFCX, the observed low performancescan be linked
to a significant amount of interspecies vocalization overlap present
in both datasets. The enabirds dataset is comprised of recordings of
bird choruses, which can contain over six species labels in a single
sound sample. Similarly, rfcx recordings are drawn from tropical
forest environments with high multi-species presence. WavLM and
XEUS pre-training with artificial mixup of two speech utterances
seems to offer insufficient robustness to disentangle simultaneously
vocalizing species. Conversely, pre-trained bioacoustic models such as
Perch [26] and Birdnet [23] have been shown to increase multi-label
classification performance with multi-species mixup training.

The multilingual pre-training of XEUS may also explain some
of the performance improvements in 4 out of 11 tasks, as English-
only pre-training datasets are inherently less acoustically variable
than multilingual ones. However, this assumption would need further
investigation, as XEUS is also trained on significantly more data
compared to both other models.

4.2. Time information

Excluding enabirds and rfcx, two datasets showing relatively low
performance in general, T-A representations consistently outperform
T-WA on datasets with sound segments shorter than 3.98 seconds.
T-A representations do not entirely remove time-wise information,
as each frame representation still contains contextual information
from previous and future frames, allowing good performance on short
sound segments despite averaging. Yet, T-WA results indicate that
relying on a learned selection of relevant sound frames according to
their representation is an important feature for datasets containing
longer segments.

To further analyze the effect of temporal information and linear
separability on the observed performances, we replace linear probes
with Echo State Networks (ESN) [27] or Bidirectional Long Short-
Term Memory networks (biLSTM). Both can extract nonlinear
information from entire representations without risking a loss of
time-sensitive information. ESNs, derived from reservoir computing,
mostly consist of an RNN with randomly initialized fixed weights.
They are a good approximation of a recurrent non-linear solution
that does not demand learning additional parameters compared to
linear probing. BiLSTMs, on the other hand, significantly augment

the number of parameters but should produce a strong topline solution
with sufficient amounts of training data.

Interestingly, ESNs always showed worse or on-par performance
compared to linear probing on all datasets. BiLSTMs showed some
improvements for HuBERT humbug (0.77 accuracy with a two-
layer biLSTM), HuBERT gibbons (0.26 mAP with a single-layer
biLSTM), XEUS enabirds (0.5 mAP with a single-layer biLSTM)
and XEUS gibbons (0.35 mAP with a single-layer biLSTM) but
mostly underperformed linear probes from either XEUS or WavLM.
In conclusion, linear probes applied to time-averaged or time-weighted
latent representations seem to outperform more complex recurrent
models in bioacoustic tasks, as they may strike a better balance
between signal extraction and overfitting.

4.3. Frequency shift and noise addition

From elephant rumbles to bat calls, many animal vocalizations sit
below or above the human speech range. We design an ablation
experiment to account for the effects of frequency range on the
Egyptian fruit bats dataset. Pre-trained speech models are trained
on relatively clean recordings of speech at 16 kHz, thus ranging
from 0 to 8,000 Hz, with most of the energy between 90 and
2,500 Hz. This could lead to some degree of overfitting to clean
signals centered around this particular frequency range, hindering
performance on higher-pitched or noisy signals. We investigate whether
pitch downshifting of high-pitched bat calls results in improved
performance by reducing their frequency towards the speech range. We
progressively lower the pitch of the recordings at 16 kHz with factors
of 0.125, 0.25, and 0.5 by resampling, then interpolating them with
the rate function from pysox. Surprisingly, Figure 2 shows that
this lowers the probe’s accuracy, regardless of the model’s layer used.
We also observed this tendency in similar experiments not included in
this manuscript: time-stretching as well as pitch-shifting the original
250 kHz samples. In these cases, adding high-frequency information
from ranges above 8 kHz did not improve performance either. These
results show that speech models may be robust to high frequencies,
potentially through their modeling of fricatives. Additionally, our pitch
shifting method involves resampling and interpolation, which may
result in unnatural audio quality when performed at such extreme
ratios.

We further explore noise robustness by mixing bat vocalizations
with natural noise sources [28]–[32] at Signal-to-Noise Ratios (SNRs)
of 0, –5, –10, and –20 dB. Note that these are extreme factors for
speech applications but quite common in bioacoustics. As shown in
Figure 3, the accuracy decreases with the SNR in a similar way for all
three models. Interestingly, performance remains above chance even at
extreme values such as –20 dB, likely because the added environmental
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Fig. 2: Performance for the Egyptian fruit bats dataset on the 10th
layer with pitch shifting (T-A)

Fig. 3: Performance for the Egyptian fruit bats dataset on the 10th
layer with noise addition (T-A)

noise does not fully mask the high frequencies of bat calls. However,
since the original recordings are already noisy, further reducing SNRs
yields severely degraded samples, suggesting that the robustness of
speech models may reach its limit under such conditions.

Both these results indicate some degree of robustness of speech
models to bioacoustic transfer learning while partly explaining the
variability of their performance across scenarios. Low performance
on datasets such as CBI, Gibbons, RFCX, and Enabirds could be
explained both by the difficulty of the task or label distribution and
because of the significantly low SNRs of the recordings.

4.4. Comparing pre-trained models with random initializations
To further examine the effect of pre-training on speech models’
performance, we test the intuitive hypothesis stating that randomly
initialized models should show random baseline performance (as
only the pre-training phase should result in model parameters able to
capture bioacoustic information). Interestingly, a randomly initialized
HuBERT model achieves slightly better-than-chance performance on
bioacoustic tasks (with an average of ≈ +10%) when evaluated using
linear probing. While the model lacks any learned knowledge of
speech or acoustic structure, this result aligns with a growing body of

evidence suggesting that untrained deep learning models can provide
non-trivial representations due to their inherent inductive biases. This
also indicates that most of the discriminative capabilities of SSL
models stem from their speech-based pretraining phase, although
a small fraction of their effectiveness on bioacoustic tasks may be
attributed to structural priors [33], [34].

4.5. Limitations
Comparing performance across datasets must be taken with care due to
differences in dataset sizes, tasks, label distribution, etc. We limit our
conclusions to relative improvements of specific methods rather than
absolute performance differences. Additionally, the use of multiple
random seeds would allow getting a stronger sense of performance
gaps between models. Here, each training was performed once, from
fixed dataset splits provided in the BEANS benchmark. We also
advocate for a cautious comparison of our results with AVES-bio,
which is based on a significantly smaller model (HuBERT base),
pre-trained with in-domain data, and fully fine-tuned on each task.
Although our experiments are not performance-oriented, we must
mention that fine-tuning of large bioacoustic foundation models with
comparable sizes generally outperforms our methods on most of
the benchmark [35]–[37]. Conversely, task-specific machine learning
solutions and CNNs trained on Mel Frequency Cepstral Coefficient
representations are mostly outperformed by probing frozen speech
models [7].

5. CONCLUSION
This study shows the effective knowledge transfer capabilities of
self-supervised speech models for bioacoustic tasks. In particular,
HuBERT, WavLM, and XEUS generate rich representations, resulting
in competitive performance on classification and detection tasks across
taxa. Our findings indicate that phylogenetic proximity to humans
does not influence this transfer, emphasizing the generalizability
of speech representations in out-of-domain scenarios. Variability in
results across datasets highlights the impact of task complexity and
acoustic environments. Notably, the presence of noise greatly affects
linear probing results, although the use of noise-robust pre-training
methods seems to show an advantage. Temporal information remains
crucial, with time-weighted averaging approaches outperforming time-
averaging of representations for longer audio samples. However,
recurrent networks showed no benefits compared to linear probing,
likely due to overfitting issues. Finally, speech models exhibit some
degree of robustness to the frequency range of bioacoustic signals,
even with high-pitched vocalizations. Overall, self-supervised speech
models show strong promise for the development of foundation models
in bioacoustics, offering interesting solutions related to data quality
and quantity. Leveraging large speech datasets and SSL architectures,
future work could focus on developing bioacoustic models partly
pre-trained on speech with enhanced noise robustness and improved
mixup strategies.
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