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Abstract—Self-supervised learning (SSL) approaches, such as contrastive
and generative methods, have advanced environmental sound representa-
tion learning using unlabeled data. However, how these approaches can
complement each other within a unified framework remains relatively
underexplored. In this work, we propose a multi-view learning framework
that integrates contrastive principles into a generative pipeline to capture
sound source and device information. Our method encodes compressed
audio latents into view-specific and view-common subspaces, guided by two
self-supervised objectives: contrastive learning for targeted information
flow between subspaces, and reconstruction for overall information
preservation. We evaluate our method on an urban sound sensor network
dataset for sound source and sensor classification, demonstrating improved
downstream performance over traditional SSL techniques. Additionally,
we investigate the model’s potential to disentangle environmental sound
attributes within the structured latent space under varied training
configurations.

Index Terms—Self-supervised Learning, Urban Sound, Environmental
Sound Classification, Sensor Classification

1. INTRODUCTION
Environmental sound representation learning is a crucial field in
machine listening, serving as a foundation for tasks like environmental
sound classification and acoustic scene analysis. To address the scarcity
of annotations in environmental sound data, self-supervised learning
(SSL) aims to approach and even sometimes surpass the performance
of supervised methods through self-supervision techniques, such as
contrastive and generative objectives.

Contrastive learning (CL) for audio representations exploits the
assumption of commonalities across different views of data with the
same semantics to create positive pairs, such as using augmented
“views” of the same audio clip [1]–[3]. These principles have been
widely employed for environmental sound [4]–[6]. Generative learning
focuses on reconstruction-based objectives to learn an embedding
space for a single “view” of complete or masked input [7]–[12]. In
acoustic scene classification and sound event detection [13]–[16], these
methods have proven effective at capturing a diverse acoustic content
by encoding information across both temporal and feature dimensions.
At the same time, in other domains, SSL research has begun to
explore the complementary effects of combining reconstructive and
contrastive learning frameworks in various ways. For example, [17]
and [18] propose multi-view learning frameworks for visual clustering
or classification. These methods simultaneously learn a “shared” latent
subspace that is invariant across views and a “private” latent subspace
that varies across views, by optimizing view reconstruction from both
subspaces within an autoencoder architecture. This approach employs
a view-contrastive strategy by learning both view-common and view-
specific subspaces, without relying on explicit contrastive objectives.
In [19], masked reconstruction is combined with CL objectives in
an audio-visual context, but with one shared latent space for each
modality view.

In the music domain, for pitch-timbre disentanglement, [20]
leverages random perturbations to form view-contrasting training
strategies within a reconstruction-based pipeline. Similarly, [21] studies
how pitch-shifting can be used to create auxiliary objectives such as a

contrastive loss in addition to single-view reconstruction. Furthermore,
our previous work [22] uses a multi-view learning framework to learn
disentangled latent subspaces for pitch and timbre without explicit
contrastive objectives. These methods provide insights on how we can
combine different SSL strategies and potentially disentangle inherent
factors in audio. However, such methods haven’t been explored in
a more challenging context such as real-world environmental sound
recordings, and there lacks a thorough investigation into how objective
design choices affect latent subspace structures.

In this work, we combine contrastive and generative objectives
within a multi-view learning framework to explore their combined
impact on environmental sound representations. Using DAC [7] as
a latent feature extractor, the framework encodes the audio feature
into separate private and shared subspaces based on a metadata-
driven data pairing strategy, eliminating the need for explicit class
annotations. To strengthen the training signal of contrasting views in
our multi-view backbone, we investigate similarity or separation-based
contrastive objectives on the subspaces between views. Our evaluation
is conducted on an urban sound sensor network dataset (SONYC-UST-
V2 [23]), with performance measured on sound source and sensor
classification tasks. In addition, we examine the model’s ability to
disentangle sound attributes, offering insights into the structure of the
learned latent space. Our contributions are summarized as follows:

• We propose a novel latent multi-view contrastive learning
framework for environmental sound representation learning.

• By simply creating pairs of data with available metadata and
training a lightweight autoencoder in a self-supervised manner,
we demonstrate a downstream performance boost on sound
and sensor classification compared to traditional SSL baselines,
achieving results comparable to supervised baselines.

• We investigate how different combinations of SSL training
strategies influence the latent subspace structures, providing
insights into environmental sound attribute disentanglement.

2. METHOD
2.1. Multi-view Representation Learning
Our proposed method is shown in Figure 1. The “views” of data used
in our method are two audio clips, denoted {a1, a2}. Our system
requires a single assumption between these audio clips: that they share
a common attribute (e.g., recordings from the same sensor). We first
pass a1 and a2 through a pretrained encoder to obtain 2D embeddings
{x1, x2} of dimension (n × d), where n is the number of frames
and d is the feature dimension. In this work we use DAC [7] as
the pretrained encoder. The DAC latent space, capable of preserving
detailed information in environmental sound while reconstructing high-
fidelity signals, provides us with a strong foundation for discriminative
downstream tasks.

We pass embeddings x1 and x2 through a simple MLP encoder,
denoted ϵϕ. The weights of ϵϕ are shared across views of data. This
encoder projects each input embedding into two separate private and
shared latent subspaces, as defined in traditional multi-view learning

130



Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

DAC

DAC

DAC
Latent

DAC
Latent

Encoder
Recon.
Latent

Recon.
Latent

AVG

 Decoder

Encoder
 Decoder

Fig. 1: Our self-supervised multi-view framework for environmental sound representation learning. Learned latent subspaces are used for
downstream sound source and recording sensor classification tasks.

frameworks [18], denoted zpi and zsi respectively, where i is the data
view (for i ∈ 1, 2 in this study). The private subspace is designed to
capture information specific to each individual view, while the shared
subspace should capture information shared across both views. Latent
subspaces zpi and zsi of dimension (n, d

2
) are then averaged to form

a joint shared embedding: zS . Additional training strategies can then
be applied to these latent subspaces to incentivize desired information
flow, which we introduce in Section 2.2. Lastly, an MLP decoder
dθ takes the concatenation of zpi and zS as input and projects back
to the original dimensionality, reconstructing the original pretrained
latents: {x̂1, x̂2}.

Importantly, note that because the weights of our projection encoder
and decoder are shared across data streams, at inference time, our
model can operate using only a single audio input; pairs are not
needed. The model encodes the input audio into the previously learned
private, shared, and combined subspaces, yielding zp, zs and their
concatenation (zp ⊕ zs), reusable for further downstream tasks.

2.2. Self-supervised Training Strategies
To combine generative and contrastive SSL frameworks to learn robust
environmental sound representations, we design a suite of training
strategies to apply within the multi-view learning backbone.

Reconstruction: The base version of our model is trained using
a mean squared error reconstruction loss Lrec between the original
and reconstructed embeddings, xi and x̂i respectively, where i is the
view index in the data pair and j is the sample in a dataset of size
N samples:

Lrec =
∑
i

[
1

N

N∑
j=1

(xi,j − x̂i,j)
2

]
(1)

Cosine Distance: In addition to the base reconstruction loss, we
utilize contrastive learning in our framework via objectives based
on cosine distance, in which similar embeddings are incentivized to
be close together in the latent space and dissimilar embeddings are
pushed farther apart [24]–[26]. The general form of this loss term
is referred to as Lcos. To encourage private latents to capture view-
specific information, we introduce a loss term that enforces separation
between the two private latents, zp1 and zp2, by minimizing cosine
similarity, denoted Lcos− . Along the same lines, we maximize cosine
similarity between zs1 and zs2 to encourage the shared latents to
contain similar information (Lcos+ ).

We experiment with these similarity or separation-based config-
urations on both a batch and sample level. The batch-level version

includes inherent negatives from other samples in the batch similar to
the traditional InfoNCE [27] setting, while the sample-level version
treats cosine similarity as a simple binary classification, without cross-
batch negatives. The sample-level similarity and separation-based
objectives are defined below, where j or k refers to the index of
samples within a batch of size B:

Lcos+ = −Ej∈[1,B]

[
log sim(zis1, z

i
s2)

]
(2)

Lcos− = −Ej∈[1,B]

[
log(1− sim(zjp1, z

j
p2))

]
(3)

Similarly, the batch-level objectives are expressed as:

Lcos+ = −Ej∈[1,B]

[
log

exp(sim(zjs1, z
j
s2))∑B

k exp(sim(zjs1, z
k
s2))

]
(4)

Lcos− = −Ej,k∈[1,B][log(1− sim(zjp1, z
k
p2))] (5)

When a cosine distance objective is used, it is added to the
reconstruction objective for a final loss term of Ltotal = Lrec+Lcos.

Masking: Drawing on works in masked acoustic token modeling
from the generative-based methods [11], [19], [28], we mask a ratio
(r) of random entries in the projected latent subspaces during training.
By masking one latent subspace and leaving the other unchanged,
the intuition is to encourage the model to rely more on a subset
of the subspaces to infer necessary information. We leverage this
latent subspace-based masking mechanism as a motivation to enforce
the model to learn robust representations that capture the underlying
structure in each subspace.

3. EXPERIMENTAL DESIGN

3.1. Dataset and Multi-View Data Pairing

We use the SONYC-UST-V2 dataset [29], which contains 10-second
audio clips recorded from 56 sensors across New York City as
part of the SONYC project [23]. The 56 sensor classes refer to
individual recording devices placed in distinct urban locations, each
capturing various city soundscapes. Sensors capture important channel
effect information, namely the environmental acoustics unique to that
location and microphone position. The recordings are non-overlapping
in time, meaning that we can obtain multiple audio clips from the
same sensor “for free” by selecting different temporal segments within
a recording. Therefore, we consider our data pairing strategy as a self-
supervised mechanism, as it is similar to sampling pairs of segments
from the same recording in the traditional SSL setup. Each audio clip
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Table 1: Downstream source and sensor classification vs. baselines.
We present the results of our best-performing model, which uses
reconstruction loss and sample-level cosine distance loss to separate
private latents as the combined training strategy.

Source Sensor
Method Objective nc = 8 nc = 12

Multi-view (Best Config.) Lrec + Lcos− 0.633 0.735
Single-view Autoencoder Lrec 0.582 0.710

Contrastive Learning Info-NCE [27] 0.324 0.392

DAC [7] N/A 0.583 0.684
Supervised Learning BCE/CE 0.699 0.732

is labeled with one or more of 8 sound source categories, including
engine, alarm, and human voice.

For this study, we use the recording sensor as the shared factor,
pairing clips recorded by the same sensor at different times. These
randomly selected pairs are assumed to naturally differ in sound
source content, which we use as the private factor in this study. An
example data pair could be two audio recordings from the same sensor
location but recorded on different days, where one contains a dog
barking sound and another contains an engine and car alarm.

We construct 39k training pairs, 6k for validation, and 11k for
testing, containing 39/5/12 disjoint sensors respectively. We evaluate
on unseen sensors to test the model’s generalization ability and
robustness for unseen scene variations. For downstream evaluation,
we further partition this test set into train, validation, and test subsets
stratified by sensor and sound source, resulting in an 8-class multi-
label classification for downstream sound source classification, and
12-class classification for sensor. Importantly, we only use these labels
in downstream evaluation and our core method is fully self-supervised.

3.2. Audio Preprocessing

We follow the parameters used for preprocessing audio for the Descript
Audio Codec (DAC) [7]. We resample audio recordings from SONYC
to 44.1KHz and normalize them to −24 dB LUFS, following DAC. We
pass the full 10-seconds of audio to the pretrained DAC model1. For
a 10-sec. audio clip, this yields an embedding of shape (862, 1024),
where 862 is the number of frames and 1024 is the feature dimension.
We use the pre-quantized continuous latents from DAC. Pairs of these
embeddings are used as input to our multi-view autoencoder.

3.3. Training Recipe

We train all of our models for 100 epochs on a single A100 GPU
using a batch size of 16. We use a learning rate of 1e − 3 and
AdamW optimization, and perform model selection using minimum
total validation loss.

3.4. Downstream Classification

We evaluate the informativeness of our learned joint audio represen-
tations on downstream sensor and source classification tasks. After
training our multi-view autoencoder model, we freeze the trained
encoder and use it as a feature extractor to obtain private and shared
latents (zp and zs) from a single input audio clip to use for downstream
training. We train independent 2-layer MLP classifier heads on top of
the private, shared, and concatenated latents separately for source and
sensor classification. We use cross entropy (CE) as the objective for
12-class sensor classification, and binary cross entropy (BCE) as the
objective for 8-class source classification in the multi-label setting.

1We use the 44.1KHz, 8kbps bitrate pretrained DAC.

3.5. Evaluation Metrics
We evaluate downstream performance using accuracy for 12-class
sensor classification, and the Jaccard indexfor 8-class multi-label
source classification. For each task, we use the following metrics:

Overall accuracy: We concatenate the private and shared subspaces
(zp ⊕ zs) and use this joint latent as the feature for the downstream
task. This gives a measure of overall robustness and information
retained in the learned embedding space.

Subspace accuracy: To better-understand the information structure
in the latent subspace, we use either zpi or zsi as features for
downstream classification. This allows us to assess the information
present in the separate learned subspaces.

Directional subspace classification (DSC∆): As a proxy metric
to investigate the disentanglement level of the private and shared
subspaces, we measure the difference in subspace performance for
both source and sensor classification tasks. We define DSC∆ for the
private or shared latent as:

DSC∆priv = clf(zp)source − clf(zs)source (6)

DSC∆shared = clf(zs)sensor − clf(zp)sensor, (7)

where clf(·) indicates the downstream classifier trained per task. An
ideal scenario for disentanglement in our framework is for the private
latent to capture view-specific information (source in this study), and
for the shared to capture common information (sensor). If there is
no disentanglement and the subspace performance using either latent
is identical, this yields DSC∆ = 0. Thus, we aim for a positive
DSC∆ score for each latent, indicating the desired disentanglement.

3.6. Baseline Methods
We apply the framework above to a series of baseline training
strategies, each built upon the pretrained DAC latents as input:

DAC [7] without training: The naive baseline is training the
downstream classifiers directly on top of off-the-shelf DAC latents.
This represents the baseline classification potential of the latents before
any additional training or disentanglement.

Single-view Autoencoder: We apply the traditional generative
learning pipeline using the same encoder and decoder architecture as
our method with the reconstruction loss Lrec, but with just one view.

Contrastive learning: We apply the traditional contrastive learning
framework using the same encoder architecture as our method, but
without (1) the notion of separated latent subspaces and (2) using a
decoder for reconstruction. This yields one latent space of the same
dimensionality as the joint latent in our multi-view based methods.
We train the encoder on pairs of data with the same dataset used
in our multi-view framework (data paired by common sensor class),
utilizing only one training strategy of an InfoNCE [27] loss, where
each pair is considered a positive sample and samples from different
pairs are considered negative samples.

Supervised learning: using the same encoder as our method, with
an additional one-layer linear classification head for either multi-
label source classification (BCE objective), or multi-class sensor
classification (CE objective), without reconstruction. This method
provides an upper bound of task performance, not a direct comparison
with our proposed methods, since our training is label-free.

4. RESULTS AND DISCUSSION
We train our model with different combinations of training strategies
introduced in Sec. 2.2. Our base method uses a multi-view learning
backbone with Lrec. Variants of our method are trained using one of
the following training strategies on top of the base method: sample
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Table 2: Examining the effects of varied objective functions on
downstream source and sensor classification.

Source Sensor
Objective Configuration nc = 8 nc = 12 Avg. Acc.

Lrec N/A 0.610 0.739 0.675

Lrec + Lcos−
Sample-level 0.633 0.735 0.684
Batch-level 0.610 0.737 0.674

Lrec + Lcos+
Sample-level 0.593 0.719 0.656
Batch-level 0.603 0.728 0.666

Lrec + Mask zp r = 0.4 0.594 0.733 0.664

or batch-level cosine distance objectives applied to the private latents
to encourage separation (Lcos− ) or the shared latents to encourage
similarity (Lcos− ), and lastly masking zp with masking ratio r ∈
[0.2, 0.4, 0.6, 0.8].

4.1. Main Comparisons
The evaluation results of our best-performing model configurations
and baselines are shown in Table 1. We first observe that the standard
contrastive learning approach, trained using data paired by the same
sensor class using Info-NCE, yields lower accuracy across the board
for both tasks. This indicates that the assumption of commonality in CL
is less effective in this nuanced task of sensor classification, and fails
at extracting sound source information without an appropriate pairing
strategy. Additionally, the more traditional single-view autoencoder
provides 3.9% relative improvement on sensor classification but no
improvement on source classification when compared to DAC latents
without any training (denoted with “N/A” objective), In contrast, even
without curating data pairs with matching sound source information,
our method combining generative and contrastive principles is able
to successfully capture information in both tasks.

Our best model configuration, using Lrec and sample-level Lcos− ,
improves overall accuracy results by 8.6% and 3.5% for source and
sensor classification respectively, compared to the single-view autoen-
coder baseline. Further, this configuration significantly outperforms
the contrastive and DAC-only baselines. Such improvements indicate
the complementary effects of contrastive and generative principles to
produce robust environmental sound representations, while overcoming
limits of individual traditional SSL methods.

We also include a fully supervised upper bound for reference. While
the supervised sensor classification achieves the highest performance
with the help of complete label supervision, our method significantly
narrows the gap with no explicit prior knowledge about sensor and
source information. At the same time, we observe that our training
framework even leads to a 0.4% relative performance improvement
on sensor classification versus a supervised approach.

In Table 2, we investigate how different objective strategies
introduced in Sec. 2.2 affect the the learned representations on
downstream performance. We find that separation-based objectives
(Lcos−) tend to perform better than similarity-based objectives
(Lcos+), for both sample and batch-level experiments. We do not
observe a consistent trend between sample and batch-level cosine
distance-based experiments across tasks; for Lcos−, sample-level
performs better (our best configuration in terms of averaged accuracy),
but for Lcos+, the batched version is marginally better than sampled.

4.2. Disentanglement Investigation
We also observe the potential for environmental sound attribute
disentanglement using our method and investigate this under different
training configurations. In Figure 2, we visualize the trend of
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Fig. 2: Visualizing the effects of cosine distance and masking strategies
on downstream tasks using the overall performance vs. the Directional
Subspace Classification metric (DSC∆).

information flow for source (left) and sensor (right) attributes grouped
by three types of strategies: cosine distance-based disentanglement
using only the multi-view backbone with Lrec (green), adding Lcos+

or Lcos− (orange), or Lrec with masking (blue). Each point represents
a specific training configuration within one type of training strategy,
e.g. a specific masking ratio r within the “masking” category, or
sample-based Lcos+ within the Lcos grouping. The x-axis in Fig.
2 represents the overall classification accuracy obtained using the
complete latent space (zp ⊕ zs). The red vertical line marks the
accuracy scores per task of the DAC baseline as reported in Table 1.
The y-axis represents the DSC∆ to measure the level of information
flow in the desired direction as a proxy for disentanglement quality.

We first show that the majority our multi-view strategies infuse
useful source information in the latent subspaces, outperforming
the pretrained DAC baseline marked with the red dotted line. We
also observe that the multi-view backbone with only Lrec has a
positive DSC∆ for source, but negative DSC∆ for sensor, indicating
that without explicit constraints utilizing multi-view assumptions, the
model shows a tendency to steer information about both source and
sensor into the private subspace. While Fig. 2 suggests that cosine
distance-based strategies generally tend to push both source and sensor
information into the private subspace, masking zp shows the opposite
effect; masking shifts overall information into the shared subspace.
However, we did not observe obvious trend for different masking ratios.
We speculate that the shared sensor information between views may
be too subtle to capture in the common subspace with reconstruction
alone, while masking zp puts more weight on the shared subspace to
encode all information to optimize reconstruction.

5. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel self-supervised multi-view learning
framework that integrates contrastive principles within a generative
pipeline to improve the robustness of environmental sound representa-
tions. Our experiments on the SONYC-UST-V2 dataset demonstrate
that our method improves downstream performance in both source
and sensor classification on recordings in unseen sensors compared to
traditional SSL methods. Beyond improved representation robustness,
we investigate the effects of different training strategies on latent
subspace information flow, showing the potential for environmental
sound attribute disentanglement. In the future, we plan to explore
using audio understanding models within our framework such as
AudioMAE [11] or BEATs [12], and extend downstream tasks to
out-of-distribution data.
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