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Abstract—Zero-shot learning (ZSL) enables the classification of audio
samples into classes that are not seen during training by transferring
semantic information learned from seen classes to unseen ones. Thus, the
ability of zero-shot models to generalize to unseen classes is inherently
affected by the training data. While most audio ZSL studies focus on
improving model architectures, the effect of training class distribution in
the audio embedding space has not been well explored. In this work, we
investigate how the distribution of training classes in audio embedding
space, both internally and in relation to unseen classes, affects zero-
shot classification performance. We design two controlled experimental
setups to understand the impact of training classes: (i) a similarity-based
configuration, where we experiment with varying acoustic similarity
between training classes and unseen test classes, and (ii) a diversity-based
configuration, where the training sets are constructed with different levels
of coverage in the audio embedding space. We conduct our experiments
on a subset of AudioSet, evaluating zero-shot classification performance
under different training class configurations. Our experiments demonstrate
that both higher acoustic similarity between training and test classes
and higher acoustic diversity among training classes improve zero-shot
classification accuracy.

Index Terms—zero-shot learning, audio classification

1. INTRODUCTION
Zero-shot learning (ZSL) refers to the ability of a model to recognize
classes that were not introduced during training by utilizing semantic
information such as textual class descriptions or attribute embed-
dings [1]. By transferring knowledge from seen to unseen classes,
zero-shot models can perform classification tasks without requiring
labeled examples from every class. This ability is especially useful
where data collection is difficult, such as for rare classes.

In the audio domain, ZSL is particularly important as the temporal
nature of audio makes data annotation expensive. Instead of requiring
labeled examples for every target class, zero-shot learning enables
classification of unseen classes by learning to map audio and semantic
embeddings into a shared space using only seen classes. However, it
makes two strong assumptions: (i) audio and semantic embeddings of
the same class can be mapped to nearby points in the shared space,
and (ii) the shared space learned from seen classes is structured to
generalize to unseen class embeddings. In practice, domain mismatch
between audio and text embeddings often limits this alignment, and
learned projection functions may fail to generalize to the regions
of the shared space where unseen classes fall into, leading to poor
zero-shot performance.

Most prior work in audio ZSL has focused on improving the model
architectures and modality alignment through objective functions.
Perhaps the most influential models in ZSL like CLAP [2], [3] and
AudioCLIP [4] demonstrate the power of contrastive learning for
audio–text embedding. More recent studies utilize large language
models (LLMs) to enhance class representations by generating
rich textual descriptions or attribute-based prompts to improve the
alignment between audio and semantic embeddings in zero-shot
settings [5]–[7].

In computer vision, recent works have studied the topological
structure of the embedding space and have shown that preserving or
modeling relationship between classes can improve ZSL performance,

for example, by preserving the class topology in the embedding space
in [8], aligning semantic and visual graphs in [9], [10], and modeling
the global structure for compositional ZSL models in [11], [12].
However, these approaches are mainly limited to the vision domain.
In the audio domain, while projection quality has been widely explored,
the impact of training class structure in ZSL is underexplored.

Furthermore, recent studies have emphasized the importance of the
distribution of training classes in zero-shot learning. They show that
class imbalance or distribution shifts can harm generalization, and
propose solutions such as synthetic data generation [13] or out-of-
distribution detection [14]. Motivated by these, we investigate the
effect of the distribution of training data in the audio embedding space
on zero-shot performance.

In this work, we study how the relative position of training classes,
both with respect to each other and to those of test classes, in the
audio embedding space affects zero-shot classification performance.
Our hypothesis is that having training classes that are acoustically
more similar to test classes can support better alignment, while a
diverse set of training classes that spans a larger region of the space
may provide better coverage and improve generalization compared to
training classes clustered in a narrow region.

We address two questions: (i) Does greater acoustic similarity
between training and test classes improve zero-shot performance?
(ii) Does increasing diversity among training classes improve gen-
eralization? To answer these questions, we design two controlled
experimental setups:

• Similarity-based analysis, where we investigate how the acoustic
proximity between training and test classes affects performance
by constructing training sets with varying levels of similarity to
the test classes.

• Diversity-based analysis, where we vary the internal pairwise
similarity of training classes to examine the effect of training set
coverage in the audio embedding space.

By evaluating performance across a wide range of configurations,
we analyze how structural factors influence zero-shot accuracy. Our
results show that both high train–test similarity and moderate training
diversity are essential for robust zero-shot performance.

2. ZERO-SHOT AUDIO CLASSIFICATION FRAMEWORK
Figure 1 illustrates the pipeline of our zero-shot audio classification
model, which learns to map audio clips to class descriptions only
using seen training classes. Our approach is based on previous
work on projection-based alignment between audio and semantic
embeddings for zero-shot classification in [15], with an additional
learnable semantic projection layer. Let X be the set of audio samples
and C the set of class indices, split into seen Ctrain and unseen Ctest,
where Ctrain ∩ Ctest = ∅. The training set is defined as the labeled
pairs

Dtrain = {(xn, yn)}Nn=1, xn ∈ X, yn ∈ Ctrain, (1)

where N is the number of training samples, xn is the n-th audio
sample, and yn is its corresponding class index. Each audio sample x
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Fig. 1: Overview of the zero-shot audio classification framework.
Audio and semantic embeddings are projected into a shared embedding
space where their compatibility is computed. Projection layers are
updated via an objective function in training. Inference selects the
top-1 predicted class based on compatibility scores.

is encoded using an audio embedding function ϕa : X −→ Rda , and
each class description c ∈ C is embedded using a language embedding
model ϕt : C −→ Rdt , where da and dt denote the output dimensions
of the audio and language embedding models, respectively. These
embeddings are then projected into a shared space using learnable
functions

fa : Rda −→ RD, ft : Rdt −→ RD, (2)

where D is the dimension of the shared space. To measure how well
an audio sample and a class description match, we compute their
compatibility in the shared space using cosine similarity:

F (x, c) = cos(fa(ϕa(x)), ft(ϕt(c))). (3)

The objective is to bring audio embeddings closer to their cor-
responding semantic embeddings in the shared space. To achieve
this, we use the Weighted Approximate Rank Pairwise (WARP) loss
following [15]. The model is trained to assign a higher compatibility
score F (xn, yn) to correct pairs (xn, yn) than to incorrect ones.

At inference, for an unseen audio sample x, the model predicts the
class with the highest compatibility score among the unseen classes
z ∈ Ctest:

ẑ = argmax
z∈Ctest

F (x, z). (4)

In our implementation, we use pretrained and frozen VGGish [16]
as the audio embedding model (da =128) and Sentence-BERT
(SBERT) [17] as the semantic embedding model (dt =768). The
audio projection consists of two fully connected layers of sizes 256
and 512, with a tanh activation in between. The semantic projection
layer is a single fully connected layer of size 512.

As the projection layers are learned only on the training pairs, the
geometry of the shared embedding space is shaped by their structure.
Unseen test classes may project into any region of this space, but
may fall into misaligned regions to have meaningful representation
for reliable prediction. This is illustrated in Figure 2, where unseen
classes and test audio embeddings fall outside the training subspace.
Understanding how these structures affect zero-shot classification is
therefore important for designing more robust models.
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Fig. 2: Illustration of the shared embedding space. Purple area (left):
Projected training and class embeddings form a learned training
subspace. Gray area (right): Unseen test classes and test audio
embeddings may project outside the training subspace. Test audio is
predicted as the class whose embedding is the most similar.

3. TRAINING SET CONFIGURATIONS
To analyze the effect of training class distribution in the audio em-
bedding space, we design two controlled experimental setups varying
training class sets. We apply these analyses to audio embeddings
(see Section 4.1 for details). For the purpose of analysis, we assume
access to the full labeled dataset before defining training and test
splits. To define the configurations, we first represent each class by
the class-level audio embedding µc, defined as the centroid of the
audio embeddings of all samples in a class c:

µc =
1

Nc

∑
i∈Ic

ϕa(xi), (5)

where ϕa(xi) is the pretrained audio embedding of sample xi, yi
refers to the label of sample xi, Ic = {i | yi = c} is the set of indices
of samples labeled as class c, and Nc = |Ic|.

Based on these class-level audio embeddings, we create training
sets with controlled class distributions for two different analyses. In
the similarity-based analysis, we construct train–test configurations
where the training classes have different levels of acoustic similarity
to the test classes. In the diversity-based analysis, we create training
sets where the internal similarity of class-level audio embeddings
among training classes are within different ranges, resulting in varying
levels of coverage in the audio embedding space.

3.1. Similarity-based Analysis
To understand how the local alignment between seen and unseen
classes in the audio embedding space affects zero-shot performance,
we systematically vary the similarity ratio between training and test
samples in the audio embedding space. We first group acoustically
similar classes by clustering them. To perform clustering based on
cosine similarity, we normalize all class-level audio embeddings to
unit length µ̂c = µc/∥µc∥ and then apply K-means (with K = 3) to
the set {µ̂c | c ∈ C}.

Each cluster is used once as the source of test and validation classes
in a separate evaluation configuration. That is, in each configuration,
we select a fixed number of test and validation classes exclusively from
one cluster, and refer to that as the test cluster, while the remaining
classes from all clusters are considered as training candidates. For
each test cluster, we construct five different training sets by varying
the proportion of training classes selected from the test cluster. We
define the similarity ratio as the percentage of training classes that
belong to the same cluster as the test set. Specifically, we use the
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(a) Similarity-based configuration.

(b) Diversity-based configuration.

Fig. 3: Illustration of training set configurations with toy data in (a) similarity-based, (b) diversity-based. Each subplot shows one illustrative
instance: a single test cluster in (a), and a fixed test/validation set in (b). In the actual experiments, we repeat this procedure for multiple
configurations (see Section 4.2).

levels 1.0, 0.75, 0.50, 0.25, and 0.0. For example, a similarity ratio of
0.75 means that 75% of training classes are selected from the same
cluster as the test set, and 25% from the remaining clusters.

We repeat this process for each cluster, each with five training
sets of varying similarity levels, and report the Pearson correlation
between similarity ratio and test accuracy. Figure 3a illustrates the
effect of the similarity ratio on train and test sets on a toy data.

3.2. Diversity-based Analysis

To investigate whether diversity among training classes helps general-
ization, we define training sets with different diversity levels in the
audio embedding space. We measure diversity by the average pairwise
cosine similarity between class-level audio embeddings. Specifically,
we define five different cosine similarity ranges as (0.5, 0.6], (0.6,
0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1.0]. We create training sets with
different diversities with an iterative algorithm as follows:

1) Randomly select three test sets and three validation sets. These
sets remain fixed for every diversity range.

2) For each range

• Initialize the training set with a randomly chosen class from
the remaining set (excluding any test and validation set).

• Iteratively add new classes whose average pairwise cosine
similarity to the current training set falls within a target
range (e.g., (0.5, 0.6]).

• Repeat until the training set reaches a predefined number
of classes for each target range.

3) Evaluate the zero-shot accuracy obtained using a model trained
with that training set on each of the three fixed test sets.

The goal of this setup is to measure the effect of the training
data diversity on performance when the unseen classes are fixed. We
compare performance across ranges by measuring the correlation
between the average pairwise cosine similarity of training classes
and test accuracy. Figure 3b illustrates through toy examples with
different diversity levels: high, moderate, and low diversity. Higher
diversity means lower internal cosine similarity and high-diverse sets
provide larger coverage in the audio embedding space.

4. EXPERIMENTS
This section presents the experimental setup, including the dataset
and training procedure for both analyses.

4.1. Dataset
We conduct our experiments on a subset of AudioSet [18], focusing
on single-label samples. The AudioSet ontology provides a tree-like
class hierarchy. To have enough data per class, we construct the
subset by traversing the AudioSet ontology upward and selecting the
deepest node with more than 100 samples, or its parent if none qualify.
With this strategy, we ensure to choose the most specific classes with
sufficient data. Applying this algorithm results in 143 classes, each
with at least 100 samples.

We extract audio embeddings using a pretrained VGGish model.
Each 10-second audio clip is divided into 10 segments, where each
segment is mapped to a 128-dimensional vector. These segment-
level embeddings are averaged to produce a single 128-dimensional
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clip-level audio embedding. These embeddings are used both for
training and for constructing class-level audio representations (obtained
by averaging over all samples of a class) used in class selection
strategies. For semantic embeddings, we apply the Sentence-BERT
(SBERT) model [17] to the sentence-level class descriptions provided
by AudioSet, resulting in a 768-dimensional vector for each class.

4.2. Training Setup
In the similarity-based analysis, we define 15 configurations with 5
similarity ratios (1.0, 0.75, 0.50, 0.25, and 0.0) and 3 test clusters.
Each configuration corresponds to a distinct pairing of a test cluster
and a similarity ratio. In the diversity-based analysis, we also define
15 configurations with 5 cosine similarity ranges ((0.5, 0.6], (0.6, 0.7],
(0.7, 0.8], (0.8, 0.9], and (0.9, 1.0]) and 3 test sets. We use multiple test
clusters (similarity-based) and test sets (diversity-based) to reduce the
impact of any single test configuration. Each configuration is repeated
6 times with different random seeds, resulting in different combinations
of train, validation, and test classes with the same analysis conditions.
This leads to a total of 90 models for each analysis.

We set the number of clusters in similarity-based analysis to K = 3,
selected using the elbow method. In the diversity-based analysis, the
lower bound of 0.5 is chosen since the class pairs with pairwise
similarity below 0.5 are extremely rare to construct complete training
configurations with the given audio embeddings. Each configuration
has 20 training, 5 validation, and 5 test classes. All models are trained
from scratch and optimized using stochastic gradient descent (SGD)
with a learning rate of 0.001, batch size of 64, and for 100 epochs.

5. RESULTS AND ANALYSIS
We report our findings separately for the similarity-based and diversity-
based setups. In both cases, we evaluate the performance using top-1
accuracy averaged across random seeds per configuration. We analyze
the relationship between class structuring metrics (similarity ratio and
pairwise cosine similarity) and test accuracy via Pearson correlation.

5.1. Similarity-based Results
To measure the impact of train–test similarity, we defined a similarity
ratio as the proportion of training classes from the same cluster as the
test set. Figure 4 shows that accuracy increases with higher similarity,
rising from 0.25 at similarity ratio 0.0 to 0.39 at similarity ratio
1.0. The trend holds across all test clusters despite minor accuracy
variations.

Similarity ratio and accuracy show a significant positive correlation
with r = 0.374 and p < 0.001 as shown in Table 1, indicating that
increasing the acoustic similarity between test and training classes
improves the model’s ability to generalize to test classes.

5.2. Diversity-based Results
In the diversity-based setup, we varied the acoustic diversity of training
classes by controlling their average pairwise cosine similarity. Results
in Figure 5 show that accuracy peaks in the (0.6, 0.7] similarity range,
where training classes are moderately diverse, with a mean of 0.50.
Accuracy drops at both low (0.29 at (0.9, 1.0]) and high diversity (0.43
at (0.5, 0.6]), suggesting that moderate diversity provides the best
balance between coverage and coherence. In addition, the standard
deviation in accuracy increases with lower diversity, indicating less
stable generalization when the model is trained on narrowly distributed
classes. For example, the standard deviation was 0.07 in the (0.5, 0.6]
range, compared to 0.13 in the (0.9, 1.0] range.

The Pearson correlation between mean pairwise similarity and test
accuracy confirms this relationship with r = −0.434, p < 0.001 as
shown in Table 1, indicating that greater training data diversity (i.e.,
lower internal similarity) is beneficial for model performance.

Fig. 4: Similarity-based results: Zero-shot classification accuracy
across five train–test similarity ratios per cluster.

Fig. 5: Diversity-based results: Zero-shot classification accuracy
grouped by the average pairwise cosine similarity between class-
level audio embeddings.

Table 1: Pearson correlation coefficients between class structuring
metrics and zero-shot accuracy, computed over 90 models per setup.

Strategy Correlation (r) p-value
Similarity-based 0.374 <0.001

Diversity-based −0.434 <0.001

6. CONCLUSION
In this work, we investigated how the structure of training classes in
the audio embedding space affects generalization in zero-shot audio
classification. We proposed two experimental setups: one that changes
the similarity ratio between training and test classes, and another
that varies the diversity level among training classes. The similarity-
based analysis demonstrates that increasing the acoustic similarity
between training and test classes improves zero-shot performance.
The diversity-based results show that when training classes are overly
similar, the model may overfit and fail to capture patterns outside
of the training class regions, whereas training sets that span a larger
region of the space lead to better generalization. Based on these
findings, future zero-shot audio classification models may benefit
from explicitly leveraging structural information, such as graph-based
or geometry-aware techniques to model the topologies of audio and
semantic spaces.
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