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Abstract—This paper presents a two-stage, embedding-centric frame-
work for Unsupervised Anomaly Sound Detection (UASD), specifically
addressing the challenges of first-shot generalization and computational
efficiency. Our approach utilizes an efficient state-space model (SSM)
backbone. Pre-training of this backbone is accelerated using a pixel-
unshuffle (space-to-depth) input transformation for spectrograms, which
reduces training time by approximately 87.5% while preserving represen-
tation quality. Subsequently, the pre-trained model is fine-tuned with a
specialized anomaly head that fuses multi-level features, combined with
pseudo outlier exposure and domain-adversarial adaptation employing a
gradient reversal layer. Our system demonstrates superior performance
over the DCASE 2025 autoencoder baseline. Machine-specific models
achieve a harmonic mean total score of 0.722. This work establishes the
efficacy of SSMs for this task and offers a scalable, robust solution for
UASD in dynamic acoustic environments.

Index Terms—audio anomaly detection, pseudo outlier-exposure,
domain-adversarial training, State Space Model, Representation learning

1. INTRODUCTION
The Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge Task 2 in particular has steadily raised the bar
for unsupervised anomaly sound detection (UASD) . The task evolved
from plain UASD in 2020 [1], [2], through domain adaptation in 2021
[3], [4], [5], domain generalization in 2022 [6], and, most recently,
the demanding first-shot scenario in 2023–2025 [7], [8]. Current
systems typically adopt either inlier modelling with autoencoders
(AE) [9]–[11] or outlier exposure (OE) [12], [13], where auxiliary or
pseudo-outlier data improve robustness [14], [15].

Most existing backbones CNNs [16], [17], [18], AEs [6], diffusion
models [19], and lightweight nets such as MobileFaceNet [20], [21]
struggle to model long-range temporal context. Transformer variants
mitigate that with self-attention [22], [23], but for sequence length N ,
their quadratic time–memory cost O(N2) limits practical use on long
audio streams. Modern state-space models (SSMs) offer a compelling
alternative: they scale linearly, O(N), while retaining strong sequence
modelling power [24]. Yet, a recent survey of Task 2 work reveals
no SSM backbones to date, leaving a clear gap.

To bridge this gap, we introduce a UASD system tailored to the
first-shot, domain-generalisation setting of DCASE Task 2 [10]. Our
method couples an efficient SSM backbone with (i) a space-to-depth
[25] spectrogram rearrangement that accelerates pre-training, and (ii)
a fine-tuning stage that blends pseudo-outlier exposure with gradient-
reversal-based domain adaptation [26]. We investigate both machine-
specific and machine-generalised variants during fine-tuning.
Our contributions are:

1) First SSM backbone for DCASE Task 2. We present the
first efficient state-space model applied to the DCASE first-shot
UASD challenge.

2) Faster pre-training via space-to-depth. A novel spectrogram
rearrangement cuts pre-training time by about 87.5 % without
degrading representation quality.
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3) Compact anomaly head with domain adaptation. We design
a lightweight head that fuses multi-level features and pair it with
pseudo OE plus a gradient-reversal layer for domain alignment.

Extensive experiments confirm that our system surpasses the official
DCASE 2025 baseline [8].
Paper structure: Section 2 details the architecture and training
procedure; Section 3 describes datasets and metrics; Section 4 reports
results and ablations; and Section 5 summarises findings and future
directions.

2. METHOD
Our method tackles audio anomaly detection using a two-stage
representation learning strategy:

Stage I: Pre-training. The first stage focuses on learning robust
general-purpose acoustic features. We pre-train an efficient bidirec-
tional Audio-Mamba [27] encoder using a supervised classification
objective.

Stage II: Fine-tuning with pOE and Domain Adaptation. The pre-
trained encoder is repurposed for anomaly detection in two steps. First,
we swap the classification head for an anomaly head that fuses global
and intermediate features. We then fine-tune the network with a pseudo
Outlier Exposure (pOE) loss: embeddings of normal samples are pulled
toward a learned centre, while embeddings of auxiliary pseudo-outliers
are pushed away (Section 2.5). In parallel, domain-adversarial training
encourages domain-invariant representations, improving robustness
across operating conditions.

2.1. Spectrogram Tokenization via Space-to-Depth
Let X∈RC×H×W be a log-mel spectrogram (C=1). We first apply
pixel–unshuffle with factor r to fold local time–frequency context into
the channel dimension:

X ′ = PU(X, r) ∈ Rr2C×H
r
×W

r . (1)

With r=4 the 128×1024 input becomes 16×32×256, reducing the
token length by r2 while preserving locality inside the enlarged
channel dimension, as illustrated in Fig. 1.

We then partition X ′ into non-overlapping patches of size p× p

(with p=16), flatten each patch Si∈Rp2r2C using vec(·) and project
it linearly into a D-dimensional embedding,

Ei = Wpatch vec(Si) + bpatch, (2)

yielding the token sequence E =
[
E1, . . . , EN

]
∈RN×D with N =

HW
p2r2

.

2.2. Bidirectional State–Space Encoder
The patch-embedded token sequence E = [E1, . . . , EN ] ∈ RN×D

is processed by a stack of K identical Forward-Bidirectional Audio
Mamba (AuM) blocks, as depicted in Fig. 2. Each AuM block executes
a sequence of operations to transform its input xt.

First, an input projection maps xt to an intermediate representation
x̃t = Winxt + bin. This projected sequence X̃ is then fed into a
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Fig. 1: Pixel unshuffle (r = 4) applied to spectrogram patches. (a)
Input spectrogram (128× 1024) with 16× 16 patch grid. (b) 16× 16
input patch with 4× 4 unshuffle blocks. (c) Conceptual output stack
(16× 4× 4). (d) The 16 resulting 4× 4 feature-map channels. The
operation converts spatial resolution (H,W ) to channel depth (r2C),
reducing the number of tokens per patch from 16 × 16 = 256 to
4× 4 = 16 (a factor of r2 = 16).

depth-wise Conv1D generator. This convolutional layer produces the
time-variant parameters for the core State–Space Model (SSM) along
with a pre-activation gate, (Āt, B̄t, ∆t, g̃t) = Conv1D(X̃)t. Here,
Āt is the time-varying discrete state-transition matrix (state→ state),
B̄t is the discrete input matrix (input→ state), ∆t > 0 is the learnable
discretization step used to form Āt and B̄t, and g̃t is the pre-activation
of the fusion gate (with gt = σ(g̃t)). The actual gate gt = σ(g̃t) ∈
(0, 1)Ds is obtained via a sigmoid activation, where Ds denotes the
SSM state size.

The central component of the block is a Bidirectional SSM scan,
which operates in linear time. Using the generated parameters Āt

and B̄t, and a shared output projection matrix C, the forward and
backward hidden states (hf

t, hb
t ) and their corresponding outputs (yf

t ,
yb
t ) are computed. The output is derived from the current (updated)

state:

hf
t = Āth

f
t−1 + B̄tx̃t, yf

t = Chf
t, (3a)

hb
t = Āth

b
t+1 + B̄tx̃t, yb

t = Chb
t . (3b)

These directional outputs are subsequently combined through element-
wise gated fusion: yt = gt ⊙ yf

t + (1− gt)⊙ yb
t . Finally, an output

projection and residual connection yield the block’s output: zt =
Woutyt + bout, leading to Xnext

t = xt + zt. This entire structure is
followed by a layer normalization step and an MLP sub-block.

The discrete-time SSM utilized in (3) is conceptually derived from
an underlying continuous-time formulation, dh(t)

dt
= Ah(t) +Bx(t),

with y(t) = Ch(t). This continuous system is discretized using the
learnable step ∆t (which is one of the parameters generated by the
Conv1D layer). The resulting discrete-time transition matrices Āt and
input matrices B̄t are formulated as Āt = I+∆tAt and B̄t = ∆tBt.
This bidirectional SSM architecture efficiently captures global context

Fig. 2: Four-level view of the Bidirectional AuM encoder: (A) Encoder
stack; (B) one AuM block; (C) internal Mamba mixer; (D) state-space
cell used by the bidirectional selective scan.

with an overall computational complexity of O(NDs) in both time
and memory.

2.3. Design of Anomaly Head
The anomaly head is designed to combine global and intermediate
encoder features to produce a compact representation used for anomaly
scoring. Let h(0) ∈ Rd be the global feature vector from the final
encoder layer, and let {h(m)}Mm=1 be pooled intermediate features
from M selected layers. A weighted fusion of intermediate features
is computed as:

ĥ =

M∑
m=1

βm h(m), β = softmax(α), (4)

with α ∈ RM as learnable fusion weights. The fused representation
is then computed as the ℓ2-normalized sum:

h̃ =
h(0) + ĥ

∥h(0) + ĥ∥2
. (5)

This fused feature h̃ is passed through a two-layer MLP with batch
normalization, ReLU activation, and dropout:

z = W2 ReLU
(
BN

(
Dropoutp(W1h̃+ b1)

))
+ b2, (6)

where W1,W2 and b1, b2 are learnable parameters. The output z ∈
RD is the final anomaly embedding used in downstream scoring.

2.4. Stage 1: Supervised Pre-training
The initial stage focuses on learning robust and general-purpose
acoustic representations. The Bidirectional State–Space Encoder,
appended with a linear classification head, is pre-trained on all
available normal clips using data from the DCASE 2022-2025 Task-2
datasets (as detailed in Section 3.1). The optimization proceeds as
follows:

• Input spectrograms are first processed using the pixel-unshuffle
operation (as detailed in (1)) prior to patch embedding. This step
reduces the sequence length of tokens fed to the encoder.

• The model, comprising the backbone encoder and the classifica-
tion head, is optimized to minimize the standard cross-entropy
loss:

Lcls = −
1

B

B∑
i=1

Ccls∑
j=1

yij log p(yij | xi), (7)

where B is the batch size, Ccls is the number of classes (i.e.,
machine types) in the pre-training dataset, yij is a binary indicator
if sample i belongs to class j, and p(yij | xi) is the predicted
softmax probability of class j for input xi.
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2.5. Stage 2: Domain-Adaptive Fine-Tuning
In the second stage, we adapt our pre-trained backbone for anomaly
detection under domain shift. The majority of the backbone layers are
frozen, with only the final K blocks being unfrozen for fine-tuning.

Two primary components are introduced for this stage: the anomaly
head g, which processes features from the backbone to produce the
final embedding ẑ ∈ RD , and a domain classifier D, which takes ẑ as
input to predict its domain label. The fine-tuning objective combines
an anomaly detection loss, leveraging pseudo Outlier Exposure (pOE),
with an adversarial domain adaptation loss.

Anomaly Objective (pOE with SVDD-inspired Center) [28]: To
anchor the representation of normal data, an estimate of the normal
data cluster center, c ∈ RD , is maintained. This center is updated
using momentum µ with embeddings from normal samples:

c← (1− µ) · c+ µ · ẑnormal, (8)

where ẑnormal is the embedding ẑ derived from a normal input sample.
The anomaly loss Loe is formulated to attract embeddings of normal
samples (ẑy=0) towards this center c, while simultaneously repelling
embeddings of pOE samples (ẑy=1) from it, based on cosine similarity:

Loe =Eẑy=0 [1− cos(ẑy=0, c)]+

Eẑy=1 [max(0, cos(ẑy=1, c)− δ)],
(9)

where y = 0 denotes normal samples and y = 1 denotes pOE samples.
Domain Adaptation Objective (Adversarial Loss): To encourage

the model to learn domain-invariant representations, the embedding ẑ
is passed through a Gradient Reversal Layer (GRL) before it serves as
input to the domain classifier D. The adversarial domain classification
loss Ladv is then defined using the standard cross-entropy loss Lce:

Ladv = Lce(D(GRL(ẑ)), d), (10)

where d represents the true domain label of the input sample. During
backpropagation, the GRL inverts the sign of the gradients flowing
back to the feature extractor as illustrated in Fig. 3. This trains the
feature extractor (comprising the unfrozen backbone layers and the
anomaly head g) to generate embeddings ẑ that hinder the domain
classifier’s ability to distinguish between domains.

Combined Objective and Optimization Strategy: The parameters
of the unfrozen final K backbone blocks (denoted θbK ) and the
anomaly head (θg) collectively referred to as the feature extractor
parameters θf = {θbK , θg} are updated by minimizing the combined
loss function:

Ltotal = Loe + λadvLadv, (11)

where λadv is a hyperparameter balancing the contribution of the
adversarial domain loss.

A two-optimizer approach is employed for stable adversarial
training:

• The first optimizer updates the feature extractor parameters θf
by minimizing Ltotal.

• The second optimizer updates the parameters of the domain
classifier D (denoted θD) by minimizing its classification
loss Lce(D(detach(ẑ)), d). The detach() operation ensures that
gradients from this optimization step do not propagate back to
the feature extractor θf .

3. EXPERIMENTAL SETUP
3.1. Data
All experiments utilized audio data from the DCASE 2022-2025
Task 2 corpus [1], [2], [29], focusing on the seven core machine

Fig. 3: Architecture of the domain-adversarial branch. Embedding ẑ
from the feature extractor (θf ) is classified by domain D (θD).

types: ToyCar, ToyTrain, Fan, Gearbox, Bearing, Slider, Valve. For
pre-training, we constructed a dataset using all available normal clips
for these seven machine types from the 2022-2025 development splits,
no test-set audio was used. This resulted in approximately 62,500
clips for training the pre-trained models. A separate set of 2,800 clips
from the same development splits, also consisting of normal data
from these core machine types, was reserved for the validation of the
pre-trained models. Subsequently, for fine-tuning, normal data was
prepared in two distinct configurations. For machine-specific models,
dedicated normal datasets were curated for each of the seven machine
types. Each such dataset comprised 1,000 normal clips, which were
domain-balanced by oversampling target domain samples to match
source domain counts. For the machine-generalized model, a single,
larger dataset of normal clips was formed. This dataset was created by
pooling together individually domain-balanced normal clips prepared
from all seven core machine types and all additional data provided.
Finally, model performance was evaluated using the official DCASE
2025 Task 2 test sets.

3.2. Implementation Details
All audio signals were resampled to 16 kHz. We extracted 128-bin
log-Mel spectrograms using a 1024-sample frame length and using a
hop length tuned to yield 1024 frames for a 10-second audio clip. The
pixel-unshuffle operation (detailed in Section 2.1, (1)) was applied
with a factor r = 4 to the spectrograms prior to patch embedding.
All models were developed using PyTorch and trained on a single
NVIDIA RTX 3090 GPU.

Stage 1: Pre-training: The backbone encoder, attached with a
linear classification head, was pre-trained for 5 epochs to classify
machine types based on their normal operational sounds. For this
stage, we employed the AdamW optimizer with a learning rate of
1× 10−4, a weight decay of 1× 10−2, and a batch size of 256.

Stage 2: Fine-tuning: In this stage, the AdamW optimizer was
used for updating both the feature extractor parameters (θf =
{θbK , θg}) and the separate domain classifier parameters (θD). Key
hyperparameters for training the feature extractor (such as learning
rates, regularization settings, loss component weights e.g., λadv,
and the number of unfrozen layers K) were determined using
BOHB (Bayesian Optimization with Hyperband), which couples a
model-based sampler with Hyperband’s early-stopping schedule; we
maximized validation AUC under an epoch-based budget using a
Hyperband reduction factor of η = 3 [30]. For the machine-specific
models, hyperparameters were tuned separately for each machine type;
the machine-generalized model underwent a separate search. For the
domain classifier optimizer, we used a fixed learning rate of 1×10−4

and a weight decay of 1 × 10−2. During fine-tuning, a batch size
of 256 was used with gradient accumulation over 2 steps. Gradients
for θf were clipped at a maximum L2 norm of 1.0. The momentum
µ for updating the SVDD-inspired center c (used in Loe) was set
to 0.99. Models were trained for a maximum of 100 epochs, with
early stopping initiated if the validation AUC showed no improvement
for 15 consecutive epochs. The hyperparameters found through the
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Table 1: Ablation studies on key framework components.

Component Configuration Time/Latency AUC(src) AUC(tgt) pAUC

Pixel Unshuffle r = 4 (Proposed) 90 min – – –
r = 1 (No Unshuffle) 720 min – – –

Backbone Audio-Mamba 22.7ms 0.89 0.84 0.66
AST Baseline 26.1ms 0.83 0.85 0.68

Pre-training With (Proposed) – 0.89 0.84 0.60
Without – 0.63 0.50 0.52

Fine-tuning

pOE + GRL (Full) – 0.89 0.84 0.66
pOE only – 0.87 0.79 0.63
OC-SVDD + GRL – 0.80 0.81 0.61
OC-SVDD only – 0.66 0.78 0.58

optimization process were used for the final training and evaluation
of the fine-tuned models.

3.3. Evaluation Metrics
To evaluate anomaly detection performance, we adopt two standard
metrics: the Area Under the Receiver Operating Characteristic Curve
(AUC) and the partial AUC (pAUC). Both metrics are reported for
source and target domains to assess generalization under domain
shift. To aggregate performance across the seven machine classes, we
compute the harmonic mean (hmean) and arithmetic mean (amean)
of the per-class scores.

4. RESULTS AND DISCUSSION
4.1. Ablation Studies
Table 1 confirms that each design choice contributes either speed,
accuracy, or both.

Input rearrangement. Pixel-unshuffle with scale r=4 cuts end-to-
end pre-training time from 720 to 90 min (–87.5 %) while the mean
average precision falls by less than 0.5 pp (0.9934 → 0.9891). This
trade-off is attractive for industrial pipelines that need frequent model
updates.

Backbone. Our Audio-Mamba encoder yields a higher source-
domain AUC than the AST baseline (0.89 vs 0.83) [31] and, crucially,
runs 13 % faster at inference time (22.7 ms vs 26.1 ms). Although
AST scores marginally better on target-domain AUC, Audio-Mamba
offers a better overall hmean owing to its stronger pAUC.

Pre-training. Removing the contrastive pre-training stage drops
target-domain AUC from 0.84 to 0.50 and pAUC from 0.60 to 0.52,
highlighting that representation learning is critical when only one
normal recording per machine is available.

Fine-tuning strategy. The full pOE + GRL recipe attains the best
target AUC (0.84). GRL alone raises domain robustness by around
0.05 AUC, while pOE outperforms OC-SVDD regardless of whether
GRL is present, confirming the value of synthetic outlier generation.

4.2. Performance Comparison
Table 2 summarises end-to-end accuracy. Due to limited computa-
tional resources, all results presented were obtained from a single
experimental run, precluding the calculation of statistical significance
intervals. Our machine-specific system lifts the harmonic-mean TOTAL
score from 0.641 to 0.722, a 12.6 % relative gain, and the arithmetic
mean from 0.660 to 0.740. Source-domain AUC rises from 0.681
to 0.812, target-domain AUC from 0.614 to 0.702, and pAUC from
0.628 to 0.651. Per-machine results in Table 3 show that the largest
absolute jump occurs on Fan, where source-domain AUC climbs from
0.644 to 0.980 and target-domain AUC from 0.338 to 0.880. These
gains indicate that the combination of an SSM backbone and pOE is
particularly effective on highly non-stationary signals.

The machine-generalised model reaches a TOTAL of 0.600 about
6.4 % below the baseline. Training one network on all seven machine

Table 2: Performance comparison on seven core machine types.
TOTAL score is arithmetic mean of hmean values across three metrics.

System Metric hmean amean

Proposed
(machine-specific)

AUC (source) 0.812 0.832
AUC (target) 0.702 0.725
pAUC 0.651 0.663
TOTAL 0.722 0.740

Proposed(machine-
generalized)

AUC (source) 0.643 0.666
AUC (target) 0.603 0.633
pAUC 0.552 0.563
TOTAL 0.600 0.621

Baseline (AE)

AUC (source) 0.681 0.702
AUC (target) 0.614 0.631
pAUC 0.628 0.646
TOTAL 0.641 0.660

Table 3: Detailed per-machine AUC results for source and target
domains.

System Domain ToyCar ToyTrain Fan Gearbox Bearing Slider Valve

Proposed (specific) Source 0.894 0.736 0.980 0.958 0.728 0.900 0.626
Target 0.848 0.620 0.880 0.770 0.794 0.640 0.521

Proposed (generalized) Source 0.820 0.870 0.580 0.610 0.710 0.500 0.570
Target 0.810 0.870 0.500 0.490 0.570 0.680 0.510

Baseline (AE) Source 0.790 0.673 0.644 0.702 0.711 0.703 0.650
Target 0.725 0.598 0.338 0.653 0.600 0.575 0.611

types dilutes machine-specific cues and stresses the model capacity.
Even so, it exceeds the baseline on ToyTrain and cuts the domain gap
on Slider (source 0.500, target 0.680), suggesting that a unified model
could become competitive if equipped with larger hidden widths or
domain-aware loss weighting.

Overall, these results confirm that (i) state-space backbones scale
favourably on long audio, (ii) pOE + GRL is an effective fine-tuning
strategy for first-shot UASD, and (iii) machine-specific deployment
currently offers the best accuracy-latency trade-off for on-device
condition monitoring.

5. CONCLUSION AND FUTURE WORK

We introduced a two-stage embedding-centric framework for Unsu-
pervised Anomaly Sound Detection. The proposed system integrates
an efficient AudioMamba State Space Model backbone, accelerated
pre-training through space-to-depth spectrogram tokenization (pixel-
unshuffle), and a robust domain-adaptive fine-tuning strategy. This
fine-tuning stage effectively combines a compact anomaly head that
fuses multi-level features with pseudo Outlier Exposure and GRL
based domain adaptation techniques. Our comprehensive experiments
and ablation studies validated the efficacy of each component. We
demonstrated this to be the first application of an SSM backbone for
the DCASE Task 2 first-shot UASD challenge, achieving significant
improvements in AUC and pAUC metrics over established baselines.
The substantial reduction in pre-training time due to pixel-unshuffle,
and the enhanced robustness and domain generalization capabilities
imparted by the pOE and GRL techniques during fine-tuning, were
clearly evidenced.

Several directions look promising. First, experimenting with larger
or alternative state–space architectures may unlock further accuracy
and speed gains. Second, we will refine pseudo-outlier generation
in pOE so it spans a wider range of real-world anomalies. Third,
introducing domain-aware loss weighting could make a single, unified
model competitive with machine-specific ones. Finally, a fully self-
supervised pre-training stage for the backbone would eliminate the
need for labelled machine types, easing deployment where annotated
data are scarce.
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