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Abstract—We propose discriminative anomalous sound detection (ASD)
systems designed to handle unlabeled data, noisy environments, and first-
shot conditions. First, since discriminative methods suffer from significant
performance degradation under unlabeled conditions, we generate pseudo
labels to effectively train the discriminative feature extractors. Second, to
improve noise robustness, we introduce a target signal enhancement (TSE)
model as a pre-processing step. The TSE model is trained utilizing a small
amount of clean machine sounds, together with a larger amount of noisy
machine sounds. Third, to increase robustness across various machine
types in first-shot conditions, we employ diverse architectures as feature
extractors and ensemble their anomaly scores. Experimental results show
that our systems achieve official scores of 64.85% and 59.99% on the
DCASE 2025 development and evaluation sets, respectively, where the
score is calculated as the harmonic mean of the AUC and partial AUC
(p = 0.1) over all machine types and domains.

Index Terms—anomalous sound detection, pseudo labels, target signal
enhancement, ensemble

1. INTRODUCTION
Anomalous sound detection (ASD) aims to identify abnormal machine
behavior based on acoustic signals [1]–[5]. Due to the scarcity of
anomalous sound data, ASD systems are typically trained using only
normal machine sounds. ASD systems compute anomaly scores based
on deviations from the normal sound distribution, assigning higher
scores to sounds that are more likely to be anomalous.

State-of-the-art ASD methods are based on discriminative ap-
proaches [6]–[10]. This approach first trains a feature extractor to
classify meta-information labels, such as machine type and operational
status, associated with normal machine sounds. An anomaly score
is then computed for each test sample by measuring its distance
from normal training samples in the discriminative feature space.
This discriminative space effectively captures differences in machine
sounds, leading to high ASD performance.

While high ASD performance can be achieved with discriminative
approaches, they still face several challenges in real-world applications,
including the lack of meta-information labels, noisy environments,
and first-shot conditions. First, although meta-information labels
are essential for effectively training the feature extractor, they
are sometimes unavailable in real-world scenarios, as collecting
such labels requires human annotation or additional monitoring
systems [5] Second, since ASD systems are typically deployed in
factory environments, machine sounds are often contaminated by
heavy noise, which can lead to misdetections. Third, it is desirable to
develop ASD methods that can be applied to various machine types
without relying on machine-specific knowledge including preliminary
performance validation results for the target machine type (i.e., under
first-shot conditions [4]).

In this paper, we propose a discriminative ASD system designed
to address these challenges (Fig.1). First, to effectively train the
feature extractor under unlabeled conditions, we adopt pseudo-
label generation techniques [10]. Second, to mitigate performance
degradation caused by noise, we introduce a target signal enhancement
(TSE) model as a pre-processing step. The TSE model consists of
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Fig. 1: Overview of the proposed system

a neural network trained via multi-task learning of reconstruction
and classification losses using a small amount of clean machine
sounds along with a larger amount of noisy machine sounds. Third,
to improve generalization ability across various machine types, we
employ diverse architectures as feature extractors and ensemble their
anomaly scores. We conduct an experimental evaluation on the DCASE
2025 Challenge Task 2 dataset [11]. The results demonstrate that each
component of our system is effective, and our system achieved fourth
place in the official team rankings. Specifically, our system achieved
official DCASE scores of 64.85% and 59.99% on the DCASE 2025
development and evaluation sets, respectively, whereas the official
baseline system [12] achieved 56.26% and 56.51%.1

2. PROPOSED METHOD
Sections 2.1 and 2.2 describe the architectures of the proposed TSE
and ASD models, respectively. Section 2.3 presents strategies for
utilizing the TSE model in the ASD task.

2.1. TSE Model
Following the DCASE 2025 Challenge Task 2 [11], we assume
that a supplementary dataset is available for each machine type in

1The result on the evaluation set was obtained from the DCASE official
website, https://dcase.community/challenge2025/task-first-shot-unsupervised-
anomalous-sound-detection-for-machine-condition-monitoring-results
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addition to the training dataset. The training dataset consists of noisy
machine sounds, while the supplementary dataset contains a small
amount of either clean machine sounds or machine-specific in-domain
noise, where the noise characteristics differ across machine types. We
construct TSE models by utilizing both the training and supplementary
datasets.

The TSE model is separately trained for each machine type using
the following multi-task loss LTSE.

LTSE = λLRecon + LClass, (1)

where λ is a hyperparameter that balances LRecon and LClass. LRecon

is defined as follows:

LRecon = LD(xTarget, fTSE(xTarget + n)), (2)

where LD(·, ·) is an arbitrary reconstruction loss function, fTSE(·)
is the TSE model, xTarget is the target signal–either a clean machine
sound or in-domain noise–provided in the supplementary data, and n
is out-domain noise drawn from AudioSet [13]. When xTarget is in-
domain noise, the TSE model is trained to extract the in-domain noise
components. Accordingly, enhanced machine sounds are obtained by
subtracting the estimated noise from the original noisy input.
LClass is defined as LClean

Class when clean machine sounds are
available, and as LNoise

Class when noise signals are available in the
supplementary data:

LClean
Class = LC(fClass(fTSE(xNoisyTM)), lMeta)

+ LC(fClass(xCleanTM), lMeta)

+ LC(fClass(xNoisyNM), lNoisyNM),

LNoise
Class = LC(fClass(fTSE(xNoisyTM)), lNoiseTM)

+ LC(fClass(xNoisyTM − fTSE(xNoisyTM)), lMeta)

+ LC(fClass(xNoiseTM), lNoiseTM)

+ LC(fClass(xNoisyNM), lNoisyNM),

where LC(·, ·) is an arbitrary classification loss function, and fClass(·)
is a classifier. xNoisyTM is the noisy machine sounds in the training
dataset, while xCleanTM and xNoiseTM are the clean machine sounds
and in-domain noise in the supplementary dataset, respectively.
xNoisyTM, xCleanTM, and xNoiseTM all correspond to the target
machine type, whereas xNoisyNM is the noisy machine sounds in
the training datasets of non-target machine types. lMeta is the meta-
information label, while lNoisyNM and lNoiseTM are single-class labels
assigned to xNoisyNM and xNoiseTM, respectively. This classification
loss enables us to utilize the real noisy machine sounds xNoisyTM

for training the TSE model, where xTarget + n in LRecon is a
synthetic mixture that includes out-of-domain noise n. For the
classifier fClass(·), we use a frozen pre-trained BEATs model [14]
with a trainable linear classification head, encouraging the TSE model
to focus on learning the denoising effect rather than relying on the
classifier.

2.2. ASD Model
We describe the architecture of our discriminative ASD model.
Hereafter, we refer to the discriminative feature extractor as the
frontend, and the anomaly score computation module as the backend.

2.2.1. Frontend: To improve the robustness of the ASD model
across various machine types, we employ four different architectures
for the frontend: Spec, BEATs, EAT, and SSLAM. Spec refers to
an architecture that incorporates an amplitude spectrum and multi-
resolution spectrograms as input features [10]. Spec independently
transforms each input feature into a DSpec-dimensional feature via

convolutional neural networks. Subsequently, the DSpec-dimensional
features are concatenated to form a MDSpec-dimensional feature,
where M is the number of input features. Spec is trained from scratch
using classification of meta-information labels. This architecture
enables capturing anomalies from multiple perspectives, thereby
improving ASD performance [10].

Based on the successful application of self-supervised learn-
ing (SSL) models to the ASD task [8], [15], we employ three SSL
models: BEATs [14], EAT [16], and SSLAM [17]. BEATs iteratively
trains an acoustic tokenizer and a SSL model [14]. The SSL model
is trained via a masked prediction task on discrete tokens generated
by the tokenizer. The tokenizer is randomly initialized in the first
iteration and then iteratively updated via knowledge distillation from
the SSL model obtained in the previous iteration.

EAT is a SSL model based on the masked latent bootstrapping
framework, in which a student model is trained via masked language
modeling using latent representations generated by a teacher model,
and the teacher is continuously updated by the student [16]. To
capture both global and local information, EAT combines utterance-
and frame-level reconstruction losses [16].

SSLAM refines the masked latent bootstrapping framework to en-
hance its capability in handling polyphonic sounds [17]. SSLAM trains
a student model on mixtures so that it preserves the characteristics
of the teacher model’s representations for each individual source
composing the mixture.

Following previous work [8], we fine-tune SSL models through a
meta-information label classification task using low-rank adaptation
(LoRA) [18]. From BEATs, we obtain a 768-dimensional feature
sequence. We aggregate this feature sequence into a single repre-
sentation using a statistics pooling layer [19], and project it to a
DSSL-dimensional feature using a linear layer. The resulting DSSL-
dimensional feature is used for both the classification task and the
subsequent anomaly score computation. For EAT and SSLAM, we
obtain a 768-dimensional CLS feature, and project it to a DSSL-
dimensional feature using a linear layer.

Additionally, since the effectiveness of the meta-information labels
depends on the machine type [10], we also employ frozen pre-trained
SSL models as frontends to further improve robustness across various
machine types [20]. For BEATs, we average the output sequence to
obtain a 768-dimensional feature, whereas for EAT and SSLAM, we
directly use the 768-dimensional CLS feature.

2.2.2. Backend: We employ the same backend as in previous
works [21]. The backend computes an anomaly score as the minimum
cosine distance between an observation and the training data in the
feature space. Since there is a data imbalance between the source and
target domains, we apply SMOTE oversampling [22] to the limited
training data in the target domain.

2.2.3. Pseudo-label Generation: We assume unlabeled conditions in
the DCASE 2025 Challenge Task 2 [11], where the meta-information
labels include machine type and attributes (e.g., machine operational
status), but the attributes are unavailable for some machine types.
To effectively train the frontend under the unlabeled conditions, we
employ pseudo-label generation techniques [10]. The pseudo-label
generation consists of two steps: extracting features from the training
dataset and generating pseudo labels by applying clustering to the
feature space. Although previous work used pre-trained PANNs [23]
and OpenL3 [24] models as feature extractors for pseudo-label
generation [10], we newly employ BEATs. Specifically, we average the
768-dimensional feature sequence extracted by the BEATs and then
apply principal component analysis to reduce its dimensionality from
768 to 50. For the clustering, we use Gaussian mixture model, where
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Table 1: Evaluation results. The values represent the harmonic mean of the
official scores over all machine types. “Ny” and “Enh” indicate the noisy and
enhanced machine sounds, respectively. In the “Label” column, “Ny” and
“Enh” indicate pseudo labels generated from the noisy and enhanced machine
sounds, respectively, while “Org” indicate the original labels. The last row
shows the performance obtained by the frozen pre-trained SSL models.

Train Test Label Spec BEATs EAT SSLAM

Ny Ny
Org 60.10 61.74 62.40 62.31
Ny 61.77 64.14 63.69 63.34
Enh 61.61 63.63 63.95 62.78

Enh Enh
Org 60.29 64.43 62.62 63.16
Ny 62.63 64.54 63.32 64.20
Enh 62.36 64.37 63.87 64.75

Ny,
Enh Ny

Org 60.77 61.62 62.51 61.95
Ny 61.86 63.84 63.82 63.55
Enh 61.04 62.99 63.73 63.77

No Ny No 58.22 60.20 59.30

the number of clusters is determined by the Bayesian information
criterion with a maximum of eight clusters.

2.3. Strategies to utilize TSE for ASD
We propose three strategies for using the TSE model on the ASD
frontends during training and inference: (1) a baseline approach that
uses the original noisy machine sounds for both training and inference;
(2) an approach that uses enhanced machine sounds for both training
and inference; (3) an approach that uses both noisy and enhanced
machine sounds during training, but only noisy machine sounds during
inference. In the third approach, we expect the ASD models to focus
on machine sound components by jointly using enhanced machine
sounds for classification training, even though noisy machine sounds
are used for inference.

We also utilize the TSE model for pseudo-label generation. We
generate pseudo labels from noisy and enhanced machine sounds
separately. Although pseudo labels that reflect noise differences can
lead to performance degradation [10], we employ not only enhanced
but also original noisy machine sounds for pseudo-label generation,
taking into account the potential loss of machine sound components
caused by the TSE processing.

3. EXPERIMENTAL EVALUATIONS
3.1. Experimental setups
We conducted an experimental evaluation using the DCASE 2025
Challenge Task 2 dataset, which partially includes ToyADMOS2 [25]
and MIMII DG [26]. The dataset includes 15 machine types, each of
which is assigned to either the development or evaluation subset.
Specifically, the development set contains seven machine types
(bearing, fan, gearbox, slider, ToyCar, ToyTrain, and valve), while
the evaluation set contains eight (AutoTrash, HomeCamera, ToyPet,
ToyRCCar, BandSealer, Polisher, ScrewFeeder, and CoffeeGrinder).
For each machine type, training, supplementary, and test datasets are
provided. The training dataset consists of 1,000 samples of normal
machine sounds, with 990 samples from the source domain and 10
from the target domain. The supplementary dataset includes 100
samples of either clean machine sounds or in-domain noise. The
test dataset contains 200 samples in total, including both normal and
anomalous machine sounds from the source and target domains. Each
recording is a 5 to 12-second single channel signal sampled at 16 kHz.

The architecture of the TSE model was a small-size TF-
Locoformer [27] without positional encoding. For the short-time
Fourier transform (STFT) used in the TF-Locoformer, the DFT size
and frame shift were set to 512 and 128, respectively. For the loss

function, λ was set to 0.5, and the reconstruction loss LD was the
negative signal-to-noise ratio (SNR) loss. The classification loss LC

was the Sub-cluster AdaCos (SCAC) [28] with 16 trainable sub-cluster
centers and a fixed scale parameter. We trained the TSE model for
2,400 epochs with a mini-batch size of 8 (i.e., 28,800 steps). Each
sample was truncated or padded to 6 seconds. We used the AdamW
optimizer [29] with gradient clipping at a maximum L2-norm of 5.
The learning rate was linearly increased from 0 to 0.0004 over the first
1,250 steps. The SNR for mixing xTarget and n was randomly selected
from the range [−5, 5) dB. We manually inspected several samples
of the enhanced machine sounds in the training dataset and decided
to apply the TSE model except for fan, gearbox, BandSealer, and
ToyRCCar because the TSE processing possibly degrades important
machine sound components.

For Spec of the ASD frontend, we used three spectrograms with
different DFT sizes of 256, 1024, and 4096, together with an amplitude
spectrum. The frame shift was half of the DFT size, and frequency
bins in the range of 200Hz to 8000Hz were used. The network
consisted of the ResNet architecture [30] similar to that in [7]. The
feature dimension DSpec was set to 128 and the number of input
features M was 4, resulting in a 512-dimensional feature vector. We
trained Spec for 16 epochs when using either the noisy or enhanced
dataset, and for 8 epochs when jointly using both datasets. We used
the AdamW optimizer with a fixed learning rate of 0.001 and a
mini-batch size of 64. The loss function was the SCAC [28] with 16
trainable sub-cluster centers and a fixed scale parameter. Mixup [31]
was applied with a probability of 50%.

For SSL-based frontends, we used pre-trained checkpoints
from their respective repositories: BEATs_iter3.pt
for BEATs, EAT-base_epoch10_pt.pt for EAT, and
SSLAM_Pretrained/checkpoint_last.pt for SSLAM.
LoRA was applied to the query and key projection layers within
the Transformer encoder for BEATs, and to the query, key, and
value projection layers for EAT and SSLAM. For all SSL-based
frontends, the LoRA rank was set to 64 and the feature dimension
DSSL was set to 256. We fine-tuned the SSL models for 25 epochs
with a mini-batch size of 8 (i.e., 46,875 steps). We used the AdamW
optimizer, and the learning rate was linearly increased from 0 to
0.0001 over the first 5,000 steps. The loss function and mixup
probability were the same as those used for Spec.

For SMOTE in the backend, we set the oversampling ratio to 20%
and the number of neighbors to 2. For each system, we averaged
anomaly scores across four different random seeds.

As an evaluation metric, we used the DCASE official scores, calcu-
lated as the harmonic mean of the area under the receiver operating
characteristic (ROC) curve (AUC) and the partial AUC (pAUC) with
p = 0.1. The AUC was calculated for each domain using the normal
samples from that domain and the anomalous samples from both
domains, while the pAUC was calculated using samples from both
domains.

3.2. Experimental results
Table 1 shows the harmonic mean of the official scores across all
machine types for each frontend under each training and testing
strategies using the TSE model. First, when original labels are used
for training, BEATs and SSLAM significantly improve performance
by using enhanced sounds for both training and testing, while Spec
and EAT show almost no change in performance even if using
the enhanced sounds. Additionally, training jointly using noisy and
enhanced machine sounds slightly improves the performance of Spec
when original labels are used. The effectiveness of pseudo labels is
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Table 2: Evaluation results for each machine type. The values represent the official scores. In the “ID” column, Spec, BEATs, EAT, and SSLAM indicate
individual systems, while 1⃝ to 10⃝ indicate ensemble systems that combine Spec, BEATs, EAT, and SSLAM under the same training and testing strategy.
“hmean” indicates the harmonic mean of the scores over all machine types. “Ny” and “Enh” indicate the noisy and enhanced machine sounds, respectively. In
the “Label” column, “Ny” and “Enh” indicate pseudo labels generated from the noisy and enhanced machine sounds, respectively, while “Org” indicate the
original labels. The last row shows the performance obtained by the frozen pre-trained SSL models. ⋆ indicate machine types without attribute information.

ID Train Test Label bearing⋆ fan gearbox slider⋆ ToyCar ToyTrain⋆ valve hmean

Spec

Ny Ny Org

57.93 51.12 62.10 55.85 59.55 62.34 78.10 60.10
BEATs 56.97 59.73 63.86 57.69 58.32 66.09 72.42 61.74
EAT 57.02 58.66 70.46 59.09 59.45 62.03 73.86 62.40
SSLAM 56.41 56.64 71.97 62.41 59.75 61.83 70.73 62.31

1⃝
Ny Ny

Org 59.95 54.54 66.16 58.05 59.03 64.98 80.39 62.43
2⃝ Ny 61.45 53.67 69.15 59.32 59.81 67.22 83.43 63.75
3⃝ Enh 70.44 52.80 68.62 56.93 59.69 65.81 81.60 63.94

4⃝
Enh Enh

Org 60.04 51.97 65.35 62.06 58.31 66.81 83.18 62.81
5⃝ Ny 68.40 52.03 68.07 60.56 59.53 65.77 87.95 64.57
6⃝ Enh 68.43 51.71 67.54 60.06 59.73 66.57 89.11 64.58
7⃝

Ny,
Enh Ny

Org 57.05 53.38 66.63 60.96 59.24 64.85 82.45 62.44
8⃝ Ny 65.14 53.75 67.48 60.89 58.93 65.77 84.36 64.09
9⃝ Enh 67.08 51.78 65.72 59.62 59.18 65.39 82.97 63.38

10⃝ No Ny No 55.51 51.78 55.68 58.98 62.26 66.90 79.54 60.44

Table 3: Evaluation results for the ensemble system combining different
training and testing strategies. The values represent the official scores. “Dev”
and “Eval” indicates the harmonic mean of the scores over machine types in
the development and evaluation sets, respectively. The submission names are
used for the DCASE 2025 Challenge Task 2 [11].

Submission Name ID Ensemble Dev Eval

Fujimura_NU_task2_1 11⃝ ( 5⃝+ 6⃝)/2 64.85 59.99
12⃝ ( 7⃝+ 8⃝+ 9⃝)/3 63.76
13⃝ ( 2⃝+ 3⃝+ 5⃝+ 6⃝)/4 64.91

Fujimura_NU_task2_2 14⃝ 0.75 1⃝+0.2510⃝ 62.44 58.51
Fujimura_NU_task2_3 15⃝ 0.7512⃝+0.2510⃝ 63.73 59.34
Fujimura_NU_task2_4 16⃝ 0.7513⃝+0.2510⃝ 64.75 59.91

consistently observed across all training and testing strategies. Spec,
BEATs, and SSLAM achieve their best performance when we use both
enhanced machine sounds and pseudo labels for training. There is no
consistent trend regarding whether pseudo labels generated from noisy
or enhanced machine sounds yield better results. Finally, SSL-based
models consistently outperform Spec.

Table 2 shows the evalaution result for each machine type. The
table includes the performance of the ensemble system that combines
Spec, BEATs, EAT, and SSLAM under the same training and testing
strategy. The ensemble weights were set to 1/2, 1/6, 1/6, and 1/6
for Spec, BEATs, EAT, and SSLAM, respectively. We observe that
systems 5⃝ and 6⃝, which use enhanced machine sounds and pseudo
labels, achieve high performance, significantly improving results
for the bearing and valve machine types. Additionally, system 10⃝
shows competitive performance on ToyCar and ToyTrain without fine-
tuning the SSL models. Finally, by comparing ensemble system 1⃝
with individual frontends, we find that 1⃝ consistently achieves high
performance across all machine types, with harmonic mean scores that
are higher than or similar to those of the individual frontends. This
result highlights the effectiveness of ensembling multiple frontends
under first-shot conditions.

Table 3 shows the official scores of the ensemble system combining
different training and testing strategies. The following consistent
performance ranking highlights the effectiveness of the TSE and
pseudo labels: (1) 11⃝ which uses enhanced machine sounds for both
training and testing and also uses pseudo labels (ensemble of 5⃝ and
6⃝), (2) 16⃝ which uses either noisy or enhanced machine sounds for

both training and testing and also uses pseudo labels (ensemble of 2⃝,
3⃝, 5⃝, 6⃝, and 10⃝), (3) 15⃝ which jointly uses noisy and enhanced
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Fig. 2: Comparison of our system with the seven top-performing systems
and the official baseline systems on the evaluation set of the DCASE 2025
Challenge Task 2.

machine sounds for training and uses either original or pseudo labels
(ensemble of 7⃝, 8⃝, 9⃝, and 10⃝) , and (4) 14⃝ which uses neither TSE
nor pseudo labels (ensemble of 1⃝ and 10⃝).

Finally, Fig. 2 compares our system with the seven top-performing
systems [32]–[37] and the official baseline systems [12] in the DCASE
2025 Challenge Task 2. Our system significantly outperforms the
baseline systems and ranks fourth in the challenge.

4. CONCLUSION
In this paper, we proposed a discriminative ASD system to tackle
the challenges of unlabeled data, noise, and first-shot conditions.
First, we effectively utilized the unlabeled training data by generating
pseudo labels through clustering in the BEATs feature space. Second,
we introduced TSE models trained with a multi-task loss using
both a small supplementary dataset and larger noisy training dataset.
The TSE models were used as a pre-processing step for training,
testing, and pseudo-label generation. Third, we ensembled multiple
frontends—Spec, BEATs, EAT, and SSLAM—to handle diverse
machine types. Experimental results showed that pseudo labels and
TSE pre-processing significantly improved performance, and the
ensemble of frontends outperformed individual frontends.
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