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Abstract—Human actions often generate sounds that can be recognized
to infer their cause. In action recognition, actions can usually be broken
down to a combination of verbs and nouns, of which there exist a very large
number of enumerations. Contemporary datasets, like EPIC-KITCHENS,
cover a wide gamut of the potential action space, but not its entirety.
Arguably, the holistic characterization of human actions through the
sounds they generate requires the use of zero-shot learning (ZSL). In this
contribution, we explore the feasibility of ZSL for recognizing a) nouns,
b) verbs, or c) actions on Epic-Kitchens. To achieve this, we use linguistic
intermediation, by generating descriptions of each word corresponding
to our classes using a pre-trained large language model (LLAMA-2). Our
results show that human action recognition from sounds is possible in
zero-shot fashion, as we consistently obtain results over chance.

Index Terms—zero-shot classification, computer audition, machine
learning, action recognition

1. INTRODUCTION

Despite significant strides in the field of computer audition in
recent years [1], achieving a level of auditory perception comparable
to that of humans remains a considerable challenge [2]. In the
case of humans interacting with their environment, achieving a
comprehensive understanding of audio involves the intricate task
of perceiving all actions embedded within a particular soundscape.
This challenge is amplified by the fact that, in psychology, the
identification of sound events by humans is deeply intertwined with the
recognition of associated actions [3]. However, the multifaceted nature
of human interactions with their environment gives rise to a seemingly
inexhaustible array of potential action categories. This inherent
complexity poses a significant challenge, making it impractical to
train a model capable of recognizing every conceivable category or
combination. In this regard, zero-shot learning (ZSL) proves ideal, as
it generalizes findings from known classes and their combinations to
new ones and thus excels in identifying categories that were previously
unknown or unseen [2], [4].

As for ZSL, the majority of progress in zero-shot action recognition
(ZSAR) has predominantly occurred within the field of computer
vision, leveraging semantic information such as video captions and
other text data [S]-[7]. Accordingly, mostly visual or audio-visual data
have been investigated, not only for ZSAR but action recognition (AR)
in general [8]-[11], while audio was often neglected. Some popular
datasets employed for AR, such as HMDBS51 [12] or UCF101 [13],
do not even contain audio or only have partial audio information.
As mentioned by Elizalde et al. [3], audio is an extremely important
factor for people to be able to recognize actions. In this regard, verbs
are often closely tied to characteristic sounds that reflect actions,
interactions between objects, and occasionally the material composing
the objects [3]. We therefore want to investigate an audio-based ZSAR
approach in this study.

This work was partially funded from the DFG’s Reinhart Koselleck project
No. 442218748 (AUDIONOMOUS).
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Similar to computer vision, it is common for audio-based ZSL
approaches to leverage textual descriptions of the target classes, their
features, or related information as meta information [14]-[17]. These
auxiliary data can be textual descriptions of the sound classes or even
the labels themselves [14], descriptions of what the target classes
sound like [15], or descriptions of the musical concepts which shall
be modeled in music [17]. Among the latest breakthroughs when it
comes to audio-based ZSL are modifications of the CLIP approach
in computer vision, exemplified by Wav2CLIP [18], AudioCLIP [19],
or CLAP [16].

While ZSL has gained popularity in the audio domain, we have
not come across any prior studies exploring audio-based ZSAR. This
paper takes a step in that direction by carrying out initial investigations.
For this purpose, we employ the EPIC-KITCHENS dataset [20], [21],
which contains egocentric videos of people interacting with objects
in their home kitchen environments. We chose this dataset due to
the non-scripted daily activities, the availability of audio for all
annotated actions, as well as the fact that the videos were narrated
by the participants themselves afterwards. Furthermore, each action
comprises a verb and a noun (e.g., “cut tomato”), enabling their
separate investigation.

We also note that the recently published EPIC-SOUNDS dataset
[22] also holds the potential to capture audible actions. Nevertheless,
the dataset’s action classes predominantly center around collisions
and materials, giving rise to classifications like “metal-only” or “cut
/ chop”. Our objective, however, is to delve into the identification of
the actual object(s) engaged in an interaction, alongside discerning
the corresponding verb that describes or characterizes the action.

We primarily want to investigate if ZSAR based solely on audio is
possible. To do this, we adopt artificially generated textual descriptions
of how the actions sound as meta information. Thus, for each annotated
action, we use LLAMA-2 [23], a large language model (LLM), to
generate a corresponding textual description. This description is then
adopted as auxiliary information for the ZSL process. We draw
inspiration for this approach from the usage of artificially generated
video captions in [6] as well as the textual sound descriptions for
various bird species in [15] for ZSL. We furthermore distinguish the
three scenarios of classifying 1) the verb, 2) the noun of an action,
as well as 3) the action itself. In our modeling approach, we leverage
recent research in audio-based ZSL and primarily utilize a standard
ZSL method [14], [15]. Our objective is to conduct initial experiments
rather than pursue state-of-the-art results. In doing so, we also explore
the textual embeddings of the verbs and nouns and how they influence
the model performance. The code repository of this work is publicly
available on GitHub'.

Uhttps://github.com/CHI-TUM/epic-kitchens- zsl
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Table 1: Statistics about the utilized data. The minimum (Min),
maximum (Max), and average (Avg) are reported w.r.t.the amount
(left) and the total duration (right) of the audio segments per class.
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Table 2: Prompt employed with LLAMA-2 to generate textual sound
descriptions, where {ACTION} is replaced by each narration from
the EPIC-KITCHENS dataset.

>

Total Duration (in s)

Class Min Max Avg Min Max Avg

VERB 1 14648 680 1.1 37802 2118

NOUN 2 3576 330 1.7 9032 716

ACTION 1 1768 19 3 3688 59
2. DATA

We utilize the publicly available data from both EPIC-KITCHENS-
100 [21] and EPIC-KITCHENS-55 [20] for our experiments. In
particular, we adopt the training data from both datasets and split
them into our own subsets in Section 3.2. As the test data does not
come with annotated actions we neglect it. Based on the timestamps
of the annotated actions we extract the action segments from the
provided videos and convert them to .mp3 format, as we only exploit
the audio stream. In total, we have 57 hours of audio, averaging 3.12
seconds per file.

The annotated actions are based on the narrations by the participants
themselves. The core components of a narration are one verb and at
least one noun. If multiple nouns are present in a narration, only the
first one is considered for the action, as done in the original paper
describing the dataset [20]. An action a; for an audio segment ¢ is
defined as a; = (vi,n;) with v; and n; being the corresponding
verb and noun class. For instance, the narration “add banana to jug”
describes the action tuple (add, banana), thus comprising the verb class
add and the noun class banana. Note that we omitted prepositional
objects (“to jug”), same as the original authors of the data [20]. In total,
our extracted subset from the EPIC-KITCHENS datasets comprises
97 verb, 287 noun, and 3 507 action categories. However, there is a
considerable data imbalance regarding the amount of audio segments
for each verb / noun / action class which is illustrated by Table 1.

Audio descriptions: We extract artificially generated textual
descriptions as meta-information that describe the expected sound
of the corresponding action. This approach is inspired by the
incorporation of artificially generated video captions in [6] as well
as the leveraging of textual sound descriptions in [15]. For this
purpose, we employ LLAMA-22 [23], specifically, the instruction
fine-tuned 7-billion parameter model, to generate adequate textual
descriptions, representing the auditory characteristics associated with
the specific actions. To achieve this, we utilize an appropriately
designed prompting template, tailored for sound description tasks.
Integrating the specific action as a variable in the prompting strategy,
we guide the LLM in producing the final description. The utilized
prompt is presented in Table 2. The following quote, belonging to
the narration “add banana to jug” from above, gives an impression of
these generated descriptions:

“Adding a banana to a jug produces a distinctive ’slosh’
sound, followed by a slight *gurgling’ or ’splashing’ noise
as the fruit settles at the bottom of the container.”

3. METHODOLOGY

This section describes the employed features and how they are
extracted, the utilized zero-shot classification method, and the ex-
perimental setup of this study.

Zhttps://huggingface.co/meta-1lama/Llama-2-7b-chat-hf
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Prompt template

<s>[INST] <<SYS>> You are a highly skilled audio engineer with expertise
in accurately describing sounds from various actions in everyday life. I will
provide you with a “kitchen action” and your task is to give me a short,
precise and accurate description of the sound produced by the specific action
in the phrase. The question is, how does this action sound like in terms of
auditioning<< /SYS>> “{ACTION}”. [/INST] This action sounds like:
# 77 Response:

Audio features: We utilize audio spectrogram transformer (AST)
embeddings as audio features, obtained through a state-of-the-art AST
model® [24]. Prior to extracting the embeddings, the audio files are
resampled to 16 kHz. The process involves converting each audio
file into a 2D array representation, followed by temporal averaging
to derive a 1D vector with a dimensionality of 768.

Text embeddings: We also apply a pre-trained Transformer-based
language model to obtain representative embeddings for the LLAMA-2
text descriptions. For this purpose, we deploy SENTENCE-BERT
(SBERT), an adaptation of the BERT model [25], which was proposed
by Reimers and Gurevych [26] and is intended to reflect semantic
similarity in generated sentence and paragraph embeddings. As BERT
and SBERT showed no discernible difference in [15], we choose the
latter variant. This decision is grounded in the notion that extracting
the semantic meaning from our text descriptions is expected to be
more feasible than handling the onomatopoeia of bird sounds in the
case of [15]. We select the paraphrase-multilingual-mpnet-base-v2
model* from the available set of pre-trained SBERT models® and call
the provided pooling method to yield the embedding vector of size
768.

Since we extract the SBERT embeddings for every LLAMA-2
description from Section 2, every audio file has a corresponding text
embedding vector. For our ZSL approach, which will be described
in Section 3.1, we require one text embedding vector for each class.
Considering that a class is usually annotated to multiple audio files, we
take into account all of these files and their corresponding LLAMA-2
descriptions. Since we now possess the SBERT embeddings for each
of these descriptions, we can average them to obtain a singular text
embedding vector for each class. That is, for each of our three use
cases of classifying either the 1) verb, 2) noun, or 3) action, we create
a .csv file which contains the classes together with their corresponding
text embedding vector.

3.1. Model Training

The ZSL methodology implemented in this study is the one from
Gebhard et al. [15], building upon the foundation laid by previous
studies from Xie et al. [14] and Akata et al. [27]. They employ a
compatibility function on an acoustic-semantic projection to classify
the sound classes. This compatibility function is leveraged by a ranking
hinge loss in their training process, with the sound class exhibiting the
highest compatibility deemed correct. The aim is for the top-ranked
class embeddings to provide the most accurate description of the
audio sample.

Following the approaches of [15] and [14], we employ a single
linear layer equipped with as many neurons as the size of the

3https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-
transformer

“https://huggingface.co/sentence- transformers/paraphrase- multilingual-
mpnet-base-v2

Shttps://www.sbert.net
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Fig. 1: Overview of the zero-shot learning pipeline adapted from
[14], [15]. Audio samples are converted into acoustic embeddings
using an AST model and projected into a shared semantic space.
LLAMA-2-generated textual descriptions are encoded via SBERT to
obtain class embeddings. The classification is based on the highest
compatibility score between acoustic and class embeddings.

Compatibility
function

corresponding class embeddings to project the acoustic embeddings
onto the class embeddings. Furthermore, we apply the dot product
as our compatibility function. The schematic representation of our
pipeline is depicted in Fig. 1.

3.2. Experimental Setup

For our experiments, we employed a non-exhaustive cross-validation
approach, aiming to ensure an ample amount of data for training.
Consequently, we opted for an 80 — 10 — 10 split for each of the
five splits. We took explicit care to ensure that these three sets of a
split were mutually exclusive, meaning that no classes could appear
in the other two sets. In generating the five splits, we also ensured
that the development and test sets, in relation to the other four splits,
consistently contained different classes, thereby avoiding any overlap.

Our study assesses the efficacy of the ZSL approach outlined in Sec-
tion 3.1 when paired with the artificially generated meta-information
expounded in Section 2. The experiments are executed across the
five splits, and the average performance on the development/test sets
is reported. We furthermore opt for three different random seeds to
initialize our model and also take the mean of those.

We conduct training for a total of 30 epochs, utilizing an Adam
optimizer with a learning rate of .0001 and a batch size of 16. As
a compatibility function for our ranking loss, we employ the dot
product, as mentioned in Section 3.1. Subsequently, the model state
demonstrating optimal performance on the development set is selected
for evaluation on the test set. Before analyzing the results, we conduct
an exploratory data analysis on the text embeddings of the verb
and noun classes to gain insights into the underlying relationships.
Section 4 offers the results and the corresponding discussion.

4. RESULTS

The metrics used for the evaluation are a superset of the metrics
utilized in the EPIC-KITCHENS papers [20], [21]. We use unweighted
accuracy (UA), weighted accuracy (WA), and unweighted precision
(UP). UA is calculated by computing the recall for each class and then
averaging the results; the same is done for UP just with the precision.
WA is instead computed by taking the percentage of correctly classified
examples — and is thus agnostic to class imbalance. Therefore, WA
can be considered as a broad overview of model performance, while
UA and UP take class imbalances more into account.
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(a) Cosine similarities among the (b) Cosine similarities among the
verb embeddings. noun embeddings.

Fig. 2: The pairwise cosine similarity matrices for the SBERT
embeddings of the (a) verb and (b) noun classes depicted as heat maps.
Each cell represents the similarity between two class descriptions. The
noun embeddings exhibit clearer differentiation, suggesting stronger
separability in the text embedding space.

4.1. Exploratory data analysis

For our analysis we resort to cosine similarity visualized as heatmaps
and t-SNE pairwise distance visualized as scatter plot.

Cosine similarities: First, we conduct an analysis of pairwise
cosine similarities within the text embeddings of the verb and noun
classes. The action classes, being composed of verb and noun
classes, are not considered in this analysis, allowing us to focus
on the smaller components. Our aim is to gauge the strength of
the textual embeddings for both the verb and noun classes, to
determine which embeddings impart more distinct characteristics.
Specifically, we calculate the pairwise cosine similarity between the
(S)BERT embeddings of each category and every other category. This
computation results in a matrix of cosine similarities w.r.t.those
embeddings. Visualized in Fig. 2 as heatmaps, these matrices reveal
that noun embeddings manifest more distinct representations across
various classes. As a result, we anticipate the noun classification use
case to relatively outperform verb classification in terms of model
performance. Section 4.2 presents the results and discussions.

t-SNE distances: To further understand the relationship between
the text embeddings of different classes, we apply t-SNE (t-Distributed
Stochastic Neighbor Embedding) [28] to the textual embeddings for
both the verbs as well as the nouns. This way, we can visualize the
high-dimensional data in a lower-dimensional, 2D space®. Before
creating the plots, we annotate the verb and noun categories to the
groups specified in [21], to allow a better analysis. There are 13 verb
and 21 noun groups. t-SNE has a tendency to group similar data
points in the reduced-dimensional space. If embedding vectors from
different classes form distinct clusters, it suggests that the original
high-dimensional vectors carry information that allows for effective
class separation. Knowing this and looking at the plots depicted in
Fig. 3 we can, therefore, make several assumptions. For a clearer and
more detailed view, we recommend inspecting the interactive plots
provided in the supplementary material.

First, when looking at the t-SNE plot of the verb classes it is
hard to identify some groups. The only noticeable groups are the
verbs belonging to the “monitor” or the “split” group. Unfortunately,
even these groups exhibit verb classes that are quite distantly related.
However, there are also two small clusters in which the classes are

®Interactive t-SNE plots are attached as HTML-files in the supplementary
material for easier visualization.
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Table 3: The mean results over the development (Dev) and test (Test)
sets of the five splits from Section 3.2, also averaged over three
different model initialization seeds. The standard deviation (STD)
for the three seeds is also presented. The displayed metrics are WA,
UA, and UP). The UA-score poses the main evaluation metric. The
random chance UA for the categories would be .100, .034, and .003
for the verb, noun, and action class, respectively.

Dev Test
Set UA UP WA UA UP WA
VERB A79 144 261 165 136 .194
STD .005 .024 .024 .023 .040 .087
NOUN 065 .061 .081 .066 .066 .129
STD .008 .014 .010 .007 .012 .005
ACTION  .027 .031 056 .029 .031 .062
STD .001 .001 .002 .001 .001 .002

semantically connected to each other but belong to different groups.
The first one is on the top right corner of the plot. It consists of
four different groups comprising semantically connected verbs (knead,
roll, form, unroll, stretch, fold) in the context of food preparation or
cooking, especially in the process of manipulating or shaping food or
dough. The other small cluster can be identified at the bottom center
of the plot. The contained verbs (soak, pour, fill, wash, filter, etc.)
are related through the general theme of actions associated with the
handling and manipulation of liquids, particularly water.

Regarding the nouns, we can determine more distinct groups, even
though there is still a lot confusion in the center of the plot. Some
well recognizable groups are the nouns belonging to food categories,

such as “fruits and nuts”, “meat and substitute”, or “vegetables”. In

addition, other groups that are easily distinguishable are “appliances”

or “materials”. Even though some groups can sometimes be mixed
with other groups, such as “vegetables” and “spices and herbs and
sauces”, this makes sense, since these groups are highly related in
reality as well. In fact, most of the food categories are grouped close
to each other or are intertwined. There are also some groups which are
quite versatile in reality and have connections to many other categories,
which is reflected by them being hard to group and distinguish in the
plot, such as “utensils” or “rubbish”. In general, it seems as the food
categories are more on the left side of the plot whereas the furniture
and materials categories are more on the right side. However, there
are also some noun groups which are hard to distinguish from the
others, such as “utensils” or “furniture”. These analyses are another
indicator for a better model performance when regarding the noun
classification compared to the verb classification.

4.2. Experimental Results

The zero-shot classification (ZSC) results are depicted in Table 3
and show that each of the three uses cases 1) verb, 2) noun), and
3) action classification, mentioned in Section 1, surpassed random
chance UA. We have 10 verb, 29 noun, and 251 action test classes
in each of the five splits, leading to random UAs of .100, .034, and
.003, respectively. As expected in Section 4.1, the noun classification
could achieve better results w.r. t. relative model performance than the
verbs. This suggests that the better distinction for nouns, indicated by
the similarity heatmaps and t-SNE plots in Section 4.1, transferred to
improved zero-shot classification performance as well.

The ZSC results w.r.t.the action classes are the best out of the
three uses cases, relatively spoken, as they achieve a UA ten times
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(a) t-SNE similarities of the verb groups.

(b) t-SNE similarities of the noun groups.

Fig. 3: The t-SNE pairwise similarities for the SBERT embeddings
of the (a) verb and (b) noun groups. While noun groups exhibit
more distinct clusters (especially food-related categories), verb groups
appear less separable

higher than random guessing. It is also the most stable across the
three seeds. Our interpretation in this regard is based on the fact that
an action in this study consists of a verb and noun class. Accordingly,
a verb can theoretically be associated with all existing noun classes
and vice versa. This, in turn, means that while an action class is
unique, the verb or noun of the action can also appear in other actions.
For instance, the verb “add” from the action “(add, banana)” is also
part of the action “(add, apple)”. Therefore, we assume that even in
our zero-shot setting, where no training class is present in the test
set, the information about the verb or noun class is incorporated in
the text embedding of other actions and thus also trained on — i.e.,
there is some amount of information leakage between the train and
the test set. This furthermore suggests that the model recognizes this
partial knowledge of seen in unseen classes. This could explain the
substantial performance gap observed between the action and the verb
/ noun ZSC. However, coming back to the main goal of this work,
we achieve results better than chance for each of the three use cases,
confirming the feasibility of audio-based ZSAR.

5. CONCLUSION

In this study we investigated the feasibility audio-based ZSAR
on the EPIC-KITCHENS dataset. Textual descriptions of the action
sounds were artificially generated by an LLM and leveraged as meta
information. Our model surpassed random chance in all three use
cases 1) verb, 2) noun, and 3) action ZSC, achieving a mean UA
of .165, .066, .029 for the verb, noun, and action classes over the
five test sets and three seeds. The unweighted random chance of
guessing would be .100, .034, and .003 for the verb, noun, and
action class, respectively. The t-SNE visualizations based on the
textual embeddings revealed challenges in verb grouping, while noun
categories demonstrated clearer distinctions, especially in food-related
classes. In general, ZSC performed exceptionally well on the action
task, attaining ten times better performance than random chance —
indicating the model’s ability to recognize partial knowledge of seen
in unseen classes. These findings support the potential of audio-based
ZSAR and showcase promising results for future applications.

Future work can analyze a variety of other meta information, such
as extracting the textual embeddings directly from LLAMA-2 or
meta information from other modalities, such as image or video
embeddings. Since vision has typically been the main modality [10] it
would be interesting to apply it as additional information. The model
performance can further be improving by a more tight integration of
audio and large language models, as in the case of CLAP [16] or
Pengi [29].
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