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Abstract—We present a lightweight sound event detection (SED) system
focused on the discovery of whale calls in marine audio recordings. Our
proposed architecture uses a hybrid CNN-BiLSTM architecture with an
added residual bottleneck and depthwise convolutions to perform coherent
per-frame whale call event detection. We discover that, for this task, the
inclusion of spectral phase information among the input features notably
improves performance. We also evaluate the effectiveness of negative batch
undersampling and the inclusion of a focal loss term. As part of the 2025
BioDCASE challenge (Task 2), we compare our system to ResNet-18 and
YOLOVv11 models, as well as to our own baseline. All models are trained
exclusively on the same subset of the publically available ATBFL dataset.
Our proposed whale call event detector improves on the development
set performance of all models, including the top performing YOLOv11,
achieving an F1-score of 0.44.

Index Terms—Whale Call Detection, Computational Bioacoustics, Sound
Event Detection, Hybrid CNN-BiLSTM

1. INTRODUCTION

Passive acoustic monitoring (PAM) enables researchers to monitor
species in remote locations using non-invasive and relatively low-cost
methods. However, large volumes of data are generated, typically
with low signal-to-noise ratio (SNR) [1]. This makes manual review,
which requires trained experts, both time-consuming and expensive.

To address this, many automated algorithms have been developed
to detect and classify signals of interest. One focus has been the
detection and classification of blue and fin whale vocalisations. Blue
whales were driven nearly to extinction by 20th-century whaling, and
as a result are still considered endangered today. Together with fin
whales, they are considered vulnerable by the IUCN red list [2, 3].
Population densities for both species remain difficult to estimate with
confidence due to limited data availability [4].

In this paper, we focus on developing a lightweight whale call
activity detector based on a convolutional bidirectional long short-
term memory neural network (CNN-BiLSTM). Our work is inspired
by a voice activity detection (VAD) framework originally proposed for
speech [5]. We develop an optimised architecture and explore input
features that all contribute to substantial gains over our own baseline.
Among our key findings are that incorporating phase information
from the short time Fourier transform (STFT) strongly enhances
model performance, as does the inclusion of a residual bottleneck
and depthwise convolutions in the classifier architecture.

2. BACKGROUND

Sound event detection (SED) refers to the task of recognising a sound
or sequence of sounds in a long, continuous audio signal that may be
polluted with noise from interfering sources. In bioacoustic tasks, these
are typically the vocalisations of different species, or inter-species
call types. A sequence of sound events can also form an amalgamated
call or song, depending on the taxa of interest.

Automatic SED algorithms are typically supervised, and thus
require a labelled dataset describing the times at which the events of
interest occur in the audio signal. In bioacoustic call detection, these
annotations either identify the start and/or end of a call or sub-call,

or simply indicate the presence of a call within a longer audio signal
without specifying its exact location.

3. LITERATURE REVIEW

The use of bioacoustic data for detecting and classifying animal
vocalisations is well established, with early research focusing on
birds [6], bats [7] and insects [8], before attention turned to marine
animals [9]. Early approaches were based on the identification of re-
gions of high spectral energy within specific frequency bands [10, 11]
or the application of template matching techniques using prototypical
examples of species-specific calls or sub-calls [9, 12]. However, these
approaches tend to perform poorly in low SNR conditions and often
require call signatures that are invariant across varying exogenous
factors such as season or geographic region.

Dugan et al. [13] incorporated an artificial neural network (ANN)
into a suite of parallel detectors for classification of North Atlantic
right whale upcalls, while Pourhomayoun et al. [14] used image pro-
cessing techniques to identify regions of interest in the spectrograms
before applying the ANN.

More recently, deep neural networks have emerged as a powerful
approach in bioacoustics. Many of these employ convolutional neural
networks (CNNs), which take spectrograms of audio signals as input
and output labels indicating the presence of specific calls or species.
While conventional CNNs are widely used, convolutional recurrent
neural networks (CRNNs) which incorporate recurrent layers after the
convolutional layers to improve sequential modelling have also become
popular [15]. CNN-based models have shown strong performance
across different taxa, including birds [16] and marine mammals [17].

4. DATA

As part of the 2025 BioDCASE (Task 2) challenge, a dataset consisting
of strongly labelled blue- and fin-whale calls in the Antarctic region
of the Southern Ocean was released. The data was originally obtained
by the Antarctic Blue and Fin Whale Acoustic Trends Project (ATP)
as part of the International Whaling Commission’s Southern Ocean
Research Partnership (IWC-SORP).

The Acoustic Trends Blue Fin Library (ATBFL) consists of 11
site-year datasets recorded around the Antarctic, in the period 2005
to 2017. Each dataset was manually annotated, in both the time and
frequency domain, using data collection and annotation procedures
described in [4]. The challenge excludes three site-year datasets as a
develeopment set, while the remaining eight site-year datasets form
the training set, as set out in Table 1.

The ATBFL library includes annotations for seven different call
types, of which four are produced by blue whales (BmA, BmB, BmZ
and BmD) and three by fin whales (BpD, Bp20 and Bp20plus). During
the final evaluation, these seven calls are collapsed to a three class
problem, as set out by the organisers: bmabz, d, and bp.
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Table 1: Summary of the ATBFL site-year training and development
sets, indicating total recording duration for each set (hours) and how
much of the set has been annotated to contain whale calls (hours).
The test set annotations are not publically available.

Dataset Recording (h)  Annotated Whale Call (h)
ballenyisland2015 204 2.8
casey2014 194 14.2
elephantislands2013 187 16.1
elephantislands2014 216 28.1
greenwich2015 32 2.1
kerguelen2005 200 3.5
maudrise2014 83 5.7
rosssea2014 176 0.1
Total training set 1292 72.6
casey2017 185 6.1
kerguelen2014 200 11.4
kerguelen2015 200 7.4
Total development set 585 24.9
kerguelen2020 198 —
ddu2021 206 —
Total test set 404 —

5. EXPERIMENTAL STRUCTURE

Figure 1 illustrates the proposed whale call activity detection system.
First, the audio is segmented and preprocessed. Each segment is
provided to the model as input, with frame-level classification targets
determined from the boundary annotation file. Each model consists of
two parts: a feature extractor, that produces high-dimensional vectors
representative of the information contained in the audio segment; and
a classification model, tasked with producing a class membership
probability from feature vectors, obtained at each time instant.

5.1. Preprocessing

The training data consists of long continuous audio recordings,
typically the result of PAM. Due to computational constraints, these
were subdivided into shorter intervals, referred to as segments.

Each segment corresponds to the audio between the start and end
points of a human annotation, indicating the occurrence of a particular
call type. The segments were extended to include additional audio
before the start and at the end of the call, referred to as a collar. The
length of the collar was independently and randomly sampled from
a uniform distribution for both the start and end of each segment,
ensuring the call does not always appear in the centre of the segment.

An associated discrete classification target vector was constructed
from the annotations for each segment. In all experiments, one
model classification was computed every 20 ms. As there may be
overlapping annotations, the problem is treated as multi-class multi-
label. Consequently, a binary label was assigned for each respective
class at each discrete time instant, independent of the other classes.
When a human annotation boundary intersects completely with the
classification target vector at a time instant, the label is true, indicating
the presence of a particular call; otherwise, it remains false.

Additionally, segments without any vocalisation annotations were
included (Section 5.5). In such cases, all classification targets were
set to false, indicating that no vocalisation has occurred.

The variable-length segments were gathered into a batch of fixed
length during preprocessing. To achieve this, each segment and the
associated classification target was zero padded to the length of the
longest segment in the batch. This padding was removed from each
segment during loss calculation and model weight backpropagation.
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During evaluation, human annotations are not available. Therefore,
the continuous audio recordings were subdivided into regularly spaced
segments with a fixed length of 30s and a 2s overlap. The postulated
model classification probabilities were averaged over this overlap.

5.2. Feature extractor

The feature extraction model is provided with an audio segment as
obtained from the continuous audio recording (Section 5.1). In this
work, we only consider spectral and cepstral features.

First, a spectrogram representation was computed using a ~1s
frame length and 20 ms stride between frames. The long frame length
was motivated by the low fundamental frequency of the whale calls.
The frame stride was dictated by the desired classification resolution,
which was fixed at 20ms, to allow for direct comparison of loss
figures between experiments (Section 5.1). A Hanning window was
applied to each frame, without additional zero padding. A subsequent
256-point fast Fourier transform (FFT) resulted in 128 frequency bins
and the DC component. This power spectrum was compressed into
64 bins using a bank of triangular filters with a mel-scale spacing.
Finally, mel frequency cepstral coefficients (MFCCs) were obtained by
applying the discrete cosine transform (DCT) to the resulting binned
spectrum, and retaining the lower 20 coefficients.

After the features were obtained, mean spectral and cepstral
subtraction was performed, respectively. The mean was computed
independently for each frequency bin over the duration of the segment.

5.3. Baseline classification model

From the sequence of features obtained from the feature extractor,
the call posterior probabilities were computed using a classification
model with sigmoid activation functions at the outputs.

A bidirectional long short-term memory network (BiLSTM) model
was chosen and configured with between one and four hidden layers;
a hidden dimension size of 64, 128, or 256; and layer dropout of
between 20 % and 50 %. We found that the recurrent model was prone
to overfit, but that increased dropout reduced this risk. The posterior
call probabilities produced by these models aligned well with the
call segments. Informally, it was observed that both the start and end
boundaries produced by the recurrent models closely matched those
of the human annotators.

5.4. Whale vocalisation activity detector

We propose a whale call activity detection system inspired by the AVA-
VAD system first presented in [5]. We alter the AVA-VAD system by
introducing a residual bottleneck network and depthwise convolutions.
Furthermore, instead of using a mel spectrogram as input, we utilise
the spectrogram features directly and apply a linear convolutional
layer to act as a learnable filterbank. Figure 2 provides an overview
of the model architecture.

The spectrogram is computed using the configuration described in
Section 5.2. However, during experimentation, we found that including
phase information substantially improves detection performance. Thus,
instead of the power spectrum typically utilised as feature, we provide
the model with a three-dimensional representation of each complex
spectral component (z) as follows:

r
z =r(cosf +isin0); at,(cn) = |cosf
sin 0

where r is the spectral magnitude and 6 is the phase and ar:;c") is the
model input at time instant n and discrete frequency k.

The learnable filterbank consists of a linear convolutional layer.
The one-dimensional kernel is convolved with each vector of energies
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Fig. 1: Illustration depicting the whale call activity detection system overview and experimental setup.
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Fig. 2: Illustration of the Whale-VAD system proposed for whale call
activity detection.

constituting the spectrogram. This output is then passed through a
two layer CNN with max pooling, GELU activation and batch nor-
malisation. During model development several architectural variations
were considered. We found the addition of a residually connected
bottleneck network and depthwise convolutional network to improve
model performance, inspired by [18, 19, 20]. Each bottleneck network
consists of three convolutional layers, each with GELU activation,
compressing the features to a lower dimensional representation. This
representation is passed through three depthwise convolutional layers
with intermediate drop out. Table 2 provides a summary of the CNN
layer configuration employed by the final Whale-VAD model.

The residual output connection is reduced to 64 dimensions by
a linear layer. Padding is applied to each CNN layer to ensure the
number of output activations remains consistent with the number of
input frames. These latent features are then recurrently processed by
a BILSTM network. Finally, a linear layer with sigmoid activations
produces the model call probabilities.

We further investigate two input regularisation techniques: spectral
augmentation [21] and noise perturbation. For noise perturbation, we
inject Gaussian noise into the audio signal such that the resulting
SNR of the original signal to the perturbed signal is 10 dB.

5.5. Stochastic negative mini-batch undersampling

Analysis of the challenge dataset revealed that whale vocalisations are
rare, with a prevalence of approximately 5 %. Therefore, we propose
a technique where, during each epoch of finetuning, we sample a
different subset of negative segments (containing no calls) while
ensuring that there are approximately as many negative as positive
segments per mini-batch. This ratio was determined though early
informal experimentation After each training epoch, a new subset
of negative segments is sampled. The set of positive calls remains
consistent for each epoch during finetuning.

Table 2: Summary of Whale-VAD model layer configuration. The
kernel size (K), stride (S), number of input channels (Cj,) and
output channels (Coyt), are shown.

Layer K S Cin  Cout
Filterbank 7,1 @1 1 64
Feature extractor
- Conv2D 5,5 @G 64 128
- Max pool G, 1,1 - -
- Conv2D 3,3 @1 128 128
- Max pool G, (1,1 - -
Bottleneck network
- Conv2d 1,1 (1,1 128 64
- Conv2d 3,3 ((d,1) 64 64
- Conv2d a,1n (1,1 64 128
Depth. Conv2d 3,3 (€1, 1 128 128

5.6. Loss function

In our experiments, we considered weighted binary cross-entropy
(BCE) and focal loss as loss functions. We found that, when computing
the class weighting, rather than normalising by the duration of each
class, it was better to normalise by the number of segments belonging
to each class. When considering weighted BCE, we compute the
weighting w. for each class c as follows:

We = 5

PC
where N denotes the total number of negative (no-call) segments and
P. the number of positive (call) segments for class c.

In addition to weighted BCE, we evaluated the use of focal loss [22],
a modified cross-entropy designed to focus training on hard-to-classify
examples by reducing the contribution of easy examples. In our
experiments, we set the class imbalance term to 0.25 and focus term
to 2, following the recommendations in the original paper.

For all experiments, we rely on AdamW [23] as the numerical
optimiser. Unless otherwise stated, the optimiser was configured with
an initial learning rate of 1 x 1075, momentum terms of 0.9 and
0.999, and a weight decay factor of 0.001.

5.7. Multi-objective regression

The challenge dataset contained not only annotations in time, but also
in frequency (bounding box). The best-performing baseline YOLO
model, provided by the organisers, uses these box-level annotations.
In addition to our Whale-VAD system (Section 5.4), we therefore
evaluated a bounding box regression network. The network uses the
same latent features as the classification model, with the addition of
an adaptive pooling layer in order to reduce the time dimension. These
reduced latent features are presented to two independent multi-layer
perceptron (MLP) networks, each consisting of three layers, with
GELU activation and dropout after each hidden layer. Each of the
regression networks is applied to the 64 channels of the adaptive
pooling layer, which is the maximum number of anchors (bounding
boxes) the model can produce per input segment. The first network
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has a four dimensional output, corresponding to the bottom left and
top right corners of the bounding box. The second network produces a
confidence score, corresponding to the presence of the bounding box.
Figure 2 illustrates the additional bounding box regression model. The
regression model is trained using smoothed L1 loss [24]. Note that
the regression model forms part of a multi-objective training regime,
where the regression and classification loss are jointly optimised. The
regression outputs (bounding boxes) are not used for final model
evaluation. We postulated that training to jointly optimise both tasks
might lead to improved classification performance.

5.8. Postprocessing

After training, the best model was chosen based on the lowest BCE
development loss. The model outputs were smoothed using a median
filter with a 500 ms kernel. The classification thresholds 6. were
selected per class c¢ to maximise the development Fl-score. The
resulting per call threshold 6. was applied to the posterior call
probabilities computed by the model to obtain the binary classification
result. Finally, the 7-class classifier output is collapsed int the 3-class
variant posed by the challenge organisers.

The resulting binary labels were used to generate start and end
boundaries relative to the start of the recording. These annotations were
refined by merging overlapping calls of the same type, eliminating
duplicates, and joining calls separated by less than 500 ms. Finally,
calls longer than 30s or shorter than 500 ms were discarded.

6. RESULTS

Table 3 presents the top performing models proposed in this work and
the baselines provided by the organisers of the BioDCASE challenge.
All reported figures have been measured on the development set.

We performed a series of model development experiments that lead
to notable changes to the original CNN-BiLSTM architecture (AVA-
VAD). The addition of residual bottleneck layers and depthwise
convolutions, in particular, lead to substantial improvements in model
recall, at the loss of some precision. However, incorporating phase
information improved both recall and precision, and resulted in a 30 %
improvement in the Fl-score. The introduction of focal loss further
improved the recall, precision and Fl-score. Finally, training the
model on collapsed labels (three-class problem) yielded an additional
15.2 % improvement, resulting in an Fl-score of 0.440. The addition
of multi-task bounding box regression, as well as the inclusion of
input noise perturbation and spectral augmentations, were found to
be counterproductive. When considering the top performing baseline
model (YOLOv11), we see that our models exhibit superior recall,
while the baseline achieves greater precision.

Table 4 and Fig. 3 presents classification performance of our
best performing model for each call and each development set. We
observe consistent performance across both kerguelen sites, but
poor performance for casey2017. We also observe that our models
produce a high number of false positive (FP) classifications for the
minority call types (d and bp), which leads to poor precision. Manual
inspection revealed these FPs usually to be other marine vocalisations.

7. CONCLUSION

We have presented a CNN-BiLSTM architecture and shown it to be
viable for whale call event detection. Incorporating residual bottleneck
and depthwise convolutional layers lead to substantial improvements
in recall. While most prior research disregards the phase information
of the STFT, we have demonstrated that incorporating it for whale call
classification can improve model precision substantially, compared
to models trained solely on magnitude features. This finding opens
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Table 3: Development set results for the official ResNetl8 and
YOLOvV11 baselines, and our MFCC, AVA-VAD and Whale-VAD
models. Scores are averages across call types and validation and test
sets. Challenge results shown, where available.

Development Test

Experiment Recall Precision Fl-score  Recall Precision Fl-score
ResNet18 (Baseline) 0.36 0.29 0.32 — — —
YOLOv11 (Baseline) 0.32 0.67 043 0.331 0.480 0.392
MFCCs + BiLSTM 0.409 0.226 0.291 — — —
AVA-VAD [5] 0310  0.219 0.245 — — —
Whale-VAD 0424  0.207 0.278 — — —

+ Phase 0.461 0.316 0.375 — — —
L + Focal loss 0.484  0.348 0.405 0414  0.302 0.349
L + Three class 0.461 0.420 0.440 0.382  0.336 0.357

Casey2017 Kerguelen2014 Kerguelen2015
1.0
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Fig. 3: Separate precision-recall curves for the three-call problem on
each development set using the top-performing Whale-VAD model.

Table 4: Detailed development set results for the top-performing
Whale-VAD model.

Dataset Label TP FP FN Recall  Precision F1

casey2017 bmabz | 1984 1956 434 0.821 0.504 0.624
casey2017 d 179 5928 374 0.324 0.029 0.054
casey2017 bp 5 101 287 0.017 0.047 0.025
kerguelen2014 bmabz | 2739 1120 1558 | 0.637 0.710 0.672
kerguelen2014 d 229 2248 550 0.294 0.092 0.141
kerguelen2014 bp 1391 663 2355 | 0.371 0.677 0.480
kerguelen2015 bmabz | 2137 2676 611 0.778 0.444 0.565
kerguelen2015 d 366 2545 1158 | 0.240 0.126 0.165
kerguelen2015 bp 665 355 605 0.524 0.652 0.581

avenues for future research in bioacoustics to reconsider the role of
phase in time-frequency representations, particularly in the design of
feature extractors and model architectures that can more effectively
exploit both magnitude and phase components.

While the models we present exhibit performance improvements for
whale call event detection, much room for advancement remains. The
achieved recall and precision of 48.4 % and 42 %, respectively, means
that most human annotated calls are not identified by the model, and
among the calls identified, most are false positives.
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