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Abstract—Audible degradations introduced by wireless audio trans-
mission, such as clicks, dropouts, and glitches, can significantly
compromise the perceived quality of music. These artifacts are typically
caused by packet loss and often occur as short, perceptually salient
events. In this work, we approach their detection as a binary sound
event classification task based solely on perceptual analysis of the
audio signal. The study focuses on black-box scenarios, where only the
resulting audio is available for analysis, without any access to packet-
level metadata, network diagnostics, or internal system information.
We introduce BlueData, a dataset of music recordings labeled as clean
or degraded. Degradation labels were assigned through listening tests
under controlled Bluetooth transmission impairments, reflecting the
presence of perceptual artifacts. A range of classical machine learning
classifiers were trained using handcrafted acoustic features. Among
them, models such as XGBoost and CatBoost achieved AUC scores
close to 0.97, while K-Nearest Neighbors (KNN) reached the highest
recall for the degraded class, with 85.09%. These results demonstrate
the effectiveness of lightweight and interpretable models in identifying
transmission-induced perceptual degradations directly from the audio
signal and position BlueData as a relevant dataset for research in
perceptual quality monitoring under black-box conditions.

Index Terms—Black-box audio analysis, packet loss artifacts, percep-
tual audio degradation, sound event classification.

1. INTRODUCTION
Sound event classification (SEC) is a fundamental task in signal
processing, supporting applications such as environmental mon-
itoring, speech recognition, and music information retrieval [1],
[2]. Within the field of acoustic scenes and events, detection and
classification tasks focus on identifying and categorizing distinct
sound events in complex auditory environments [3], [4]. A sound
event is typically defined as a segment of audio associated with
a distinctive concept [5]. Traditional SEC tasks target structured
events such as speech utterances, alarms, or instrument sounds [6],
while recent studies have expanded this scope to include anomalous
or transient acoustic phenomena [7].

In wireless audio transmission, degradations such as packet
loss can introduce audible artifacts such as clicks, dropouts, and
distortions, which, although brief, are perceptually disruptive [8].
These artifacts degrade the quality of speech or music [9] and present
detection challenges due to their varying spectral and temporal
characteristics. Analyzing such perceptual degradations is especially
relevant in scenarios where only the final audio output is available.
In these cases, internal metadata about the transmission or packet
handling is inaccessible, and all quality judgments must be made
solely based on the resulting audio signal.

This challenge is significant in audio quality assurance (QA)
workflows for mobile and embedded systems, where human
testers often rely on subjective listening to identify degradations
[10]. Automating this perceptual evaluation process can reduce
subjectivity, improve scalability, and enable continuous monitoring
in real-world applications. By framing the detection of audible
artifacts as a sound event classification problem, we aim to provide
a signal-based, interpretable solution for analyzing audio integrity

in black-box conditions, where only the audio signal is available to
the end user.

To support this investigation, we introduce BlueData [11], a
dataset of music recordings labeled as clean or degraded, based
on perceptual annotation. The audio was recorded under controlled
Bluetooth transmission with induced packet loss, simulating realistic
degradation scenarios. BlueData is already publicly available to
support reproducibility and further research. We benchmark several
classical machine learning classifiers using handcrafted acoustic
features to assess their effectiveness in identifying perceptual
degradations as sound events.

2. RELATED WORK
SEC for anomaly detection has received considerable attention in
recent years, particularly in scenarios involving machinery faults,
urban environments, and industrial monitoring [12], [13], [14]. One
of the key challenges in this domain is the creation of representative
datasets, as capturing and annotating transient acoustic events
depends heavily on the context and the nature of the sound source.
In the audio domain, [15] proposed a dataset for the classification
of audio artifacts such as “clicks” and “glitches” within .mp3 files.
Their approach involves artificially inserting transient faults to
simulate digital degradation. Similarly, the MIMII dataset [16]
targets anomaly detection in industrial equipment sounds, including
valves, fans, and pumps, providing normal and faulty audio samples
for benchmarking.

For general-purpose sound event recognition, [17] developed an
open dataset covering a variety of real-world sounds. Although not
focused on music, it provides a useful benchmark for training and
evaluating SEC models. These datasets, however, are not designed
to capture perceptual audio degradations caused by transmission
errors, such as those observed in wireless music streaming. In terms
of methodology, ensemble learning and early-event detection have
been explored to improve the efficiency and accuracy of SEC [18],
[19]. However, most existing datasets either focus on synthetic noise
artifacts or on environmental sounds unrelated to music or perceptual
quality issues. Moreover, they do not account for the challenges of
detecting signal-level degradations in black-box scenarios, where
metadata such as transmission logs is unavailable. To support this
investigation, we present BlueData, a dataset focused on perceptual
artifacts caused by packet loss during wireless audio transmission.
These artifacts appear as short, localized acoustic events that are
difficult to characterize, especially in black-box scenarios. The
dataset provides a controlled setting for exploring signal-based
detection approaches and can serve as a benchmark for evaluating
audio classification systems under realistic transmission conditions.

3. DATASET FOR WIRELESS AUDIO TRANSMISSION
To investigate perceptual degradations in wireless audio, we devel-
oped BlueData, a dataset comprising two classes: clean and degraded.
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Fig. 1: Recording and preprocessing process: (1) Bluetooth audio playback through controlled attenuation; (2) acoustic recording; (3)
segmentation and labeling; (4) feature extraction.

The degraded class includes perceptually salient audio events such
as clicks, dropouts, and distortions caused by packet loss. These
artifact types are not labeled separately, as the focus is on detecting
the perceptual presence of degradation rather than categorizing its
specific form. Tracks were selected from the Free Music Archive
(FMA) [20], covering six musical genres: Rock, Blues, Pop, Hip
Hop, Classical, and Electronic, and totaling 10.76 hours of audio.
Genre balance in the train/test split was not controlled, as the dataset
is intended for perceptual degradation detection rather than genre
classification.

3.1. Recording Setup
The recording setup was designed to simulate realistic wireless
transmission conditions while maintaining control over induced
degradation. Audio playback was streamed via Bluetooth from a
mobile phone placed outside an acoustically isolated chamber to
a speaker inside. A microphone recorded the audio output from
the speaker. To simulate transmission impairments, a Vauxin digital
attenuator [21] was introduced in the signal path, allowing remote
control of signal strength and inducing controlled levels of packet
loss and attenuation. This process generated perceptual artifacts such
as dropouts, clicks, and glitches, which are common in unstable
Bluetooth connections. The general setup is illustrated in Figure 1.

This procedure enabled the creation of a dataset reflecting per-
ceptual events caused by wireless audio degradation. All audio was
stored in WAV format, mono, 44.1 kHz. Tracks were converted from
MP3 (typically 192–320 kbps) to WAV to ensure a standardized,
uncompressed format for feature extraction, avoiding further quality
degradation during preprocessing.

3.2. Segmentation and Annotation
The recordings were segmented into 2-second windows using
Librosa. This duration was selected to provide enough temporal
context for detecting packet loss artifacts while maintaining temporal
precision, consistent with standard SEC practices. While some
artifacts may occur over very short intervals, the 2-second window
captures their perceptual effect in context, which is crucial for human
listeners and perceptual labeling. The full dataset comprises 19,397
labeled segments. For the experiments reported in this work, we used
15,517 labeled segments: 11,760 clean and 3,757 degraded. This
natural class imbalance reflects the sporadic nature of transmission-
induced artifacts in real-world scenarios. As such, the evaluation
emphasizes recall and the F1-score for the degraded class.

Annotation was conducted manually through a two-pass auditory
inspection by certified QA testers. Initially, one tester labeled each

segment based on perceptual evaluation. A second tester then
reviewed all labels independently. Disagreements were resolved
through consensus to ensure labeling consistency. The dataset is
publicly available [11]. Full details on file structure and access
instructions are provided on the dataset page.

4. ACOUSTIC FEATURE EXTRACTION AND
CLASSIFICATION

To classify clean and perceptually degraded audio, we implemented
a traditional classification pipeline composed of segmentation,
handcrafted feature extraction, model selection, and evaluation via
cross-validation. Instead of relying on complex feature learning,
we adopted interpretable acoustic descriptors and lightweight
models, which are suitable for real-time or resource-constrained
environments.

4.1. Data Preprocessing
Each 2-second segment was converted to mono and standardized to
a sample rate of 22,050 Hz. We extracted 38 handcrafted features
using the Librosa library, including zero-crossing rate, tempo (via
beat tracking), 20 mel-frequency cepstral coefficients (MFCCs), 12
chroma features, spectral centroid, spectral bandwidth, and spectral
rolloff. These features were selected for their ability to capture both
spectral and temporal characteristics, such as harmonic structure,
energy distribution, and rhythmic content.

All features were averaged over time, producing fixed-length
38-dimensional vectors. The vectors were then normalized using z-
score standardization (zero mean and unit variance). No filtering or
data augmentation was applied, preserving the perceptual integrity
of the original segments.

4.2. Classification Models and Parameters
We trained eight classical supervised models, each representing a
distinct learning paradigm. All classifiers were implemented using
scikit-learn, XGBoost, or CatBoost libraries, and trained with their
respective default hyperparameters, unless otherwise required. This
decision ensures that comparisons focus on the feature space itself,
without introducing biases from hyperparameter tuning.

XGBoost was used with use_label_encoder=False
and eval_metric=’logloss’ to support binary classifica-
tion. CatBoost was configured with verbose=0. The Random
Forest classifier was trained with n_estimators=100 and
criterion=’gini’. SVM used a radial basis function kernel
with C=1.0 and gamma=’scale’. K-Nearest Neighbors was
configured with n_neighbors=5 and weights=’uniform’.

216



Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

The Decision Tree model used criterion=’gini’. Gaussian
Naive Bayes applied the standard var_smoothing=1e-9, and
Perceptron used max_iter=1000 and eta0=1.0. All hyperpa-
rameter values were confirmed using the .get_params() method
and are fully reproducible.

4.3. Training and Evaluation

We used 5-fold stratified cross-validation to evaluate model per-
formance. In each fold, 80% of the data was used for training
and 20% for validation, ensuring balanced class distribution across
splits. This procedure provides robust generalization estimates while
minimizing variance from data partitioning.

We computed standard classification metrics: accuracy, preci-
sion, recall, and F1-score. Accuracy measures overall correctness,
precision penalizes false positives, recall emphasizes sensitivity to
degradations, and F1-score balances both. We report all metrics, but
F1-score was used as the main criterion for comparing classifiers.
This evaluation pipeline allows consistent, interpretable comparisons
across models, highlighting their effectiveness in detecting audio
degradations from handcrafted acoustic features.

5. RESULTS

This section evaluates the detection of perceptual degradations
in black-box scenarios using handcrafted features, framing the
task as segment-level classification of short, salient audio events.
Table 1 presents the average performance of each classifier across
all folds. Among the evaluation metrics, both F1-score and recall
are considered primary indicators of performance. The F1-score
provides a balanced measure by combining precision and recall.
However, recall plays a particularly critical role in this context,
as it reflects the model’s ability to correctly identify degraded
audio segments. Given that the objective of this task is to detect
degradation events, achieving a high recall is essential to ensure
that as many degraded instances as possible are accurately detected.

The best overall results were achieved by the XGBoost and
CatBoost models, both with accuracy values close to 95%. In
terms of F1-score, XGBoost slightly outperformed all other models,
reaching 92.84%, closely followed by CatBoost (92.67%) and KNN
(92.45%). Notably, KNN achieved the highest recall among all
models, with 91.37%, making it particularly effective at detecting
degraded segments.

Table 1: Overall classification metrics (%) for each model (average
across folds).

Model Accuracy Precision Recall F1-score

XGBoost 94.99 95.22 90.94 92.84
CatBoost 94.90 95.47 90.51 92.67
RandomForest 93.35 95.44 86.59 90.02
KNN 94.60 93.68 91.37 92.45
SVM 94.27 94.67 89.51 91.73
DecisionTree 88.92 84.73 85.35 85.03
GaussianNB 87.36 83.05 82.03 82.51
Perceptron 85.07 79.73 81.35 80.33

To better understand the behavior of the models regarding
different audio conditions, Figure 2 shows the F1-score per class
(clean and degraded) for each classifier. Analyzing the F1 score by
class is essential because general metrics can obscure performance
discrepancies, especially when there is a class imbalance or when
one class is more challenging to detect. This is particularly important

in scenarios involving an audible artifact, where degraded audio
can significantly impact classification accuracy.

The results show that XGBoost and CatBoost maintain strong
performance in both conditions, with F1-scores greater than 96,
70% for the clean class and greater than 88% for the degraded class.
Furthermore, KNN also performs well, achieving 96.48% for clean
audio and 88.41% for degraded audio. These results highlight the
importance of evaluating each class individually to identify models
that are robust to audio degradations and capable of preserving
classification performance under adverse conditions.
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Fig. 2: Comparison of F1-scores for clean and degraded classes
across classification models.

On the other hand, traditional classifiers such as Decision Tree,
GaussianNB, and Perceptron exhibited a larger performance drop
in the degraded class, with F1-scores below 75%, highlighting
their reduced capability to generalize under noisy conditions.
In the context of this task, recall plays a critical role, as it
measures the model’s ability to correctly identify degraded audio
segments. Since the main objective is to detect subtle acoustic
events associated with perceptual degradation, a high recall for the
degraded class is important to minimize undetected faulty segments,
which may compromise system reliability. Precision, on the other
hand, measures how often the positive predictions made by the
model are correct. A high precision for the clean class indicates that
the model rarely misclassifies degraded segments as clean. In this
context, however, the main objective is to capture as many degraded
instances as possible. Thus, recall for the degraded class becomes
an important aspect to consider in the overall evaluation. Figure 3
presents the recall obtained for each class across all evaluated
models.

Figure 3 illustrates the recall scores for both clean and degraded
classes across all evaluated classifiers. The results highlight the
KNN model as the most effective in identifying degraded segments,
achieving the highest recall for the degraded class with 85.09%. This
demonstrates that KNN was the most sensitive model in detecting
audio artifacts caused by packet loss, which is essential for ensuring
system reliability.

Although boosting-based models such as XGBoost and CatBoost
also performed well in terms of overall metrics and recall, their
degraded-class recall was slightly lower than that of KNN, with
values of 83.10% and 81.98%, respectively. This suggests that while
boosting methods offer strong overall performance, KNN was the
most effective specifically in capturing degraded segments.

On the other hand, Gaussian Naive Bayes exhibited the lowest
recall for the degraded class, at 71.71%, indicating that a consider-
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Fig. 3: Comparison of recall scores for clean and degraded classes
across classification models, sorted by degraded class performance.

able number of degraded segments were not identified by the model.
Despite its acceptable recall for the clean class, the tendency of
the model to misclassify degraded segments limits its reliability in
practical scenarios where the detection of faulty audio is critical.
Figure 4 presents the confusion matrix of the KNN model, enabling
a detailed evaluation of its classification performance, particularly
regarding true positives and false negatives.
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Fig. 4: Confusion matrix of the KNN model averaged across cross-
validation folds.

The confusion matrix further confirms that KNN correctly
classified most degraded segments, with a relatively low number
of false negatives (i.e., degraded segments predicted as clean).
This behavior aligns with its high recall score and reinforces its
applicability in scenarios that require reliable detection of audio
degradation. Nevertheless, despite the overall strong performance,
the results indicate that certain degraded instances remain challeng-
ing to classify. Future work should investigate more specialized or
ensemble-based classifiers capable of improving discrimination in
borderline cases of degradation.

While the confusion matrix provides a detailed view of model
behavior in terms of classification errors, it offers limited insight
into model performance across varying thresholds. To address this,
we present in Figure 5 the ROC curves, which capture the trade-off
between true positive and false positive rates and offer a threshold-
independent view of classifier performance.

The ROC analysis confirms that traditional machine learning
models, when combined with handcrafted acoustic features, can
effectively distinguish between clean and degraded audio in wireless
transmission. The degraded class was defined as the positive class,
so the true positive rate reflects correctly identified degradations, and
the false positive rate corresponds to clean segments misclassified as
degraded. Boosting-based classifiers such as XGBoost and CatBoost
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Fig. 5: ROC curve for the evaluated classifiers.

achieved the highest AUC values (both ≈ 0.97), demonstrating
robust performance across decision thresholds, while KNN stood
out for its sensitivity to degraded segments. This is supported by the
recall results in Figure 3, where KNN achieved the highest recall
for the degraded class (85.09%) In contrast, simpler models like
DecisionTree and Perceptron showed more limited discrimination
capabilities. These results confirm the potential of lightweight
models in identifying perceptual degradations caused by packet
loss and underscore the reliability of BlueData as a benchmark
dataset for training and evaluating models in perceptual audio quality
assessment under black-box conditions.

6. CONCLUSION
This study presented a binary sound event detection framework
to identify perceptual audio degradations caused by packet loss in
wireless music transmission. The task is framed as a classification
problem applied to short audio segments, but the degradations
exhibit event-like characteristics, as they are short, sparse, and
perceptually salient. Our focus lies on black-box scenarios, where
no access to transmission metadata or internal system information
is possible, and only the resulting audio signal can be analyzed.

We introduced BlueData, a dataset designed to simulate realistic
degradation conditions, and benchmarked a set of classical machine
learning models trained on handcrafted acoustic features. Models
such as K-Nearest Neighbors, XGBoost, and CatBoost demonstrated
strong performance, achieving recall scores above 85% for the de-
graded class. These results confirm the viability of detecting packet
loss-induced audio events using traditional classifiers, even without
any access to system-level information. This work emphasizes the
value of interpretable, low-complexity approaches for sound event
detection in constrained environments. Future research will focus
on improving feature extraction, refining decision thresholds for
monitoring, and integrating the approach into automated wireless
audio testing, where minimizing false negatives is critical.
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