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Abstract—Reaching a semantic understanding of complex acoustic
scenes requires computational models to capture the temporal-spatial
sound source composition as well as individual sound events. This is
a great challenge for computational models due to the large variety of
everyday sound events and the extensive temporal-spectral overlap in
real-life acoustic scenes. In this work, we aim to evaluate the acoustic scene
understanding capabilities of two large audio-language models (LALMs).
As a challenging scenario, we use the USM dataset, which features
synthetic urban soundscapes with 2-6 overlapping sound sources per
mixture. Our main contribution is a novel three-layer evaluation protocol,
which includes four analysis tasks for low-level sound event understanding
(sound event tagging), mid-level understanding and reasoning (sound
polyphony estimation, sound source loudness ranking), as well as high-
level scene understanding (audio captioning). We apply standardized
metrics to assess the models’ performances for each task. The proposed
multi-layer protocol allows for a fine-grained analysis of model behavior
across soundscapes of various complexity levels. Our results indicate that
despite their remarkable controllability using textual instructions, the
ability of state-of-the-art LALMs to understand acoustic scenes is still
limited as the performance on individual analysis tasks degrades with
increasing sound polyphony.

Index Terms—audio captioning, large audio-language models, sound
event tagging, sound polyphony estimation, sound source loudness ranking

1. INTRODUCTION

Large audio language models (LALMs) are multi-modal neural
networks that learn joint representations of audio and text data.
This class of models represents an important milestone on the path
towards general audio intelligence, as they demonstrated state-of-the-
art performance in several machine listening tasks. To this day, a
major challenge for LALMs is understanding complex acoustic scenes
in everyday life scenarios. Such scenes are shaped not only by the
tonal diversity and overlap of sounds but also by the spatio-temporal
relationships among individual sound sources.

Previous studies on evaluating the reasoning skills of audio language
models have focused mainly on audio reasoning tasks, such as
compositional reasoning and attribute binding by comparing audio
captions. While compositional reasoning looks at how effectively a
model creates new meanings from existing concepts like understanding
the order of occurrence between multiple acoustic events, attribute
binding focuses on its precision in matching attributes to specific
acoustic events [1]. In the MMAU (Massive Multi-Task Audio
Understanding) benchmark [2], the following audio reasoning types
were tested: temporal reasoning involves inferring the timing and
duration of individual sound events, acoustic-source inference focuses
on identifying sound sources for each sound event, eco-acoustic
knowledge involves inferring the overall environmental setting from
ambient and sound event cues, ambient sound interpretation relates
to understanding background sounds from the entire soundscape
recording, event-based sound reasoning involves identifying causal
relationships between sound events, and sound-based event recognition
focuses on inferring high-level scenes or activities from multiple sound
events. While MMAU evaluates audio recognition and reasoning tasks

Table 1: Semantic Levels in Acoustic Scene Understanding

Semantic Task(s) Objective(s)
Level
Low Sound event tagging (T1) Identify audible sound sources
Medium Sound polyphony estima-  Count audible sound sources
tion (T2)
Ranking-by-loudness (T3)  Rank sound sources by loud-
ness
High Audio captioning (T4) Describe an acoustic scene as

a text caption

through multiple choice question answers, other benchmarks, such as
CMM (The Curse of Multi-Modalities) have examined hallucinations
in large multi-modal models to assess the gap between the factual
multi-modal input and the generated text [3]. Other LALM evaluation
studies use discriminative tasks to study sound object hallucinations
[4]. Although these benchmarks progress in general audio reasoning
evaluation, there is a current lack of studies on the abilities of LALMs
to understand complex acoustic scenes.

As our main contribution, we propose a novel three-level evaluation
protocol for acoustic scene understanding of LALMs as shown in Table
1. We focus on three semantic levels of acoustic scene understanding
through four tasks: sound event tagging (low-level), sound polyphony
estimation, and the ranking of sound sources by loudness (mid-level),
as well as audio captioning (high-level). We implement this protocol
using the example of the USM dataset [5], which includes five-second
long polyphonic soundscapes generated by systematically mixing
isolated sound recordings from the FSD50k dataset [6]. Due to its
tonal diversity and detailed annotations of audible sound sources, the
dataset allows us to examine the performance of LALMs in various
tasks to be examined depending on the sound polyphony, i.e., the
number of audible sound sources.

As a concrete use case, we select two top-performing LALMs from
the MMAU benchmark and analyze in detail their acoustic scene
understanding capabilities. We highlight the different strengths and
unexpected pitfalls, including how evaluation metrics fluctuate due to
hallucinated predictions. The correlation of the metrics computed for
different tasks reveals notable performance trends and inconsistencies
depending on the specific evaluation task. We believe these insights
can aid in developing more robust and reliable audio-language
understanding systems.

2. RELATED WORK

LALMs enhance language models with auditory capabilities. Several
benchmarking studies on LALMs highlighted their strengths and
limitations in audio perception. AIR-Bench [7] is the first hierarchical
benchmark for evaluating tasks across all audio types (speech, music,
sound). It includes a foundation benchmark with 19 audio tasks and
over 19k single-choice questions, and a chat benchmark with over
2k curated open-ended audio questions. The CompA [1] benchmarks
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test the compositional reasoning of LALMs. CompA-order assesses
comprehension of event sequences and CompA-attribute evaluates
attribute-binding of acoustic events.

Although supervised audio classification with pre-defined labels
is well-studied, using audio language models for tasks like counting
audio events with structured reasoning remains underexplored. Recent
benchmarks like MMAU [2] have introduced structured question-
answering tasks that require LALM models to reason with audio
beyond just classification. These tasks are pivotal for enhancing
machine listening algorithms to interpret sounds in context rather
than as isolated events.

Audio captioning generates natural language descriptions of acoustic
scenes [8]. It is considered a subtask in Audio Question Answering
within LALMs [9]. Recent methods use encoder-decoder models
trained on datasets like AudioCaps [10] and Clotho [11] for rich
annotations of diverse soundscapes. Similarly, weak label generation
[12] [13] transforms metadata or sound class labels into pseudo-
captions, aiding multi-modal pretraining and task transfer.

3. METHODOLOGY

3.1. Dataset

Throughout this paper, we use the Urban Sound Monitoring (USM)
dataset [14], which includes 24,000 five-second-long two-channel
soundscape recordings. The audio clips have been synthesized by
mixing isolated sound samples from the FSD50k dataset [6]. Although
the dataset does not provide strong labels, i. e., precise time stamps of
sound events, it includes weak labels for sound event tagging, focusing
on 26 sound classes relevant for urban soundscapes. These sound
classes come from six categories of sound: miscellaneous sounds,
climate sounds, animal sounds, human-made sounds, construction site
sounds, and vehicle sounds. The mixing process of the USM dataset
involves defining a random sound polyphony between two and six
sound sources, assigning each source a foreground or background role,
and assigning it a random sound level between -20 dB and -8 dB for the
background sounds and -6 dB to 0 dB for the foreground sounds. The
USM dataset’s synthetic nature provides precise loudness information
for audio events, useful for evaluation. However, it lacks temporal
grounding due to missing start and end timestamps, preventing event
ordering, which is a limitation. In this work, we use the USM
validation subset, which includes 2,000 audio clips.

3.2. Automatic Caption Generation

As a ground-truth for audio caption evaluation, we generate pseudo-
natural language captions for the USM dataset following the method
described in [13]. As a large language model (LLM), we use the
Qwen2.5:7B model [15] motivated by its strong instruction-following
and structured output capabilities. We access the model using the open
source local LLM serving and research platform Ollama [16]. The
model processes the existing metadata of the USM dataset, including
the list of foreground and background events and their dynamic level
and stereo positioning in the audio clip, provided as a JSON-like
input. We found that generated captions such as “The sharp sound of
sawing cuts through the air, while in the distance, the rhythmic hum
of a train adds a subtle background noise to the scene.” well reflect
the complex acoustic composition of the generated soundscapes. We
will publish the captions generated for the USM data set as a free
resource for future audio captioning research.'

Uhttps://github.com/diliprobbi/lalm-acoustic-scene-understanding
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3.3. Evaluation Protocol Task Design

As the first task, sound event tagging (SET) extracts a low-level
semantic description of an acoustic scene by identifying all audible
sound sources. The USM dataset consists of polyphony levels between
two and six sources and therefore allows to evaluate how well LALMs
can disentangle and correctly identify multiple concurrent sound
sources. A closely related task to SET is sound event detection
(SED), where the time stamps and durations of individual sound
events, emitted by different sound sources must be identified [17]. In
addition to a number of existing classical and deep learning-based SED
algorithms, methods involving language models have been proposed in
[18] [19], enabling more flexible handling of audio classes, including
open-vocabulary that predict temporal locations of each class.

For a mid-level semantic description, we incorporate the two
tasks sound polyphony estimation (SPE) and ranking-by-loudness
(RBL) to test the fundamental understanding of LALMs’ ability to
deduce relationships between different sound sources in a soundscape
recording. We adopt the SPE task from [20], where it is defined as
estimating the number of audible sound sources in a short five-second
long acoustic scene recording. The RBL task is used to measure the
ability of LALMs to differentiate between loudness levels of sound
events in complex soundscapes and thus to distinguish between salient
foreground sound events and quieter background noise. This aspect
of scene understanding is currently underexplored in LALM research.
We consider RBL to be a reasoning task, as it involves detecting,
comparing and ordering sound events based on perceptual attributes,
demonstrating higher cognitive and inferential abilities beyond basic
classification or detection.

Finally, the audio captioning (AP) task offers a high-level per-
spective, as it involves creating a textual description of soundscapes,
summarizing all sound sources, events, and their complex tonal and
dynamic relationships.

3.4. Evaluated Large Audio Language Models (LALMs)

We select two state-of-the-art LALMs from the MMAU benchmark
leaderboard to evaluate their acoustic scene understanding capabilities
based on the proposed evaluation protocol.

Qwen2.5-Omni-7B [21] is an instruction-tuned multi-modal model
capable of processing text, vision, and audio inputs. It is trained with
an architecture optimized for general-purpose multi-modal reasoning
tasks. The model incorporates a novel position embedding method
entitled Time-aligned multi-modal RoPE (TMROoPE) to synchronize
the timestamps of video and audio inputs. We just use the model for
audio input.

Audio Flamingo 2 [22] is a cross-modal architecture that uses
audio as a primary modality. The model combines a pre-trained audio
encoder with a frozen large language model via cross-attention to
enable high-quality audio captioning and multi-turn dialogue grounded
in sound. Audio Flamingo 2 achieved strong performance on audio-
language tasks including AudioCaps and Clotho and is capable of
processing audio clips from 30 seconds up to 5 minutes duration.
Audio Flamingo 2 was trained on the AudioSkills dataset [22], which
is a high-quality skill-specific synthetic dataset with approximately
4.2 million question-answer pairs, designed to enhance expert-level
reasoning in LALMs. The targeted skills include temporal reasoning,
attribute identification, counting the occurrences of specific sounds,
contextual sound event reasoning, contextual speech event reasoning,
information extraction, and general reasoning.

Both models prioritize complex, reasoning-intensive questions and
achieved top-tier performance on the MMAU benchmark, making
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Task Example Prompt

Sound Event Tagging
(T1)

“Analyze the audio and identify all the audio
events by class. Provide just the class names
corresponding to each event. Choose from
the following options: {string of all classes}.
Just give the class names as comma separated
values string, e.g., "classl’, ’class2’. Do not
include any other text or explanations.”

Sound Polyphony Esti-
mation (T2)

“Analyze how many unique sound events are
present in the audio? Just give the number
of events in number format. eg. 1, 2, 3”

Sorting-by-loudness
(T3)

“Analyze the audio and return the classes
in the order of loudest to softest sounds:
{classes}. Just give the class names from
loudest to softest. Do not include any other
text.”

Audio Captioning (T4)  “Describe the audio as a caption in English
in detail, including all the sound events

present.”

Table 2: Example prompts used for the four tasks towards acoustic
scene understanding.

them suitable for the scenario of complex polyphonic soundscapes
targeted in our work.

4. EVALUATION AND RESULTS
4.1. Metrics

In the four evaluation tasks T1 to T4, we use mainly well-established
evaluation metrics. Table 2 lists example prompts we used for each
task.

For the SET task (T1), we compute precision, recall and F1 score as
they are standard metrics in multi-label tagging tasks. More specifically,
we compute the sample-based F1 score for different subsets of the test
set files, for instance, grouped by polyphony level. Therefore, we do
not use micro-level or macro-level averaging. After analyzing an audio
clip for SET, a LALM outputs a comma-separated list of predicted
sound classes, we map these to the 26 sound classes of the USM
dataset to create a multi-hot vector. We prompt the model with the
entire set of 26 sound class labels of the USM dataset and evaluate its
instruction-following ability for the SET task. This approach stands
in contrast to other evaluation studies such as [23], where sound
classification was devised as multiple binary classification tasks to
evaluate the presence or absence of specific sounds.

In the SPE task (T2), we compute the mean absolute error (MAE)
between the true and estimated number of sound sources.

In the RBL task (T3), we apply the Normalized Discounted
Cumulative Gain (nDCG) metric [24] with linear gain, which is
a widely used metric for evaluating the quality of ranking systems.
Due to the positional sensitivity of this metric, systems that accurately
rank the most relevant item in the list are rewarded more. In our case,
relevance refers to the loudness of sound sources. We sort the sound
sources in the descending order from the loudest to the softest sounds
in an audio clip. The highest relevance score rel; is assigned to the
loudest sound event and the lowest relevance is given to the softest
sound event. During the evaluation in task T3, we first prompt the
model with the list of ground truth sound sources in a given clip and
query the LALM to rank them from loudest to softest. We compute
the nDCG metric using the following steps:

Given an audio clip with 4 sound sources, the relevance scores are
set to rel := {4, 3,2, 1} to emphasize the importance of louder sounds
at the first rank positions. Then, we compute the DCG (Discount
Cumulative Gain), IDCG (Ideal Discount Cumulative Gain) for perfect

Sound

Sound Event Polyphony Ranking By Audio
Tagging Estimation Loudness Captioning
Precision  Recall Fl MAE nDCG FENSE
Model Pg
o ¢ i t i ' t T
2 0.114 0.440  0.140 1.748 0.510 0.372
3 0.180 0.452  0.190 1.577 0.508 0.379
Audio 4 0.189 0.418  0.197 2.032 0.457 0.384
Flamingo 2 5 0.220 0.424  0.220 2.503 0.439 0.389
6 0.242 0.448  0.247 3.125 0.428 0.391
Mean 0.191 0.433  0.200 2.131 0.467 0.384
2 0.446 0.298  0.346 0.431 0.551 0.504
3 0.506 0.239  0.314 0.660 0.550 0.470
Qwen2.5 4 0.507 0.196  0.274 1.335 0.498 0.458
Omni 5 0.536 0.162  0.239 2.260 0.486 0.464
6 0.525 0.148  0.225 3.142 0.449 0.445
Mean 0.509 0.204  0.278 1.500 0.507 0.466

Table 3: Performance metrics of Audio Flamingo 2 and Qwen 2.5
Omni across Polyphony Level (Pg).

ranking order of events and WDCG (Worst Discount Cumulative Gain)
for reversed ranking order of events as:

k
rel

k
i relom
DCG@k = — , IDCG@k =

; log, (i + 1)’ ;lo

go(i 4+ 1)’

g (i + 1)

where rel;, rely;), and rel,; are relevance scores at position
¢ in the actual, ideal (descending), and worst-case (ascending)
rankings, respectively. Finally, we apply min-max normalization while
calculating nDCG to ensure that worst ranking scores are scaled down
to zero across different lengths of polyphony levels as:

DCG@k — WDCG @k
DCG@k; =
nDCG@k; = 1heG@k — WDCG@k

where k is the predicted ranked list length for the j-th audio sample
(j =1,...,2000). This approach scales the nDCG metric to a range
between 0 and 1, similar to the approach in [25].

Finally, we use the FENSE (Fluency ENhanced Sentence-bert
Evaluation) metric [26] for the AC task (T4). This metric is commonly
used in audio captioning as it assesses the faithfulness of a generated
caption to the audio content and its linguistic quality by leveraging
pretrained audio-text and language models.

k

lT i

WDCG@k =) et ()
i=1

4.2. Results

Table 3 shows the different evaluation metrics computed across
test files of different polyphony levels for the two LALMs under
comparison. The results show contrasting performance in polyphonic
SET, with Qwen2.5 Omni’s F1 Score declining as polyphonic
complexity increases. Audio Flamingo 2 (AF2) shows higher recall at
each polyphony level but at a lower overall precision (0.191) compared
to Qwen2.5 Omni (0.509), indicating AF2 recognizes more audio
events but is more prone to false positives, potentially hallucinating
audio events not present.

In the SPE task, Qwen2.5 Omni shows superior performance with
a mean MAE of 1.500, compared to Audio Flamingo 2’s 2.131,
suggesting that it more accurately estimates audio sources across
all Pg levels. Qwen2.5 Omni consistently achieves lower errors,
especially at lower levels of Pg (e.g. 0.431 at Pg = 2 compared to
1.748 for Audio Flamingo 2), highlighting its effectiveness in simpler
cases. As the number of simultaneous sound sources increases in an
audio scene, LALMs show higher MAE, indicating the challenge of
counting sources in complex, overlapping soundscapes.
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Fig. 1: Pairwise scatter plots for Qwen 2.5 Omni, illustrating the
pearson correlation between the computed metrics (Fi, Absolute
Error) and Polyphony level (Pg) both with p-value < 0.001.

A correlation analysis between Pg and F'1 in Figures 1 and 2
shows a positive correlation for Absolute Error, as observed its value
increases with higher polyphony levels. This underscores the difficulty
in source estimation task. The F1 score in Fig. 1 exhibits a negative
correlation as polyphony increases, while Table 3 show improving
precision indicate lower number of hallucinations with increasing
polyphony. Audio Flamingo 2 as in Fig. 2 shows a slightly positive
correlation in F1 score for audio class predictions with lower values
of precision that indicate greater hallucinations.

The nDCG correlation scatter plots show very weak negative

correlation values r = -0.09 (AF2) and r = -0.08 (Qwen 2.5 Omni).

While FENSE score correlation values are r = 0.03 (AF2) and r = -0.09
(Qwen 2.5 Omni). The plots are omitted here, and further investigation
is needed to ascertain if these metrics are statistically independent
of increasing polyphony. Table 3 indicates no clear relationship in
loudness ranking in complex polyphonic scenes, with nDCG values

not effectively distinguishing event loudness between audio events.

FENSE scores weakly correlate with polyphony, suggesting FENSE
may emphasize sentence coherence and semantic similarity than on
audio event accuracy in captions.

5. CONCLUSION

This study evaluates LALM for understanding the acoustic scene
based on the USM dataset, which focuses on urban soundscapes
with overlapping sound sources. We proposed a novel three-stage
evaluation protocol which includes four machine listening tasks

selected to measure scene understanding on different semantic levels.

Despite achieving high scores on the MMAU benchmark, the two
LALMs evaluated need further improvements in training procedures to
understand complex acoustic scenes. Future direction aims to enhance
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Fig. 2: Pairwise scatter plots for Audio Flamingo 2, illustrating the
Pearson correlation between the computed metrics (F1, Absolute
Error) and Polyphony Level (Pg) both with p-value < 0.001.

evaluation procedures through metrics that account for hallucinations
and omissions.

6. LIMITATIONS

Synthetic datasets like USM replicate natural environmental sound-
scapes and alleviate the laborious task of labeling datasets with
loudness values for various sound events, even if such datasets
were available. Moreover, they offer precise manipulation of the
number, timing and loudness of overlapping events. However, the
dataset employs random mixing and stereo placement, which do not
adequately represent the spatial and temporal dynamics of real-world
environments, such as moving sources or gradual loudness changes.
Additionally, USM’s definition of polyphony is more lenient, as it
counts the number of active sounds within a short segment instead
of the exact count of simultaneous overlapping events, which may
not faithfully depict the intricacies of natural polyphonic soundscapes.
Models struggle to caption or classify audio classes with very
similar acoustic characteristics like car, bus, motorcycle accurately,
generalizing them at times to a common sound class as “engine”.

The technique of generating captions for weakly labeled sound-
scapes, with tags and metadata like the loudness of each audio event
and their spatial positioning (foreground versus background), does not
ensure that the resulting captions will accurately reflect the soundscape.
There are still cases of misinterpreted audio event attributes in the
reference captions.
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