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Abstract—Acoustic Scene Classification (ASC) is a fundamental task in
audio signal processing, aiming to classify the location of an environmental
audio recording. Recent advances focus on improving ASC model efficiency,
particularly in resource-constrained environments. Convolutional neural
networks (CNNs) remain the dominant approach due to their high
performance, with recent focus on 1D kernels, such as in the Time-
Frequency Separate Network (TF-SepNet), for reducing model complexity
and computational cost. However, TF-SepNet performs feature extraction
using a fixed receptive field in both time and frequency dimensions,
which restricts its ability to capture multiscale contextual patterns. In
this study, we investigate the integration of multiscale feature extraction
modules into TF-SepNet, with the aim of improving model efficiency
by balancing accuracy and complexity. We propose three architectures,
TFSepDCD-Net, TFSepSPP-Net, and TFSepASPP-Net, each with two
architectural variants based on TF-SepNet: one replaces its max pooling
layers, and the other replaces its final convolutional layer. Each architecture
has three configurations corresponding to different model sizes—small,
medium, and large—to explore the tradeoff between accuracy and model
complexity. Our experiments show that incorporating multiscale modules
allows smaller models to achieve comparable or even superior accuracy
to larger baselines. These findings highlight the potential of multiscale
representations for improving the efficiency of CNN-based ASC systems,
especially in 1D separate architectures like TF-SepNet.

Index Terms—Acoustic scene classification, time-frequency separate
network, 1D kernels, multiscale feature extraction

1. INTRODUCTION

Acoustic scene classification (ASC) [1] is a fundamental task in audio
signal processing, where the goal is to classify audio recordings into
specific predefined environmental sound scenes such as shopping
mall, metro, or office. Real-world ASC applications demand efficient
operation under limited resources [2]. However, high-performing ASC
models are often complex and resource-intensive. Thus, achieving a
balance between accuracy and efficiency remains a key challenge [3].

Most ASC models build on convolutional neural networks (CNNs)
[4]. Researchers have explored CNNs to improve both accuracy and
efficiency in ASC tasks [2]. Moreover, the focus in recent studies
has changed from traditional two-dimensional (2D) convolutional
kernels to one-dimensional (1D) kernels to reduce computational
complexity [5]. Unlike 2D kernels that process both time and frequency
dimensions simultaneously, 1D kernels separate these processes,
allowing for a significant reduction in the overall number of parameters
[6]. This approach not only preserves the essential features of the
audio signal, but also enhances the ability of the model to capture
relevant time-frequency patterns by expanding the effective receptive
field (ERF), which refers to the range of input regions that influence
a model’s prediction [7]. The use of 1D kernels in architectures
like Time-Frequency Separate Network (TF-SepNet) [5] represents
an important advancement in balancing efficiency and accuracy in
ASC tasks. The design of TF-SepNet is based on the BC-ResNet
architecture [8], which integrates depthwise separable convolutions [7]
and broadcasting operations [8] to further reduce model complexity.
Using separate convolutional paths for time and frequency features,
the network effectively expands the effective ERF with fewer layers.

Although TF-SepNet successfully balances the ERF and model
complexity, its fixed scale of feature extraction may limit its ability
to fully capture the acoustic variations present in complex acoustic
environments. A promising strategy to overcome this limitation is
to incorporate multiscale representations, which enable models to
analyze features at different resolutions, ensuring that both details
and broader contextual patterns are effectively captured [9], [10]. One
such technique is Dilation Convolution Downsampling (DCD), which
utilizes dilated convolutions with exponentially increasing dilation
rates and varying kernel sizes to downsample time series data at
multiple scales [11]. This enables the network to extract complex
temporal features by capturing both short-term local dependencies
as well as long-term global dependencies [12]. Another technique is
Spatial Pyramid Pooling (SPP) [13], which has been used in computer
vision to pool features at multiple spatial scales. In the context of
ASC, SPP has demonstrated its potential to improve classification
accuracy by aggregating local features of convolutional layers on
different scales [14]. Building on the concept of SPP, Atrous Spatial
Pyramid Pooling (ASPP) [15] enhances multiscale feature extraction
by integrating atrous (dilated) convolutions into the pyramid pooling
framework [16].

As the main contribution of this paper, we propose three novel archi-
tectures named TFSepDCD-Net, TFSepSPP-Net, and TFSepASPP-
Net, which integrate DCD, SPP, and ASPP into different components
of TF-SepNet, respectively. Each architecture has two variants and
three sub-models with channel widths of 60, 40, and 20, using
the original TF-SepNet [5] [17] as the baseline. Our goal is to
explore how multiscale representations influence the balance between
model complexity and performance, aiming to find configurations
that reduce parameters and computation while maintaining accuracy.
We hypothesize that introducing lightweight multiscale modules into
TF-SepNet enables a better trade-off between classification accuracy
and model complexity.

2. METHODOLOGY
2.1. Time-Frequency Separate Network (TF-SepNet)

TF-SepNet [5] is a CNN architecture specifically designed for ASC
tasks, aiming to achieve a balance between model complexity and
classification accuracy. The core of TF-SepNet lies in the TF-SepConvs
module, as shown in Fig.2 of [5]. This module is specifically designed
to independently process the time and frequency dimensions of input
features using 1D convolutional kernels. The TF-SepConv module
begins with a transition layer, implemented as a 1 x 1 convolution,
which adjusts the number of channels. Following this, a shuffle unit is
applied to facilitate the mixing of information across channels before
splitting the feature maps into two separate paths: the frequency path
and the temporal path. In the frequency path, a depthwise convolution
with a kernel size of 3 x 1 is applied, followed by frequency average
pooling. Similarly, in the temporal path, a depthwise convolution
with a kernel size of 1 x 3 is followed by temporal average pooling.
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Output Shape Architecture k| s |p
1,ET Input - - -

C/2, F2, T2 ConvBnRelu 5 2 2
2C, F/4, T/4 ConvBnRelu 1 1 0
C, F/4, T/4 TF-SepConvs x2 - - -
C, F/8, T/8 Max Pooling 21210
1.5C, F/8, T/8 TF-SepConvs x2 | - - -
1.5C, F/16, T/16 | Max Pooling 21210
2C, F/16, T/16 TF-SepConvs x2 -
2.5C, F/16, T/16 | TF-SepConvs x3 | - - -
10, F/16, T/16 Conv 1 110
10, 1, 1 Average Pooling - -l -

Table 1: TF-SepNet network architecture details showing the output shape,
layers, and their respective kernel size (k), stride (s), and padding (p).

Both paths then employ a pointwise convolution to further process
the features. The output features from the frequency path and the
temporal path are then broadcasted back to their original dimensions
and concatenated along the channel axis to form the final output.
The architecture of TF-SepNet, as outlined in Table 1, begins with
two initial 3 X 3 convolution layers with a stride of 2, which perform
early downsampling of the input spectrogram. This is followed by a
series of nine TF-SepConv modules interspersed with two 2 X 2 max-
pooling layers that further reduce spatial dimensions while capturing
higher-level features. In the final stage, a 1 X 1 convolutional layer
is used, followed by global average pooling to generate multiclass
probabilities as the model’s output. An adaptive residual normalization
technique is integrated after the initial downsampling block and
after each TF-SepConvs block to ensure stability and to improve
convergence during training [17]. A key parameter of the TF-SepNet
model is its channel width, denoted by the hyperparameter 7, which
allows to adjust the model complexity. By tuning 7, TF-SepNet can
be scaled to meet different computational requirements, from resource-
limited environments to high-performance computing systems.

2.2. Dilation Convolution Downsampling (DCD)

DCD is a technique that captures both short-term and long-term
dependencies in time series data by applying dilated convolutions with
exponentially increasing dilation rates [11]. This approach expands the
receptive field without increasing the number of parameters, allowing
the model to efficiently extract hierarchical temporal features across
different resolutions. Moreover, DCD has been successfully applied in
various tasks. For example, in [12], the authors employ a Multi-Scale
Dilated Convolution Network (MSDCN) with dilation rates of 1, 2,
and 4, and kernel sizes of 2, 4, and 6 to downsample and process
time series data.

2.3. Spatial Pyramid Pooling (SPP)

SPP is a multiscale feature aggregation technique that addresses the
limitation of fixed-size inputs in CNNs by introducing an SPP layer.
For instance, as illustrated in Fig. 1, the SPP layer is inserted between
the final convolutional layer and the fully connected layers. It pools
local features over multiple spatial bins and captures hierarchical
spatial information at different resolutions. Each spatial bin performs
max pooling over regions of the convolutional feature maps, and the
pooled outputs are flattened and concatenated. When the last conv
layer outputs 256 feature channels, pooling over 4 X 4, 2 X 2, and
1 x 1 bins yields 16, 4, and 1 pooled values per channel, resulting
in feature maps of shape 16 x 256, 4 x 256, and 256. These are
concatenated into a single fixed-length vector that feeds into the fully
connected layers. This design enables the network to handle inputs
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Fig. 1: A CNN structure with an SPP layer, as cited in [18].

of arbitrary sizes while preserving multiscale spatial structure in the
feature representation [18].

2.4. Atrous Spatial Pyramid Pooling (ASPP)

ASPP [15] is a powerful technique designed to capture multiscale
contextual information [10] by applying parallel atrous (dilated)
convolutions with varying dilation rates. The ASPP module consists
of multiple convolutional layers, typically with a kernel size of 3 x 3,
and different dilation rates commonly set to 6, 12, 18, and 24. These
dilation rates allow the module to capture features at different scales,
effectively covering various receptive fields. In addition to these
dilated convolutions, ASPP also includes a global pooling branch,
which provides global contextual information by pooling the entire
feature map into a single value per channel. The outputs from the
dilated convolutions and a global pooling branch are then concatenated
along the channel dimension, resulting in a multiscale feature map.
This map is passed through a 1 x 1 convolution to reduce the number
of channels, integrating the multiscale information into a compact
representation.

2.5. The Proposed Architectures

As the main contribution of this paper, we propose three novel
architectures—TFSepDCD-Net, TFSepSPP-Net, and TFSepASPP-
Net—which integrate DCD, SPP, and ASPP into different components
of TF-SepNet. For each architecture, we develop two variants: (1) the
two max pooling layers originally used for intermediate downsampling
in TF-SepNet are replaced with the respective modules (MP variants);
(2) the final convolutional layer originally used in TF-SepNet is
replaced with the respective module (LP variants).

2.5.1. TFSepDCD-Net: In the first architecture, which we refer
to as TFSepDCD-MP, the two max pooling layers originally used
for intermediate downsampling in TF-SepNet are replaced with DCD
modules. Each DCD module begins with a 3 x 3 convolutional
layer with stride 2 to perform spatial downsampling, reducing the
input resolution from C x F'/8 x T'/8 to C x F/16 x T//16. The
downsampled feature map is then processed through multiple parallel
dilated convolutions with increasing dilation rates to capture contextual
information at different temporal and spectral resolutions. Each dilated
convolution uses a 3 x 3 kernel with the dilation rates d € {1, 2,3}
and produces 8-channel outputs. The operation of the DCD module
can be defined as:

vaea =y Da(@), M
de{1,2,3}

where 7’ is the downsampled input feature map, Dy(+) denotes a
3 x 3 convolution with dilation d. These outputs are concatenated
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and passed through a final 1 X 1 convolution to maintain spatial
consistency and reduce the feature map to the desired number of
channels.

In the second architecture, TFSepDCD-CL, the final convolutional
layer before global average pooling in TF-SepNet is replaced with
a DCD module. The multiscale dilated structure mirrors that of
TFSepDCD-MP, using dilation rates of 1, 2, and 3. However, unlike
TFSepDCD-MP, this module does not perform downsampling. Instead,
the input feature map is first passed through a 1 x 1 convolution to
reduce the number of channels from 2.5 - C to C, after which the
DCD branches are applied.

2.5.2. TFSepSPP-Net: In the first architecture, which we refer
to as TFSepSPP-MP, the two max pooling layers originally used
for intermediate downsampling in TF-SepNet are replaced with SPP
modules. As illustrated in Figure 2, the process begins by applying a
convolutional layer with a stride of 2 to downsample the input feature
map to the same resolution it would have after max pooling. The
downsampled feature map is then processed through the SPP module,
which captures multiscale information using three Adaptive Average
Pooling (AAP) branches with output sizes of 1 X 1, 2 x 2, and 4 x 4,
along with a global pooling branch. Each branch includes a 1 x 1
convolution to process the pooled feature into a lower-dimensional
representation, which is then upsampled to the original resolution.
The resulting multiscale features are concatenated and passed through
a final 1 X 1 convolution to preserve the spatial size and match the
desired number of channels. The overall operation is defined as:

vepp = D Wi U (Pu(z))) + W, - G(z), 2)

ke{1,2,4}

where =’ denotes the downsampled feature map, P (-) represents
adaptive average pooling to a k x k grid, U(-) denotes bilinear
upsampling, W}, and Wy are 1 X 1 convolution, and G(x’) is the
global pooling output.

Global Pooling

— Conv (1,1)

Conv (1,1)

SPP

’

Conv X

— (3,3)s=2 Concat —> Canwy -y

1,1

X Vspp

Fig. 2: Visualization of the application of the SPP module in the TFSepSPP-
MP.

In the second architecture, TESepSPP-CL, the final convolutional
layer before global average pooling in TF-SepNet is replaced with an
SPP module. As in the TFSepSPP-MP, the module includes three scale
branches and a global pooling path. However, there is a difference:
the input feature map is initially passed through a 1 x 1 convolution
to reduce the number of channels from 2.5C to C, enabling more
efficient multiscale processing.

2.5.3. TFSepASPP-Net: In the first architecture, which we refer to
as TESepASPP-MP, the two max pooling layers originally used for
intermediate downsampling in TF-SepNet are replaced with ASPP
modules. As illustrated in Figure 3, the process involves first applying
a convolutional layer with a stride of 2. Then, the downsampled feature
map is processed through the ASPP module, which consists of three
dilated convolutions with dilation rates of 6, 12, and 18, and a global
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pooling branch. The global pooling branch applies average pooling
across the entire feature map to capture global context information,
followed by a 1x 1 convolution denoted as Wi x1 to match the number
of channels with the other branches. The resulting multiscale features
from all branches are then concatenated as shown in Equation 3,
where 2’ represents the downsampled input feature map, Wy denotes
the dilated convolution operations with zero padding matching the
dilation rate, and G(z") denotes the global pooling operation followed
by the 1 x 1 convolution. Finally, the concatenated feature map is
processed through a 1 x 1 convolution to maintain the original channel
count and spatial dimensions.

Z Wa-2' + Wixi - G(fﬂl)- (3)

de{6,12,18}

Vaspp =

Global Pooling —> Conv (1,1) —

Dilated Conv
a v (3,3) d=6,p=6
onv

— e Vaspp Convy
(3,3)s=
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(1, 1)

X
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Fig. 3: Visualization of the application of the ASPP module in the TFSepASPP-
MP.

In the second architecture, TFSepASPP-CL, the final convolutional
layer before global average pooling in the original TF-SepNet is
replaced by an ASPP module. The input feature map initially passes
through a 1 x 1 convolution to adjust the channel dimensions before
entering the ASPP module.

3. EVALUATION AND RESULTS
3.1. Dataset and Pre-processing

We use the TAU Urban Acoustic Scenes 2022 Mobile development
dataset [19]. We follow the official 7:3 training/test split for our
experiments. Our feature extraction pipeline strictly follows the
original TF-SepNet implementation [17]: All audio segments are
downsampled to 32 kHz and the time-frequency features are extracted
using the Short-Time Fourier Transform (STFT) with a window size
of 3072 samples (64 ms) and a hop size of 500 samples (10.42 ms).
A Mel-scaled filter bank with 256 frequency bands and 4096 FFT
points is used to convert the spectrograms into Log-Mel spectrograms.
We also incorporate device simulation as done in [17].

3.2. Training Setup

The training setup strictly follows that of the original TF-SepNet [5]
[17]. The model is trained for 100 epochs using the Adam optimizer.
The batch size is 32. A warm-up strategy is also applied, where
the learning rate is gradually increased from O to 0.01 during the
initial five epochs, followed by a gradual reduction to 0 using cosine
annealing for the remaining training epochs. Mixup [20] and Freq-
MixStyle [21] techniques are incorporated, where Mixup’s c is set to
0.3, and Freq-MixStyle’s o and p values are set to 0.3 and 0.7.

3.3. Experimental Design

In our experiments, we evaluate a total of 21 models, including
the original TF-SepNet [5] [17] as the baseline and three proposed
architectures, each one being implemented as both MP and LP variant.
All models are evaluated under three different configurations by

127



Detection and Classification of Acoustic Scenes and Events 2025

Model Variant T Params / k | MACs /M | Acc./ %
60 115.15 15.20 66.2
TFSepNet - 40 54.27 7.03 64.3
20 15.89 342 58.5
60 217.90 44.42 65.3
MP 40 106.87 22.38 63.7
TFSep-DCD 20 34.24 7.58 63.3
60 107.59 21.49 66.8
CL 40 56.81 11.20 64.2
20 21.03 4.04 64.1
60 196.15 38.79 61.9
MP 40 92.37 18.64 62.7
TFSep-SPP 20 26.99 5.70 64.2
60 90.31 18.93 66.4
CL 40 45.53 9.51 64.4
20 15.75 3.23 63.7
60 281.02 38.29 62.9
MP 40 128.15 17.96 62.9
TFSep-ASPP 20 34.48 5.20 61.7
60 210.64 22.27 66.0
CL 40 96.63 10.76 63.0
20 26.42 3.33 65.0

Table 2: Model accuracy along with parameter count and MACs consumption
for TFSepNet and the proposed variants across different channel widths. Each
proposed model includes two architectural variants (MP, CL).

varying the channel width 7 € {60, 40, 20}, corresponding to large,
medium, and small model sizes.

3.4. Results

As shown in Table 2, all proposed models demonstrate clear perfor-
mance improvements over the TF-SepNet baseline using the smallest
channel width of 7 = 20. Among the two architectural variants, the CL
variant is more effective for lightweight configurations, consistently
outperforming its MP counterparts. Models such as TFSepDCD-CL20
(64.1%), TFSepSPP-CL20 (63.7%), and TFSepASPP-CL20 (65.0%)
achieve higher accuracy compared to the baseline TF-SepNet-20
(58.5%), with only marginal increases in model complexity. Notably,
many of these small models perform on par with or better than
TF-SepNet-40 (64.3%), which has more than twice the number of
parameters. This shows that lightweight multiscale variants can reach
comparable accuracy while substantially reducing the model size.
Moreover, among all models, TFSepSPP-CL20 stands out by offering
an excellent trade-off: it achieves 63.7 % accuracy with just 15.75 k
parameters and 3.23 M MACs, nearly matching the baseline’s size
while surpassing it in accuracy by 5.2%. These findings are visually
summarized in Figure 4, which plots model accuracy against number
of parameters. For clarity, only the baseline TF-SepNet models with
7 = 20 and 40, along with all proposed variants at 7 = 20, are
highlighted.

To further assess the performance-efficiency tradeoff of our
proposed architectures, we conducted significance tests on both
accuracy and parameter count across different model groups, as
summarized in Table 3. Apart from the comparison between all
7 = 20 models and all 7 = 60 models, which shows a significant
accuracy difference (p = 0.034), all other comparisons yield p > 0.05
for accuracy. Notably, when combining all CL-20 and MP-20 variants
and comparing them to all 7 = 40 models, the p-value reaches as high
as 0.928, indicating virtually no performance difference between our
smallest models and the larger 7 = 40 configurations. All comparisons
in terms of parameter count show statistically significant differences
(p < 0.01). Moreover, we also individually tested CL-20 and MP-20
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Fig. 4: Accuracy versus parameter size for selected models. Color coding
indicates different model types: blue for the baseline TF-SepNet, orange
for TFSepDCD-Net variants, green for TESepSPP-Net variants, and red for
TFSepASPP-Net variants.

Comparison p-value (Accuracy) | p-value (Params)
All-20 vs All-40 0.257 0.002
All-20 vs All-60 0.034 < 0.001
CL-20&MP-20 vs All-40 0.928 0.003
CL-20&MP-20 vs All-60 0.068 < 0.001

Table 3: Significance test results (p-values) for accuracy and parameter
count. Each row compares a group of lightweight models with mid-size or
large counterparts. Bold values indicate statistically significant differences
(p < 0.05).

against all 7 = 40 and 7 = 60 models. In all four comparisons, the
differences in accuracy were not statistically significant (p = 0.306,
0.326, 0.346, and 0.084).

4. CONCLUSION

This paper presented three novel ASC model architectures, which
integrate multiscale feature extraction modules into the efficient, 1D-
kernel-based TF-SepNet backbone. Each architecture was implemented
in two variants, replacing either the final convolutional layer or the
max-pooling layers, and evaluated across three different channel
configurations (7 = 20, 40, 60). Our experiments demonstrated that
the proposed models with 7 = 20 notably outperform the baseline
TF-SepNet-20, achieving higher classification accuracy with only a
marginal increase in parameter count. Among these, TFSepASPP-
CL20 achieved a 65.0% accuracy, representing a 6.5% absolute
improvement over TF-SepNet-20. Furthermore, statistical significance
tests confirmed that, except for the direct comparison between all
7 = 20 models and all 7 = 60 models, the accuracy differences
between the lightweight 7 = 20 variants and their larger 7 = 40
and 7 = 60 counterparts are not statistically significant (p > 0.05),
with a particularly high p-value of 0.928 when comparing all CL-
and MP-based 7 = 20 models with all 7 = 40 models. In contrast,
all comparisons in terms of parameter count yielded statistically
significant differences (p < 0.01), reinforcing that our proposed
models are substantially more compact. These findings support our
hypothesis, showing that multiscale variants of TF-SepNet achieve
a more favorable balance between accuracy and efficiency, and in
particular, the multiscale-integrated 7 = 20 variants highlight this
trade-off by achieving competitive performance with substantially
reduced model complexity.
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