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Abstract—We propose a methodology for training foundation models
that enhances their in-context learning capabilities within the domain
of bioacoustic signal processing. We use synthetically generated training
data, introducing a domain-randomization-based pipeline that constructs
diverse acoustic scenes with temporally strong labels. We generate over 8.8
thousand hours of strongly-labeled audio and train a query-by-example,
transformer-based model to perform few-shot bioacoustic sound event
detection. Our second contribution is a public benchmark of 13 diverse
few-shot bioacoustics tasks. Our model outperforms previously published
methods, and improves relative to other training-free methods by 64%.
We demonstrate that this is due to increase in model size and data scale, as
well as algorithmic improvements. We make our trained model available
via an API, to provide ecologists and ethologists with a training-free tool
for bioacoustic sound event detection.

1. INTRODUCTION

Foundation models can learn new tasks at inference time from a few
labeled examples—a process known as few-shot or in-context learning
(ICL) [1]. This is attractive for application-driven ML domains—Ilike
bioacoustics, ecology, and conservation—where domain experts often
lack ML experience and large labeled datasets [2], [3]. Despite growing
interest in adapting foundation models for these fields, data scarcity
limits the tasks they can be trained to perform [3].

An example of this situation occurs in few-shot bioacoustic
sound event detection (FSBSED), which attempts to provide flexible
modeling for the diversity of problems that arise in bioacoustics. In
this task, formalized in [4], a model receives a support set: an audio
recording with onset and offset annotations for the first few events of
interest. The model must predict onsets and offsets of these events in
the query set, which is the remainder of the recording.

Temporally fine-scale detection is crucial for many applications in
animal behavior and ecology [5], but the time and expertise needed
to annotate bioacoustic events has resulted in a lack of data available
for training models capable of FSBSED. Prior efforts for FSBSED
largely rely on a single 22-hour training dataset described in [4],
leading to lightweight models tailored to small-scale data.

In this work, we investigate simultaneously scaling model parame-
ters and training data volume, for a FSBSED model tailored for ICL
(Figure 1). To overcome limited annotated data, we turn to synthetic
data, transforming raw audio into strongly labeled scenes via custom
preprocessing and augmentations that introduce domain randomization.
Because our focus is ICL, we use a transformer-based few-shot
model that attends to support and query audio jointly—common
in ICL but rare in FSBSED. We call our method DRASDIC: Domain
Randomization for Animal Sound Detection In-Context.

To evaluate performance, we introduce a new 13-dataset FSBSED
benchmark, FASD13 (Fewshot Animal Sound Detection-13). DRASDIC
achieves a 64% average improvement over prior methods that also do
not use gradient updates at inference. Ablations show improvements
are due to simultaneously scaling model size, training data, and
improving the few-shot mechanism. We release DRASDIC weights,
inference API, and FASD13 benchmark.'

! Available at www.github.com/earthspecies/drasdic_api.
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Fig. 1: We introduce a method for generating synthetic acoustic scenes (Left)
and a SotA few-shot detection model (Right).

2. RELATED WORK

FSBSED was introduced in [4]. Challenges include sparse vocaliza-
tions, diverse target sounds, dynamic environments, and domain gen-
eralization [6]. Published methods include prototypical networks [7],
representation learning [8], and transductive inference [9]. Prior
evaluation of FSBSED systems has centered around the DCASE
challenge [6], which provided public training and validation datasets
and used a private test set. Subsequent efforts have either used the
public validation set for both model selection and model evaluation [6],
or skipped model selection [8].

In-context learning (ICL) refers to a model’s ability to perform a task
specified through demonstrations at inference time [1]. ICL has also
been extended to fine-scale tasks in computer vision that somewhat
resemble FSBSED, which include sementic segmentation [10], [11]
and scene understanding [12]. Similar to our method, [11] employ a
simple encoder-based architecture.

Generative vision and audio models have been used to create data
for few-shot and low-resource tasks including detection [13] We are
not aware of a generative audio model that produces realistic and
low-SNR animal sounds, and so instead developed a preprocessing
pipeline to isolate potential animal sounds in publicly available data.
A similar procedure was developed recently in [14] for low-resource
bioacoustic classification. For sound event detection in general audio,
synthetic scenes assembled from multiple clips have been used to
train models with fixed [15] and open ontologies [16].

3. METHOD
3.1. Data Generation

We propose a two-stage approach to generate scenes (Figure 2). From
publicly available unlabeled audio, we derive a set of background
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Fig. 2: Summary of training data preprocessing and scene generation.

tracks (5.1e5 tracks, 5540 hours) and a set of short clips containing
events dubbed pseudo-vocalizations (pseudovox) (5.4e6 events, 577
hours); these are often animal vocalizations but may include non-
biological acoustic events. These are pseudo-labeled through clustering,
so multiple similar-sounding pseudovox can be sampled together.

In the second stage, performed on-the-fly during training, clips
are randomly sampled from these collections, manipulated with data
augmentations, and combined into scenes. Generated scenes may not
always resemble real audio, due to randomness in the scene generation
process. As prior work has shown that domain randomization in
synthetic data generation improves transfer to real data [17], we view
this as a way of increasing test-time robustness of our method.

3.1.1. Preprocessing: To construct our pseudovox set, we used pub-
lic recordings from iNaturalist, Animal Sound Archive, xeno-canto’, as
well as Watkins [18], and WavCaps [19]. To remove background noise,
we separated each recording into four stems using BirdMixIT [20].
For each stem, we isolated potential pseudovox: segments where
the amplitude envelope exceeded 25% of the recording’s maximum,
indicating a possible acoustic event. Many segments still lacked a
clear acoustic event, so we performed a quality filtering step. We
manually annotated a subset of segments for vocalization presence,
then trained a binary linear classifier on the final layer BirdNET [21]
activations for each segment. We applied this quality filter; passing
segments became the final pseudovox set. This procedure resulted
in M = 5.4e6 pseudovox. Based on performance on a held-out
test set, we estimated that 98% of these pseudovox contained a
clear acoustic event. To obtain pseudolabels for the pseudovox, we
applied k-means clustering to their BirdNET activations. We did this
fork € K = {|M/128],|M/64],|M/32],|M/16],|M/8]|}, to
obtain different levels of cluster homogeneity. We inspected a random
sample of 100 clusters, rating clusters as high- or low-quality based
on acoustic homogeneity. Of these, 99 were deemed high quality. For
background audio, we took the raw audio above, along with audio
from SilentCities [22], DeepShip [23], and SanctSound [24].

3.1.2. Scene Generation: Scene generation consists of three parts:
sampling audio clips, manipulating them with data augmentations,
and combining them to form a scene. In Section 5.4, we investigate
how the randomness in this process influences model performance.

We first sample two background tracks which are overlaid on each
other. We choose a clustering level £ € K and two clusters cr, cp
from the clusters of level k. We sample a random number of target
pseudovox from cr, and a random number of distractor pseudovox
from cp. We apply reverb (drawn from [25]), resampling, time

2Www.inaturalist.org/ A www.museumfuernaturkunde.berlin/en/research/

animal-sound-archive, www.xeno-canto.org, respectively
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flipping, and amplitude augmentations to pseudovox, and resampling
augmentations to background tracks. We paste pseudovox into the
background track, one-by-one, with a random time gap between
pseudovox. We maintain a binary annotation mask for the scene. This
mask is initialized with zeros, and changed to ones where target
pseudovox are added. Distractor pseudovox do not change the mask;
they join whatever sounds are already present in the background
tracks. To generate one training example, two scenes (support and
query) are generated, drawing pseudovox from the same cr, cp for
both. With some probability, the background tracks of the query are
chosen to be different than those of the support.

3.2. Model

Using our synthetic scenes, we train our model DRASDIC. During
training the model is given annotated support audio and unannotated
query audio, and must predict detection labels for the query audio.

3.2.1. Architecture: Noting that encoder-only architectures have
been used successfully for fine-scale ICL problems in computer
vision [11], we adopt a simple but highly parametrized BERT-like ar-
chitecture which applies attention to support and query simultaneously.
This is preceded by a CNN spectrogram encoder.

Support and query audio are resampled to 16 kHz, concatenated,
and converted to a log mel-spectrogram (256 mels, hop size 160). The
CNN encoder is a 2-d convolutional block and two 2-d residual blocks
(ker=7, 3, 3, respectively; hidden size 64), with vertical mean pooling
(ker=2) after each. Frequency and hidden dimensions are flattened
and mean-pooled to a final 50 Hz frame rate. The binary support label
mask is max-pooled to 50 Hz, passed to a per-frame label embedding,
and added to the encoded audio. This label-enriched representation
enters a transformer encoder (hidden size 768, 12 heads, 12 blocks)
with rotary position encoding [26]. A final linear layer maps each
frame to detection logits.

3.2.2. Training: DRASDIC was randomly initialized and trained
with per-frame binary cross-entropy loss on the query labels, using
AdamW [27] with (5o, 51) = (0.9,0.999) and weight decay 0.01.
We used support-query pairs of total duration durs + dur, seconds.
Based on initial experiments, we set durs = 30 and dur, = 10.

Model, data generation, and training hyperparameters were chosen
through random search. As our model selection criterion, we used
average performance on the validation datasets from [6]. We applied
curriculum learning to gradually increase task difficulty during training.
This linearly decays the minimum pseudovox signal-to-noise ratio
(SNR) from 0 dB to a minimum of -20 dB for an initial 5e4 steps.
The learning rate is linearly increased for le4 steps to a maximum of
2e—>5, and then decayed to O after 1e5 steps (cosine schedule) using
batch size of 8. Parameters governing data generation are provided in
the GitHub repository.

4. PUBLIC BENCHMARK

A collection of public FSBSED datasets was previously provided in [4],
[6], but were designated as datasets for model training and validation.
We complement these with FASD13, a public benchmark curated
for model evaluation (Table 1). FASD13 consists of 13 bioacoustics
datasets, each of which includes between 2 and 12 audio files. Eleven
of these datasets were derived from previous studies; they were
chosen for their taxonomic diversity, varied recording conditions,
and quality of their annotations. Two (CC and JS) are presented here
for the first time. All datasets were developed alongside studies of
ecology or animal behavior, and represent a range of realistic problems
encountered in bioacoustics data. Details of dataset collection and
preprocessing steps are available at the GitHub repository.
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Table 1: Details of FASD13. Datasets were chosen for their taxonomic diversity, varied recording conditions, and quality of their annotations. They were
manually subsetted (prior to evaluation), to reduce computational overhead. Other (minor) preprocessing steps are described on the project GitHub. Datasets
with a § are presented for the first time here. Terrestrial and underwater autonomous passive acoustic monitoring devices are abbreviated T. PAM and U. PAM,

respectively.
Dataset Full Name N files Dur (hr) N events  Recording type Location Taxa Detection target
AS [28] AnuraSet 12 0.20 162 T. PAM Brazil Anura Species
cct Carrion Crow 10 10.00 2200 On-body Spain rorvus Slandarius ff}icéii,;
GS [29] Gunshot 7 38.33 85 T. PAM Gabon Homo sapiens Production Mechanism
HA [30] Hawaiian Birds 12 1.10 628 T. PAM Hawaii, USA Aves Species
HG [31] Hainan Gibbon 9 72.00 483 T. PAM Hainan, China Nomascus hainanus Species
HW [32] Humpback Whale 10 2.79 1565 U. PAM North Pacific Ocean Megaptera novaeangliae Species
ist Jumping Spider 4 0.23 924 Substrate Laboratory Habronattus Sound Type
KD [33] Katydid 12 2.00 883 T. PAM Panamd Tettigoniidae Species
MS [34], [35] Marmoset 10 1.67 1369 Laboratory Laboratory Callithrix jacchus Vocalization Type
PM [36] Powdermill 4 6.42 2032 T. PAM Pennsylvania, USA Passeriformes Species
RG [37] Ruffed Grouse 2 1.50 34 T. PAM Pennsylvania, USA Bonasa umbellus Species
RS [38] Rana Sierrae 7 1.87 552 U. PAM California, USA Rana sierrae Species
RW [39] Right Whale 10 5.00 398 U. PAM Gulf of St. Lawrence Eubalaena glacialis Species

We follow the data format in [4]: Each audio file comes with
annotations of the onsets and offsets of positive sound events,
i.e. sounds coming from a predetermined category (such as a species
label or call type). An N-shot detection system is provided with the
audio up through the N'*" positive event, and must predict the onsets
and offsets of positive events in the rest of the recording.

5. EXPERIMENTAL EVALUATION

We evaluate models based on their ability to detect events after the
N = 5" positive event in each recording of FASD13, using F1@0.3
IoU as described in [4]. We used performance on the validation set
from [6] to select a final model to evaluate on FASD13.

5.1. Inference

For DRASDIC, we form predictions by windowing the audio in each
recording, making multiple predictions for each window by prompting
the model multiple times, and averaging these predictions. In detail,
for a fixed dur,-second window of the query set, we prompt the
model N = 5 times and average the frame-wise predictions produced
by these five prompts. The support set for the " prompt (i € [1,5])
is the dur,-seconds of support audio centered at the i*" positive
event in the support set (together with the binary detection mask).
This procedure is repeated for dur,-second windows across the entire
query set. Frames with predicted detection probability above a fixed
threshold of 0.5 become positive detections. These are smoothed:
detections separated by a gap of min(1, d/2) seconds are merged, and
then detections lasting less than min(1/2, d/2) seconds are discarded.
Here d is the duration of the shortest event in the support set.

5.2. Comparison methods

We compare DRASDIC with essentially all of the previously published
methods we are aware of for FSBSED that contain publicly available
implementations. The first, “BEATS+linear” is a simple supervised
baseline which consists of a frozen BEATS encoder [40] and a final
linear layer. Support audio is windowed (4 seconds, 50% overlap)
and the final layer is trained for 100 epochs to predict binary per-
frame detection labels (final frame rate: 50 Hz). Training minimizes
average per-frame binary cross-entropy loss. The initial learning rate
of 0.01 (tuned using the validation set) is decayed to O using a
cosine schedule. The second “AVES+linear” replaces the BEATS
encoder with the pre-trained AVES encoder [41] (Bird AVES Base
checkpoint), which was pre-trained on 2570 hours of animal sounds.
“Protonet” is the prototypical network from [6], which itself adapts [7].
“Transductive” [9] uses a CNN encoder that is updated using unlabeled
audio from the query set. “SCL” applies the supervised contrastive

learning method introduced by [8]. “SCL+finetuning”, also introduced
by [8] extends this by using support audio to fine-tune the encoder
that was pre-trained using the SCL method.

For Protonet, SCL, and SCL+Finetuning, we train a version using
the training data from [4]. We also train a version using our generated
scenes (be4 scenes, each 40 seconds), which represents a 25X increase
in data quantity over the data used for training the original models.

Predictions

Annotations
Predictions

Annotations
Predictions

RG

Annotations

Predictions
Fig. 3: Qualitative results; events are in yellow. DRASDIC detects target sounds
in dynamic environments (top two), but challenges include extremely low SNR

(third), and the extended low-frequency drumming displays of ruffed grouse
(bottom). Each spectrogram represents 10 seconds of audio.

5.3. Experiments

We compare model performance on FASD13 (Table 2). Some datasets
S, KD, MS, PB, PB24) contain events that are above DRASDIC’s
8kHz Nyquist frequency, or that are brief relative to the model’s S0Hz
frame rate. For these, we give the model a 1/2-time version (1/6 for
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Table 2: F1 scores @0.3 IoU on FASD13. Methods marked with T were pre-trained using our generated data, rather than the data used in the original publication.
Methods marked with * involve no gradient updates at inference time. The second column gives the number of model parameters, and the final column gives

the average F1 score across the six validation datasets from [6].

Model | Params | AS CC GS HA HG HW JS KD MS PM RG RS RW | Avg | Val
BEATS+linear 90M | 350 003 .056 .093 .242 .173 028 .049 462 212 732 .007 316 | .209 | 358
AVES-+linear 90M | .586 059 500 374 207 366 .026 673 831 291 529 303 494 | 403 | .565
Protonet* 07M | 356 .189 .156 239 .038 085 .136 .316 .590 260 .000 216 393 | .229 | .46l
Protonet* 07M | 305 224 151 307 023 116 166 418 536 235 .121 .195 342 | 242 | 459
Transductive 0.5M | 299 .144 002 283 020 .116 279 218 569 .159 089 .169 .048 | .184 | .242
scL* 72M | 516 333 025 438 010 255 281 263 402 237 049 219 509 | 272 | 514
SCL+finetuning | 72M | .565 .31 .017 467 .008 382 .302 381 476 327 042 285 275 | 298 | .525
SCLi* 72M | 545 287 024 433 008 393 243 207 429 336 038 218 228 | 261 | .440
SCLi+finetuning | 72M | .571 205 .030 479 .005 453 .132 220 516 450 050 292 223 | 279 | 453
DRASDIC * (ours) | 116M | .645 272 593 587 .144 337 099 .644 783 474 092 352 .764 | .445 | 704

KD). We give other methods both the slowed and full-speed version
of the data, and keep the version with the better score.

On FASD13, DRASDIC outperforms all the alternatives on 6 out of
13 datasets. Across datasets DRASDIC has an average F1 score of .042
over the next best model. Compared to other methods that do not
require gradient updates at inference time, DRASDIC outperforms the
others on 9 of 13 datasets, and has an average F1 score of .173 over the
next best model (64% relative improvement). Qualitatively, DRASDIC
detected diverse target sounds, even amid others in the same frequency
bands (Figure 3, top). Performance is strong across a variety of taxa
and conditions. A failure case is for the JS dataset, which consists
of jumping spider drumming. Here, the detection targets are specific
drum types, and distinguishing between drum types relies partly on
the rate of drumming. Our scene generator did not account for this
type of information. Other failure cases are in Figure 3, bottom.

For the comparison methods we trained with our generated data,
there was no clear performance increase. These methods, which adopt
a CNN architecture, employ a different few-shot mechanism than
DRASDIC and also have fewer than 1/10 the trainable parameters. The
relative impact of these differences is investigated in Section 5.4.

5.4. Ablation experiments

In our main experiments, we scaled model parameters and data volume,
while also adopting a few-shot mechanism that applied attention to
support and query audio simultaneously. We conducted experiments
to investigate the contributions of these changes, individually (Table 3,
top). First, we compared our main model (116.1M parameters),
whose transformer encoder has the same structure as BERT Base,
to smaller versions based on BERT Small [42] (19.3M parameters)
and BERT Tiny (2.5M parameters). Second, we compared our main
data generation procedure to one that only generated 220 hours of
unique scenes, and one that only generated 22 hours of unique scenes.
Additionally, we compared to a version that used the non-synthetic
training data (22 hours total) from [4], as well as a version for
which 10% of the training examples were from [4] and the other
90% synthetic. Finally, we adjusted our few-shot mechanism to a
prototypical network, which prevented attention from being applied
to support and query audio simultaneously. For this, we kept the
same architecture as our main method but applied a prototypical
loss as in [6], [7]. Average performance on FASD13 and on the
validation set dropped in all cases, indicating that each of these
changes contributed to final model performance. Reducing data scale
was especially damaging, likely due to the high number of trainable
parameters in our main method.

We investigated the impacts of adjusting the randomness governing
our scene generation procedure (Table 3, bottom). We perturbed the

Table 3: Average F1 scores @0.3 IoU on FASD13 and validation [6] datasets.
Model ablations appear on top, data ablations on bottom.

Method | Avg (test)  Avg (val)
DRASDIC | 445 7704
BERT Small 425 .666
BERT Tiny 323 521
Reduced data (220 h) 354 .504
Reduced data (22 h) .130 .088
Non-synthetic data (22 h) 135 .165
10% non-synthetic data 428 .666
Protonet loss 444 .638
High homogeneity in events 429 .630
Low homogeneity in events 444 .606
High events / second 381 437
Low events / second .370 .669
Only high SNR events 402 .620
Only low SNR events 438 .682
No pitch/time shifting 457 .613

level of homogeneity of target events in a scene, the typical rate of
events, the loudness of events, and whether we apply pitch shifting
augmentations. Average performance is stable across some of these
perturbations, but decreases when the randomness in event rate and
event SNR is decreased. These parameters likely influence the level
of diversity present across generated scenes more than the others.
Eliminating random pitch shifts resulted in slightly better perfor-
mance on FASD13. Designing a domain randomization strategy is an
optimization problem, which we approached through a model selection
criterion. This criterion did not produce the best model on the test set,
aligning with the observation [6] that strong domain shifts between
few-shot tasks present a challenge for FSBSED model development.

CONCLUSION

To provide a training-free solution for fine-scale bioacoustic sound
event detection, we develop a ICL transformer model DRASDIC. We
develop a domain-randomization based data-generation pipeline, and
train our model on over 8.8 thousand hours of synthetic acoustic
scenes. We additionally provide FASD13, a new benchmark for few-
shot bioacoustic sound event detection. Our model substantially
improves upon previous state-of-the art. We demonstrate that these
improvements are due to both our modeling approach and the data
scale provided by our scene generation method.
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