
Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

CochlScene Pre-Training and Device-Aware Distillation for
Low-Complexity Acoustic Scene Classification

Dominik Karasin1∗, Ioan-Cristian Olariu1∗, Michael Schöpf 1∗, Anna Szymańska1,2∗
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Abstract—Acoustic Scene Classification (ASC) aims to categorize short
audio clips into pre-defined scene classes. The DCASE 2025 Challenge
Task 1 evaluates ASC systems on the TAU Urban Acoustic Scenes 2022
Mobile dataset, under strict low complexity constraints (128 kB memory,
30 MMACs), with only 25% of labels available and device IDs provided
at inference. In this work, we present an ASC system that exploits device
type information and pretraining on an external ASC dataset to improve
the classification performance. In addition, we conduct an ablation study
to quantify the impact of each component in our pipeline. Our approach
centers on a compact CP-Mobile student model distilled via Bayesian
ensemble averaging from different combinations of CP-ResNet and BEATs
teachers. We evaluate domain-specific pre-training on the CochlScene
dataset on both student and teachers to compensate for label scarcity.
Additionally, we apply a rich data augmentation suite, of which Device
Impulse Response augmentation was particularly effective. Finally, we
exploit device IDs to fine-tune specialized student and teacher models per
recording device. On the TAU Urban 2022 development-test dataset, our
system achieved a macro-averaged accuracy of 60.5%, representing an
8.61 percentage point improvement over the DCASE baseline, securing
us the top rank in the DCASE 2025 Task 1 Challenge.

Index Terms—Low-complexity Acoustic Scene Classification, Knowledge
Distillation, CochlScene, Bayesian Ensemble Averaging, DIR Augmenta-
tion, Freq-MixStyle, CP-ResNet, BEATs, CP-Mobile

1. INTRODUCTION

Acoustic Scene Classification (ASC) focuses on identifying acoustic
scenes from raw audio. The DCASE 2025 Task 1 [1] addresses real-
world challenges, such as recording device mismatch, low-complexity
constraints, and limited availability of training data, with this year’s
focus on device information. Using the TAU Urban Acoustic Scenes
2022 Mobile dataset (TAU22) [2], the challenge aims to classify
1-second audio clips into 10 predefined audio scenes. The contestants
face two low-complexity constraints: maximum memory allowance
for model parameters equal to 128 kB and computational complexity
at inference time restricted to 30 MMACs.

This year’s focus is put on device information, which can be used to
fine-tune the models for specific recording devices. Due to availability
of recording device information in the evaluation dataset, distinct
models can be used per device, while still applying the general model
to unseen recording devices. An additional change was made in terms
of the availability of data. Training data is restricted to 25% subset
of the DCASE24 Task 1 dataset. However, it is permitted to utilize
external ASC datasets for model development.

This paper contributes to the research on the practical application
of ASC systems by studying the effect of pre-training student and
teacher models on CochlScene, applying Device Impulse Response
augmentation (DIR) and fine-tuning them on the recording devices.
The proposed system achieved the first rank in Task 1 of the
DCASE 2025 Challenge [1].

We review related work in Section 2, followed by the methodology
in Section 3. Section 4 is devoted to the experimental setup, while

∗These authors contributed equally to this work.

Section 5 presents the results and discussion. Finally, the paper is
concluded in Section 6.

2. RELATED WORK

We present advancements and techniques in the field of ASC, that
this work build upon.

2.1. Architectures

Self attention architectures have rapidly advanced ASC by capturing
long-range dependencies in time-frequency representations [3]. The
Audio Spectrogram Transformer (AST) [4] introduces a fully-attention
based encoder that outperforms CNNs on Audioset and ESC-50 [5]
benchmarks. Building on AST, PaSST [3] employs Patchout to
accelerate training and reduce redundancy, achieving SOTA results
on AudioSet. More recently, BEATs [6] leaverages self-supervised
pre-training with an acoustic tokenizer to learn robust representations,
reaching 50.6% mAP on AudioSet-2M [7] and 98.1% accuracy on
ESC-50. In DCASE Challenge submissions, these large transformer are
commonly used as teachers for knowledge distillation into lightweight
student models [8].

2.2. Data Augmentation

To mitigate overfitting and enhance robustness in low-data scenarios,
ASC systems commonly employ various data augmentation techniques
that aims to improve overall generalization [9]. At the waveform level,
temporal shifts, also called time-rolling, randomly circularly shift the
audio to learn temporal invariance in scene cues. Device Impulse
Response (DIR) augmentation [10] convolves the input with the
microphone impulse responses, to simulate audio recorded by different
microphones [10]. In the time-frequency domain, SpecAugment [11]
applies random masks along both time and frequency axes of the log-
mel spectrogram. This prevents reliance on narrow spectro-temporal
features and therefore increases robustness.

2.3. Device-aware fine-tuning

To explicitly account for device-specific distortions, models can be
finetuned using device metadata or specialized modules. A simple
approach is per-device fine-tuning, where a shared backbone is adapted
separately on each device’s data, yielding better performance on that
device at inference time [12]. More parameter-efficient methods insert
small adapter layers or conditional normalization into a network (e.g.,
FiLM [13] or device-conditional BatchNorm [14]), where only these
modules are trained per device. Domain generalization techniques
such as MixStyle [15] or Freq-MixStyle [16] blend feature statistics
across device domains during training, which results in improved
generalization and robustness for unseen devices.

3. METHODOLOGY

In this section, we describe the different components of the training
pipeline used for the experiments outlined in Section 4.
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3.1. Datasets
3.1.1. TAU Urban Acoustic Scenes 2022 Mobile dataset: Our

primary dataset is the TAU Urban Acoustic Scenes 2022 Mobile
dataset (TAU22) [2], an extension of the 2020 Mobile dataset [17]. In
TAU22, each original 10-second clip has been split into ten 1-second,
single-channel samples at 44.1 kHz. TAU22 includes recordings from
multiple European cities across ten scene classes, captured with four
real devices (A, B, C, and D) and supplemented by simulated devices
(S1–S10). The ten classes in TAU22 are: airport, bus, metro, metro
station, park, public square, shopping mall, street pedestrian, street
traffic, tram.

The 2025 Low-Complexity Acoustic Scene Classification task pro-
vides both official development and evaluation splits. For development,
only 25% of the official training set is permitted during model training
[1]. This corresponds to last year’s 25% train split. The development
set can be further split into:

• Development-train: devices A, B, C and simulations S1–S3
(8.25 hours of audio)

• Development-test: devices A, B, C and simulations S1–S6 (9.7
hours of audio)

3.1.2. CochlScene dataset: CochlScene [18] is an acoustic scene
dataset, collected through crowdsourcing. It consists of 76,115 single-
channel audio files with a sample rate of 44.1kHz and a length of 10
seconds. There are a total of 13 different classes, spanning acoustic
scenes from urban areas in South Korea. The 13 classes in CochlScene
are: bus, cafe, car, crowded indoor, elevator, kitchen, park, residential
area, restaurant, restroom, street, subway, subway station.

3.1.3. AudioSet: AudioSet [7] is a large-scale multi-label audio
event dataset, gathered from YouTube. It contains over 2 million
ten-second audio clips, annotated by humans across a total of 632
classes. Each sample is a single-channel audio file with a sample
rate of 44.1kHz. The labels are hierarchically structured, such that
categories can be subdivided into increasingly specific event labels. It
is widely used as a benchmark for multi-label audio tagging, sound
event detection, and pre-training of general-purpose audio feature
extractors [3], [4], [19], [20].

3.2. Architectures
3.2.1. Teacher models: As previously demonstrated, CP-ResNet

architecture performs effectively on the TAU22 development set [8].
In our work, the following teacher architectures were employed:

• CP-ResNet [21], a receptive field regularized convolutional
neural network (RFR-CNN) [22], whose controlled receptive
field leads to enhanced generalization for ASC.

• BEATs [6], an iterative audio pre-training framework to learn
Bidirectional Encoder representation with Audio Transformers.

3.2.2. Student model: We employed the compact CP-Mobile (CPM)
architecture [12] as the student model. The detailed architecture can
be seen in the Table 1.

The architecture of CP-Mobile consists of three different blocks
composed of sequences of three layers: point-wise expansion, depth-
wise convolution, and point-wise projection. Each layer consists of a
convolutional operation with batch normalization [23] and ReLU [24]
activation applied. This structure allows to keep the expressiveness,
while reducing the computational complexity of the model.
The mentioned blocks can be described as:

1) Transition block (CPM block T), which increases the channel
dimension and does not contain any residual connections.

2) Standard block (CPM block S), which does not change the
channel dimension and uses the residual connection.

Blocks Input shape Parameters MACs

Initial convolutions [1, 1, 256, 65] 2,456 2,810,960
Block 1 (CPM-S) [1, 32, 64, 17] 4,992 5,083,456
Block 2 (CPM-D) [1, 32, 64, 17] 4,992 5,083,456
Block 3 (CPM-S) [1, 32, 64, 17] 4,992 3,739,968
Block 4 (CPM-T) [1, 32, 64, 9] 6,576 2,378,096
Block 5 (CPM-S) [1, 56, 32, 9] 15,112 4,182,352
Block 6 (CPM-T) [1, 56, 32, 9] 20,968 5,841,328
Final convolution [1, 104, 32, 9] 1,060 299,540

Table 1: CP-Mobile architecture indicating input shape, total parameters, and
MACs per block. (CPM-S: Standard block, CPM-T: Transition block, CPM-D:
Spatial Downsampling block)

3) Spatial Downsampling block (CPM block D), which does not
change the channel dimension and uses the residual connection
with average pooling.

The structure of each block can be seen in Figure 1.

Fig. 1: Visualisation of CPM blocks structures

The first two layers of CP-Mobile project the input data from mel
spectrograms to models feature space. At the last three layers, 1x1
convolution, batch normalization, and adaptive average pooling are
applied.

With 61,148 parameters and 29,419,156 MACs the architecture
meets the constraints when the model weights are converted to half-
precision (16 bit) floating point representation for inference.

3.3. Feature extraction and data augmentation

3.3.1. Preprocessing: We resample audio to a model-specific
target sampling rate and compute log-scaled mel spectrograms. The
parameters used for the STFT and log-scaled mel spectrogram vary
between architectures and are listed in Table 2.

Parameter CP-Mobile CP-ResNet BEATs

Original sample rate (kHz) 44.1 44.1 44.1
Target sample rate (kHz) 32 32 16
FFT size 4096 4096 1024
Window length (ms) 96 96 25
Hop length (ms) 16 24 10
Number of mel bins 256 256 128

Table 2: Preprocessing parameters for different model architectures

3.3.2. Data augmentations: Both waveform-level (time rolling, De-
vice Impulse Response (DIR) [10]) and spectrogram-level (SpecAug-
ment [11], Freq-MixStyle [16]) augmentations were employed.

Among these, the DIR augmentation proved to strongly improve
the overall accuracy of the model during the challenge. We perform
DIR augmentation by convolving the audio waveform with one of 66
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impulse responses taken from MicIRP1. The augmentation is applied
with a probability of 70% to samples recorded with device A.

3.4. Pre-Training on AudioSet and CochlScene
Considering the limited size of the development dataset, previous
work [25] has shown that it is beneficial to pre-train (or use existing
pre-trained weights for) both the teachers and the student models on
external audio datasets.

For the transformer based BEATs architecture, we use a publicly
available checkpoint pre-trained on AudioSet. Since the classes and
their number do not match the downstream training, the classification
head is discarded. We use the checkpoint2 provided by the authors
of [20], corresponding to a model pre-trained using self-supervised
learning with patch-wise masked prediction on AudioSet and fine-
tuned on AudioSet with weak labels.

We furthermore use the CochlScene dataset [18] to pre-train the
models involved in the preparation of the submitted systems. Since
this dataset was specifically created for ASC tasks, albeit under very
different urban conditions (Asia - South Korea) and using more
heterogeneous recording devices, we hypothesize that models pre-
trained on it would more effectively adapt to the task at hand and
generalize better to unseen recording devices. The CP-ResNet teacher
and the CP-Mobile student models are trained on 1-second slices of
CochlScene audio clips. For BEATs teacher, we use the full audio
clips, matching the 10s input size of their AudioSet pre-training.
Table 3 details the key hyperparameters used.

3.5. Knowledge distillation
Knowledge distillation (KD) [26] is a training method, where a model
is not only trained on the one-hot encoded class labels directly, but
also on the logits of one ore more teacher models. The teachers are
usually large models with high performance. Knowledge distillation
in general leads to better-performing and more robust models.

Through a division of the outputs of the teacher and student models
with a temperature value (τ ) and subsequent application of the softmax
function, softer, more informative targets are produced.

The loss function is a weighted average of a label loss (Ll), in our
case the cross-entropy-loss, and the distillation loss (LKD), which is
the Kullback-Leibler (KL) divergence between teacher and student
logits.

With λ as the weight and zS and zT as the output logits of the
student and teacher model, the loss function is calculated as follows:

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ))

Instead of a single teacher, we use Bayesian Ensemble Averaging
(BAE) [25], [27] of several teacher models. With this, multiple teachers,
possibly trained with different configurations, can be combined.

We use online KD to also apply the same data augmentation pipeline
for the teacher models [28].

3.6. Device-specific training
DCASE’25 Task 1 focuses on fine-tuning the obtained model per
device present during training (development-train devices: A, B, C,
S1, S2, S3). The general model, for both student and teacher models,
is used to initialize six specialized models, which are further fine-
tuned on data specific to only one device. At inference time, the
input is dispatched to a specialized model using the device ID—if
known—otherwise to the general model. This way, one can obtain
higher accuracies for devices encountered during training.

1https://micirp.blogspot.com
2https://github.com/fschmid56/PretrainedSED/releases

4. EXPERIMENTS

In order to evaluate the effectiveness of our proposed method, we
perform two complementary sets of experiments. First, we perform
step-by-step ablation study to quantify the impact and interference of
three components: pre-training on CochlScene, DIR augmentation, and
device-specific fine-tuning procedure. Second, we investigate different
teacher model combinations and the corresponding CP-Mobile student
model performance.

4.1. Training

For all experiments, we use the AdamW [29] optimizer and a
cosine learning rate scheduler with the corresponding hyperparameters
adapted to each task. The specific values are captured in Table 3.

Task Dataset Max LR Warm-up Epochs Batch size

CPM pre-train CochlScene (1s) 0.005 2000 100 512
CPM general TAU22 0.005 2000 150 256
CPM device specific TAU22 0.0005 200 50 256

CP-ResNet pre-train CochlScene (1s) 0.001 2000 150 512
CP-ResNet general TAU22 0.001 2000 100 256
CP-ResNet device-specific TAU22 0.00001 200 50 256

BEATs pre-train CochlScene (10s) 0.00007 5000 30 10
BEATs general TAU22 0.00001 2000 30 80
BEATs device-specific TAU22 0.000005 2000 30 256

Table 3: Hyperparameters used for different training tasks.

Despite the different input lengths for the BEATs model, we opt to
directly use the 1-second TAU22 samples without additional adaptation.
This approach results in only a minor decrease in classification
accuracy while significantly reducing both training time and memory
consumption.

4.2. Ablation study

We evaluate three main enhancements applied to the general model:
DIR augmentation, pretraining on the CochlScene dataset, and the
combination of both. These experiments are performed across three
models: CP-ResNet, BEATS, CP-Mobile. A general CP-ResNet model
and CP-Mobile are trained from scratch, while for the BEATs we use
a checkpoint pre-trained on AudioSet. For each, the general model
is trained on the 25% labeled subset of TAU22. To indicate the
performance clearly, we do not use Knowledge distillation in this
training procedure and the hyperparameters are kept constant. We store
the variant with the highest accuracy on the TAU22 development-test
dataset for each model and treat it as a starting point in the fine-tuning
step. This training procedure clearly indicates the individual impact
of the mentioned enhancements.

4.3. Evaluation of Teacher Model Combinations

For this set of experiments, different combinations of teachers are
investigated. We perform Knowledge distillation from the following
teachers: CP-Resnet, BEATs and device-specific CP-ResNet into the
CP-Mobile student model. The device-specific BEATs model was
not considered, since it resulted in a large increase in training time
and computational cost. We then evaluated five combinations: each
of the three teachers by themselves, only the general teachers and
an ensemble of all three. All hyperparameters are kept constant for
all combinations of the teachers. For training the general model, we
use the temperature τ = 2 and the weight λ = 0.02—values that
produced good results in previous editions of the task [12]. For device-
specific training, the best results were achieved with λ = 0.1. This
procedure is meant to quantify the effect of device-specific teachers
on the performance of the student model.
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5. RESULTS & DISCUSSION
In this section, we provide the results of the previously described
experiments. All reported results represent the mean performance
aggregated across three independent runs.

5.1. Ablation study
Table 4 and Figure 2 present the results of our ablation study, in
which we isolate the contribution of key components: Device Impulse
Response augmentation, pretraining on the CochlScene dataset, and
device-specific fine-tuning.

For the CP-Mobile student model, both DIR augmentation and
CochlScene pretraining individually improved performance over the
base model, yielding gains of 3.4%pt. and 3.7%pt. respectively. When
combined, these enhancements resulted in an improvement of 5.9%pt.

CP-ResNet showed a similar trend: pre-training on CochlScene led
to a clear gain over the base model of 2.8%pt., while DIR augmenta-
tion alone slightly decreased performance by 1%pt. The combination
of DIR and CochlScene, however, improved the performance by
3.6%pt. for this model.

Interestingly, The BEATs teacher model achieved the highest
base performance, but exhibited a decrease of 1.2%pt. when pre-
trained on CochlScene. Applying DIR augmentation led to a slight
improvement of 0.5%pt. For this architecture, the combination of
these two components performed 1.0%pt. worse compared to the
base model.

Applying device-specific fine-tuning always resulted in an improve-
ment in performance. Specifically, 1.0%pt. for CP-Mobile, 0.8%pt.
for CP-ResNet, and 0.7%pt. for BEATs.

These results demonstrate that augmentation and pre-training strate-
gies must be carefully tailored to the model architecture. When chosen
appropriately, these methods can lead to substantial performance gains.

Method CP-Mobile CP-ResNet BEATs

Base 0.513± 0.004 0.552± 0.004 0.582± 0.003
DIR 0.547± 0.003 0.542± 0.007 0.585± 0.005
Cochl 0.550± 0.003 0.580± 0.006 0.568± 0.001
DIR+Cochl 0.572± 0.002 0.588± 0.002 0.570± 0.001

Best+Device-Specific 0.582± 0.003 0.596± 0.006 0.592± 0.006

Table 4: Macro-average accuracy of the ablation study described in section 4.2
(mean±std). The best-performing model for each architecture—which is used
as the basis for the device-specific model—is highlighted.
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Fig. 2: Macro-average accuracy of the ablation study described in Section 4.2.
The error bars show the standard deviation.

5.2. Evaluation of Teacher Model Combinations
Table 5 and Figure 3 summarize the performance of different teacher
model configurations used for KD, evaluated with both general and
device-specific CP-Mobile student models.

Using a single device-specific CP-ResNet teacher improves the
performance of the general student by 0.4%pt. compared to using a
general teacher. The device-specific student improves by 0.3%pt.

BEATs on its own performs worse than the two CP-ResNet teachers,
but using it in an ensemble with CP-ResNet improved the performance
by 1.9%pt. for the general and 1.4%pt. for the device-specific student,
compared to just using CP-ResNet.

Adding the device-specific CP-Resnet to the previously mentioned
ensemble increased the macro-averaged accuracy of the general model
by 0.5%pt. The device-specific model improved by 0.7%pt.

This clearly shows how incorporating device-specific teachers can
improve the performance of the student model.

Model General Device-Specific

BEATs 0.545± 0.005 0.554± 0.018
CP-ResNet 0.574± 0.008 0.582± 0.015
CP-ResNet DS 0.578± 0.009 0.585± 0.015

CP-ResNet + BEATs 0.593± 0.003 0.596± 0.002
BEATs + CP-ResNet + CP-ResNet DS 0.598± 0.003 0.603± 0.007

Table 5: Macro average accuracy of the CP-Mobile student trained with
the given teacher combination, as described in Section 4.3 (mean±std). DS
symbolizes a device-specific teacher.
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Fig. 3: Macro-average accuracy of the CP-Mobile student trained with the
given teacher combination, as described in Section 4.3. DS symbolizes a
device-specific teacher. The error bars show the standard deviation.

6. CONCLUSION
In this paper we presented a comprehensive approach for low-
complexity Acoustic Scene Classification with the constraints for
DCASE 2025 Challenge Task 1 Furthermore, we conducted an
ablation study that reveals the significance of DIR, pretraining on the
CochlScene dataset, and per-device fine-tuning. We conclude that the
efficiency of applying DIR augmentation and CochlScene pre-training
varied by model architecture. We also showed how device-specific
teachers can improve the students performance during knowledge
distillation. Using these methods we achieved a macro-averaged
accuracy of 60.3% on the systems on the TAU Urban Acoustic
Scenes 2022 Mobile dataset validation set—an 8.41 percentage point
improvement over the baseline.

In the challenge setting, the best-performing model from multiple
runs was selected. This accounts for the slight difference of 0.2%
between the 60.5% achieved in the challenge3 and the results reported
in the experiments above.
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G. Widmer, “Effective pre-training of audio transformers for sound
event detection,” in ICASSP 2025 - 2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2025, pp. 1–5.

[21] K. Koutini, H. Eghbal-zadeh, and G. Widmer, “Receptive Field Regu-
larization Techniques for Audio Classification and Tagging With Deep
Convolutional Neural Networks,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1987–2000, 2021.

[22] K. Koutini, H. Eghbal-zadeh, M. Dorfer, and G. Widmer, “The Receptive
Field as a Regularizer in Deep Convolutional Neural Networks for
Acoustic Scene Classification,” in 2019 27th European Signal Processing
Conference (EUSIPCO), Sep. 2019, pp. 1–5.

[23] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, p. 448–456.

[24] A. F. Agarap, “Deep learning using rectified linear units (relu),” 2019.
[Online]. Available: https://arxiv.org/abs/1803.08375

[25] D. Nadrchal, A. Rostamza, and P. Schilcher, “Data-efficient acoustic
scene classification with pre-training, bayesian ensemble averaging, and
extensive augmentations,” in Proceedings of the Detection and Classi-
fication of Acoustic Scenes and Events 2024 Workshop (DCASE2024),
October 2024, pp. 91–95.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[27] J. Xu, S. Li, A. Deng, M. Xiong, J. Wu, J. Wu, S. Ding, and B. Hooi,
“Probabilistic Knowledge Distillation of Face Ensembles,” in 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2023, pp. 3489–3498.

[28] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov,
“Knowledge distillation: A good teacher is patient and consistent,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 2022,
pp. 10 915–10 924.

[29] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
in 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, May 2019.

214


