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Abstract—Audio-based pedestrian detection is a challenging task and
has, thus far, only been explored in noise-limited environments. We present
a new dataset, results, and a detailed analysis of the state-of-the-art in
audio-based pedestrian detection in the presence of vehicular noise. In
our study, we conduct three analyses: (i) cross-dataset evaluation between
noisy and noise-limited environments, (ii) an assessment of the impact of
noisy data on model performance, highlighting the influence of acoustic
context, and (iii) an evaluation of the model’s predictive robustness on out-
of-domain sounds. The new dataset is a comprehensive 1321-hour roadside
dataset. It incorporates traffic-rich soundscapes. Each recording includes
16 kHz audio synchronized with frame-level pedestrian annotations and
1 fps video thumbnails.

Index Terms—Audio databases, Sound event detection, Urban sound
analysis, Pedestrian detection, Vehicular noise

1. INTRODUCTION

Pedestrian volume data offer valuable insights into urban activity
patterns, which support planning efforts such as evaluating sidewalk
improvements, assessing land use changes, and identifying areas
needing investments in safety and walkability [1]. These data also
support optimizing street connectivity and accessibility [1].

The widespread adoption of smartphones has brought new oppor-
tunities for automated human mobility sensing, particularly through
mobile GPS data. However, growing privacy concerns, particularly
under frameworks like the General Data Protection Regulation (GDPR)
in the European Union, have placed restrictions on using mobile
location data to track individuals [2]. In parallel, smart city initiatives
have adopted the deployment of IoT-based sensors to monitor activity
in urban environments. These efforts have largely focused on vision-
based systems, such as computer vision and infrared cameras [3],
although other sensing technologies have also been tested.

Urban sound offers a promising alternative. Microphones are
affordable, energy-efficient, and effective in visually occluded envi-
ronments. They can complement or replace cameras in contexts where
installation is impractical, such as shaded areas, narrow corridors, or
locations or scenarios where the costs of cameras are prohibitive. The
general feasibility of using microphone recordings for the detection
of pedestrians has been shown recently for a vehicle-free courtyard
on a university campus [4].

This study addresses two key gaps in existing work. First, the
generalizability of audio-based models remains unclear. Given the
variability in urban soundscapes, shaped by traffic, land use, and
average pedestrian activity levels, it is necessary to evaluate model
performance across data collected from different settings, particularly
in the presence of typical urban noise. Second, existing studies lack
information on interpretability; it is unclear which sound characteristics
existing models rely on for detecting pedestrians.

Thus, the main contributions of this study are

(i) a new publicly available' dataset for audio-based pedestrian

detection in the presence of vehicular noise,
(ii) an investigation into how vehicular noise affects pedestrian
detection performance, and

Thttps://huggingface.co/datasets/urbanaudiosensing/ASPEDvb
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(iii) insights into the acoustic features that enable pedestrian detec-
tion.

2. RELATED WORK
2.1. Automated Pedestrian Detection Techniques

Urban pedestrian sensing technologies have evolved over decades, with
video cameras and infrared sensors being the most widely deployed
to date [3], [5], [6]. Video-based systems, now commonly augmented
with computer vision and deep learning techniques, offer high spatial
precision but can suffer from limitations in occluded or low-light
environments. Furthermore, such systems often raise privacy concerns
[7], [8]. Infrared counters, including active, passive, and target-
reflective types, are less intrusive but tend to undercount pedestrians,
particularly in high pedestrian volume scenarios [5], [6]. More
sophisticated but cost-prohibitive options, such as radar, piezoelectric
strips, and inductive loops, are limited in spatial scalability [9]. In
contrast, audio-based pedestrian sensing remains underexplored, albeit
with promising low-cost deployment, resilience to visual obstructions,
and potential privacy advantages. As demonstrated by Seshadri et
al. [4], audio-based systems can detect the presence of pedestrians
by using advances in acoustic scene analysis and deep learning,
although challenges persist in signal separation, data imbalance, and
generalizability across urban soundscapes.

The generalizability of pedestrian detection models has been
explored only recently. Rasouli et al. assessed seven state-of-the-
art detection algorithms under varying real-world conditions using
the JAAD dataset and found that model performance deteriorates in
changed contexts, such as different weather conditions, pedestrian
behaviors, or occlusion [10]. They emphasized the importance of
incorporating diverse training data, showing that general-purpose
object detection models trained on broader datasets tend to generalize
better than those trained narrowly on pedestrian-focused inputs.
More recently, Hasan et al. conducted a cross-dataset evaluation
of pedestrian detectors and similarly found that traditional models
generalized poorly because their training source usually does not
contain dense pedestrian volume [11]. Interestingly, general-purpose
object detectors, not trained for pedestrian detection, showed better
cross-dataset performance, suggesting that varied training sources can
improve model transferability. Although these studies do not focus
on audio-based models, they emphasize that testing generalizability
across datasets is crucial. In the context of audio-based sensing, this
implication is particularly relevant, as urban soundscapes can vary
considerably depending on the surrounding environment.

2.2. Audio-based Urban Sensing

Urban sound has emerged as a rich source of information for
understanding city life, complementing traditional visual or spatial
data. Early urban noise studies primarily emphasized environmental
health and policy, focusing on the quantification of noise pollution
from road traffic, railways, and industrial sources [12]—-[14]. These
works led to the development of standardized noise maps and public
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Fig. 1: Data collection sites on the Georgia Tech campus in Atlanta.

health guidelines (e.g., [15]). However, beyond its value as a nuisance,
urban sound is increasingly recognized as a medium that implies
information about human activity, mobility patterns, and the social
vibrancy of public spaces [16], [17].

Recent advances in sensing technologies and machine learning
enable granular, automated analysis of urban soundscapes. Projects
such as SONYC (Sounds of New York City) [18] have established a
baseline for classifying general urban sounds, using annotations for
broad event categories that include speech-oriented human sounds.
Extending this scope of urban audio analysis further, Han et al. and
Seshadri et al. introduced audio-based methods for detecting pedestrian
presence [4], [19]. Their approach utilized a new large-scale dataset
with pedestrian-focused annotations. This dataset is composed of
continuous recordings from real-world walking environments, enable
models to learn from the full range of implicit acoustic cues (both
speech and non-speech) that signal pedestrian presence. Their results
highlight the potential of microphone-based sensing as a low-cost,
privacy-preserving, and scalable complement to camera-based systems.

Despite recent progress, the generalizability of models across diverse
urban environments and the interpretability of these models remain
underexplored. Understanding the level of generalizability and audio
cues that trigger models to predict pedestrian presence is —given
the variety of urban soundscape— crucial for building robust and
interpretable systems.

3. DATASET

This study builds on the previously published ASPED dataset [4],
which includes annotated audio and video data collected in a vehicle-
free courtyard environment and will be referred to in the following as
ASPED v.a. This dataset provides the foundation for our pedestrian
detection framework and is described in detail by Seshadri et al. [4].
The recorder setup and preprocessing steps are identical to those used
in ASPED v.a.

In this study, we introduce an additional dataset, ASPED v.b,
collected close to a road with vehicular traffic. Figure 1 highlights the
recording location on the Georgia Tech campus in red. The vehicular
noise primarily consists of engine sounds and intermittent shuttle
buses operating at slow speeds. The proportion of frames containing
at least one vehicle detected is 9.16%, 29.00%, 36.43%, and 42.91%
for radii of 1m, 3m, 6 m, and 9 m, respectively.

The ASPED v.b dataset contains 1,321 hours of audio from 4
different sessions. Each session takes place over a time frame of
approximately 40 hours and has audio data collected by 4 to 8
recorders spread along a street. The recording areas are monitored
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Fig. 2: Percentage of frames containing pedestrians by hour of day.
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Fig. 3: Time-series distribution of pedestrian counts.

by 6 GoPro cameras, which captured 1 fps video recordings totaling
2,946,513 frames across all cameras.

Figure 2 illustrates general pedestrian patterns derived from the
labels of the ASPED v.b dataset. The figure shows the ground truth
number of pedestrians detected from video recordings at a specific
timestamp, visualized for the recording zone with a 6 m radius.
Pedestrian activity peaks between 3 PM and 5 PM and declines
considerably at night. This class imbalance reflects the ecological
validity of the dataset, capturing realistic periods of low activity.

The average number of pedestrians walking the street on a specific
day of the week and time by taking the rolling average of the number
of pedestrians detected across all cameras is shown in Fig. 3. The
peaks align with the times that classes end on campus, demonstrating
how pedestrian traffic on campus is closely tied to the class schedule.

Lastly, 2.9% of total frames were obstructed by buses, preventing
the video-based pedestrian annotation from producing reliable labels.
Therefore, these frames were flagged and discarded in modeling.

4. EXPERIMENTAL SETUP

The goal of this research is to provide new insights into audio-
based pedestrian detection that might facilitate new approaches with
enhanced performance. We conduct three key experiments to explore
these aspects: (i) a cross-dataset evaluation to assess the generalization
capabilities of models trained on noisy and noise-free sections of the
datasets (v.a and v.b), (ii) evaluating the effect of vehicle presence
in training data on the performance with vehicle-controlled test sets,
and (iii) an analysis of the acoustic cues that the model associates
with pedestrian and non-pedestrian instances.

For the experiments, we reproduced the model proposed by Seshadri
et al. [4]. This model processes 10-second 16 kHz mono audio inputs
by first computing power spectrograms using STFT (window: 25 ms,
hop: 10ms). These are then converted to 64-bin mel spectrograms



Detection and Classification of Acoustic Scenes and Events 2025

Table 1: Cross-dataset evaluation balanced accuracy (%).

Train Dataset Test Dataset

ASPED v.a 1 ASPED v.b 1
ASPED v.a 71.74 66.48
ASPED v.b 64.77 69.15

(125-7500 Hz) and normalized via standard scaling. The mean and
standard deviation values for normalization were obtained from the
implementation provided in the GitHub repository of the ASPED
v.a model.” The resulting log-mel spectrograms are fed into the
VGGish backbone, pre-trained on AudioSet [20], to extract a sequence
of 10 acoustic embeddings, each corresponding to a snippet of 1s
of the input. A Transformer encoder (1 layer, 4 attention heads,
128 hidden dimension), with added positional encoding, processes
these embeddings to capture temporal dependencies. Finally, a linear
projection layer with ReLU activation, followed by another linear
layer and a sigmoid activation function, outputs a binary classification
probability for each 1s snippet, resulting in 10 predictions for one
10 s-input, using a batch size of 256.

4.1. Exp. 1: Cross-dataset evaluation

Following previously established methodology [4], the two datasets,
ASPED v.a and v.b, were randomly partitioned into train, test, and
validation subsets with an 80/10/10 split, respectively.

To address the inherent class imbalance, we employed weighted
batch sampling and a variable weighted loss during training. Model
inference results are reported using the checkpoint that yielded the
lowest validation loss after 20 epochs.

4.2. Exp. 2: Impact of vehicle presence for training

A key difference between the previously existing dataset ASPED v.a
and the new data lies in the presence of vehicle sounds in the audio
recordings. In this experiment, we investigate whether this factor in
the training data influences model performance on test environments
with (VP: Vehicle-Present) and without vehicles (VA: Vehicle-Absent).
To this end, we create two distinct test splits of ASPED v.b, controlled
for vehicle presence and analyze the results for the models trained
on v.a and v.b (cf. Sect. 4.1), respectively.

Furthermore, to assess the models’ propensity for false positives, we
sampled vehicle-related categories from the nonhuman sounds section
of the FSD50K [21] dataset. FSD5S0K is an open dataset of human-
labeled sound events containing 51,197 Freesound® clips unequally
distributed in 200 classes drawn from the AudioSet Ontology. For this
and Section 4.3, we downsampled the audio to 16 kHz and categorized
it into human or non-human sounds by following the given ontology*.
All classes in FSD50K are represented in AudioSet, except Crash
cymbal (non-human), Human group actions (human), Human voice
(human), Respiratory sounds (human), and Domestic sounds, home
sounds (non-human). Only single-tagged audio samples were included
in this analysis, and we filtered the dataset to include only categories
containing at least 10 distinct files. The resulting refined dataset
comprised 21 human sound categories (989 files) and 133 non-human
sound categories (8,097 files). The probability of class 1, which the
model was trained to associate with ‘pedestrian’ presence, was used
to determine the model’s response.

Zhttps://github.com/urbanaudiosensing/Models/blob/main/data_utils/
transforms.py, last access date: September 19, 2025

3https://freesound.org/, last access date: September 19, 2025

“4https://research.google.com/audioset/ontology/human_sounds_1.html, last
access date: September 19, 2025
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Table 2: Impact of vehicle presence in training data — balanced accuracy (%)
on ASPED v.b subsets. (VP: Vehicle-Present, VA: Vehicle-Absent)

Test Dataset (ASPED v.b)

Train Dataset

VP 4 VA 4
ASPED v.a 65.16 67.87
ASPED v.b 67.49 71.01

4.3. Exp. 3: Model sensitivity to different sound categories

To gain insights into “what the models are listening to,” we analyze the
sensitivity of the ASPED-trained models to various audio categories
by classifying inputs from the FSD50K human and non-human sound
ontologies. More specifically, we investigate which human-generated
sound categories were most frequently detected as ‘pedestrian.’
Furthermore, we conduct a post-hoc analysis to determine if any non-
human sound categories are consistently misclassified as ‘pedestrian.’

A crucial consideration for this analysis is the difference in both
audio characteristics/recording setup and labeling paradigms. The
ASPED dataset labels are based on the presence of individuals within
a certain amount of radius of the recording device (in this study, 6 m).
In contrast, FSD50K annotations do not consider spatial proximity;
for this evaluation, we operated under the assumption that all human
sounds represent the ‘pedestrian’ class and all non-human sounds
represent the ‘non-pedestrian’ class.

We further investigate the specific categories of human-related
sounds that our model reliably detects or struggles to recognize.
Additionally, we examine non-human sounds that are erroneously
classified as pedestrian-related, leading to false positive errors.

5. RESULTS
5.1. Exp. 1: Cross-dataset evaluation

Table 1 presents the balanced accuracy, calculated as the average
of sensitivity and specificity, achieved when models trained on one
dataset version were tested on the other.

The results indicate a performance drop when models are tested
on a dataset different from their training set, which indicates limited
generalization across the two recording setups.

These cross-dataset results highlight the complex interplay between
the presence of specific types of background noise, such as vehicular
traffic, and model generalization. Further investigation into domain
adaptation techniques may be beneficial to improve the robustness
of pedestrian detection systems in real-world scenarios with varying
acoustic environments.

5.2. Exp. 2: Impact of vehicle presence for training

To investigate the specific impact of vehicle presence in the training
data, we evaluate the v.a-trained and v.b-trained models on subsets of
v.b that were controlled for the presence or absence of vehicle sounds
(VP: Vehicle-Present, VA: Vehicle-Absent), as shown in Table 2.

The results show that —as expected— the presence or absence
of vehicle sounds in the test set impacts performance. Even though
the v.b-trained model was exposed to vehicle sounds during training,
predicting pedestrian presence in the absence of these potentially
confounding sounds is simpler.

To assess whether the v.b-trained model exhibits a reduced tendency
to misclassify common vehicle sounds as pedestrians compared to the
v.a-trained model, we compared the average predicted probability of
the ‘pedestrian’ class for a curated set of vehicle-related non-human
sound categories from FSD50K (Table 3).

The v.a-trained model generally exhibited considerably higher
average predicted probabilities for classifying vehicle sounds as


https://github.com/urbanaudiosensing/Models/blob/main/data_utils/transforms.py
https://github.com/urbanaudiosensing/Models/blob/main/data_utils/transforms.py
https://freesound.org/
https://research.google.com/audioset/ontology/human_sounds_1.html
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Table 3: Avg. prob. of pedestrian class for vehicle-related FSD50K categories.
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Table 5: Top and bottom 3 non-human sound categories by avg. prob.

Category v.a-trained | v.b-trained | Category v.a-trained | v.b-trained |
Race car, auto racing 0.86 0.69 Top 3
Car 0.69 0.62 Harp 0.94 + 0.07 0.71 £ 0.13
Vehicle 0.75 0.56 Trumpet 0.94 £+ 0.14 0.80 £ 0.11
Vehicle horn, car horn, honking 0.74 0.62 Plucked string instrument 0.93 + 0.07 0.66 £+ 0.15
Car passing by 0.71 0.59
; Bottom 3
Motor vehicle (road) 0.72 0.60 Cricket 0.42 + 033 0.48 + 0.16
Chirp, tweet 0.51 4+ 0.31 0.45 £+ 0.15
Table 4: Average probability for FSD50K human sound categories for models Bicycle bell 0.52 £ 0.36 0.48 £+ 0.14

trained on ASPED v.a and v.b.

Category v.a-trained 1 v.b-trained 1
Female singing 0.95 0.74
Speech 0.94 0.65
Crying, sobbing 0.92 0.63
Laughter 0.91 0.65
Singing 0.90 0.71
Human voice 0.89 0.64
Yell 0.89 0.66
Cheering 0.88 0.66
Chatter 0.87 0.66
Child speech, kid speaking 0.86 0.65
Human group actions 0.83 0.63
Speech synthesizer 0.82 0.59
Conversation 0.79 0.63
Burping, eructation 0.78 0.56
Male speech, man speaking 0.77 0.56
Whispering 0.76 0.52
Applause 0.76 0.48
Chewing, mastication 0.76 0.57
Hands 0.74 0.56
Run 0.74 0.56
Walk, footsteps 0.70 0.58

‘pedestrian’ compared to the v.b-trained model. This suggests that the
absence of traffic noise during training in v.a might lead the model to
erroneously associate vehicle sounds with human presence, increasing
false positives. Conversely, the v.b-trained model trained with traffic
noise was more effective at distinguishing pedestrian presence from
vehicle sounds as indicated by fewer false alarms.

5.3. Exp. 3: Model sensitivity to different sound categories

To understand the models’ sensitivity to different acoustic cues, we
investigated the impact of signal energy and of different (human and
non-human) sounds on the pedestrian detection accuracy.

5.3.1. Comparison with RMS energy: The Pearson correlation
between the audio’s RMS energy and the model’s output logit is low
for models trained on ASPED v.a and v.b (r = 0.14 and r ~ 0.29,
respectively), confirming that the learned representations are more
effective than a simple energy measurement.

5.3.2. Evaluation on FSD50K Human Sounds: Table 4 presents
the human categories as a subset of the FSD50K dataset. On the
right, we list the corresponding average predicted probability of
the ‘pedestrian’ class for both models. The model trained on the
ASPED v.a dataset demonstrates greater confidence when classifying
human sounds as ‘pedestrian’ compared to its counterpart trained
on the traffic-noise-rich ASPED v.b dataset. While speech-related
sounds generally exhibited higher probabilities across both models,
subtle performance variations in the ranking of specific categories
might indicate that background noise during training influences the
model’s sensitivity to different types of human sounds. The overall
lower average probabilities for the v.b-trained model likely reflect the
masking effect of traffic noise on the acoustic features crucial for
human sound identification. Notably, categories intuitively associated
with pedestrian movement, such as Walk, footsteps and Run, were
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ranked relatively low within the broader set of human sound categories
for both models. These findings underscore the impact of the training
environment’s acoustic characteristics on the learned representations
and the subsequent generalization to out-of-domain human sounds. It
should be noted, however, that the majority of signals in this dataset
are very different from the typical urban sound recording; thus, these
results should be interpreted carefully.

5.3.3. Evaluation on FSD50K Non-Human Sounds: To understand
the models’ sensitivity to other sounds, we evaluated their predictions
on a subset of 133 (categories with at least 10 samples) non-human
sound categories from AudioSet. Table 5 displays the top 3 and
bottom 3 categories, determined based on the v.a-trained model’s
average predicted probability of the ‘pedestrian’ class. The evaluation
on non-human sounds reveals that the model trained on v.a data
has a higher tendency to misclassify certain musical instruments as
‘pedestrian’ compared to the v.b-trained model. This may be due to
such sound categories being particularly infrequent or entirely absent
in the ASPED datasets. Interestingly, the bottom-ranked categories
reveal greater prediction variability in the v.a-trained model compared
to the v.b-trained model. This higher standard deviation suggests
that the v.a model is less certain when classifying sounds that are
dissimilar to human presence.

6. CONCLUSION

This research investigated the impact of the acoustic environment on
pedestrian detection using a novel pedestrian detection dataset with
vehicular noise. Our cross-dataset evaluation revealed a performance
drop when models were trained on different environments, indicating
limited domain generalization capability. Furthermore, the presence
of vehicle sounds in the test set considerably influenced performance,
with models showing varying sensitivities based on their training data’s
acoustic characteristics. Evaluation on out-of-domain FSD50K data
highlighted that models trained in v.a exhibited higher confidence in
identifying human sounds but were also more prone to false positives
for non-pedestrian sounds. Conversely, models trained with traffic
noise demonstrated more cautious predictions. However, the notable
issue of false positives across various non-human sound categories
warrants further attention. These findings underscore the critical role
of the acoustic environment in training robust pedestrian detection
systems. The limited generalization observed suggests that future
work should focus on domain adaptation techniques to bridge the gap
between different acoustic domains. Specifically, exploring methods
to enhance the model’s ability to filter out irrelevant background noise,
such as vehicular traffic, while retaining sensitivity to subtle pedestrian-
related cues is crucial. Additionally, we plan to investigate the
integration of multi-modal information (e.g., visual cues) to increase
robustness in challenging scenarios. Finally, a more comprehensive
analysis of the model’s failure cases, particularly the misclassification
of specific non-human sounds, could inform the design of more
discriminative acoustic features or robust model architectures.
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