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Abstract—Environmental audio recordings captured via passive acoustic
monitoring include various sounds such as bird vocalisations, weather
phenomena, and human activity. Although abundant and easy to collect,
these recordings often contain noise, are location-specific, and lack
comprehensive annotations, posing challenges to traditional supervised
methods. This paper compares self-supervised pre-training techniques
and architectures for developing foundation models to learn transferable
feature representations from environmental audio data. The reported
experiments use the GardenFiles23 dataset, which consists of two years of
stereo recordings and metadata from an urban garden. Pre-training tasks
include masked spectrogram reconstruction, in which random patches of
mel-spectrogram inputs are masked and the model learns to predict them,
and a novel contrastive learning task, in which the model learns to align
the two channels of stereo recordings that are masked in a complementary
manner, meaning that the masked patches in one channel are unmasked
in the other. Two architectures are compared: a Self-Supervised Audio
Spectrogram Transformer (SSAST) and a State-Space Model variant
(Mamba), which theoretically offers linear-time sequence modelling and
improved efficiency. Embeddings are assessed on three downstream tasks:
bird detection, time-of-day prediction, and weather metadata prediction.
Results indicate that masked reconstruction provides stable convergence
and superior bird detection performance, while contrastive learning
generates richer embeddings that are beneficial for temporal and weather
predictions. Overall, SSAST consistently outperforms Mamba with short
input sequences.

Index Terms—Foundation models, environmental audio analysis, bird
detection, weather prediction, Mamba

1. INTRODUCTION

Environmental audio recordings captured non-invasively via passive
acoustic monitoring (PAM) encompass a broad spectrum of sounds
such as animal vocalisations, weather phenomena, and human activities.
Such recordings provide a valuable resource for ecological monitoring,
biodiversity assessment, and the study of human impacts on natural
habitats. Despite their abundance and ease of acquisition, PAM
datasets are inherently noisy and unstructured, featuring overlapping
sources, location-specific biases, and class imbalances dictated by the
placement of the recording device. Moreover, the manual annotation
of large-scale audio archives is labor-intensive, which further hinders
the development of models that generalize reliably across diverse
environments.

Foundation models (FMs) have been shown to mitigate analogous
issues in various domains by learning generalizable feature repre-
sentations from large unlabeled datasets via self-supervised learning.
The main architecture used to create FMs is the Transformer [2],
which has been highly effective in tasks including natural language
processing [3], computer vision [4] and audio processing [5], [6].
However, Transformers have quadratic computational complexity with
respect to the input sequence length and require large amounts of
data to train effectively. Recent work has established State-Space
Models (SSMs) as a powerful alternative to Transformers [7]–[10].
SSMs are a class of models that can capture long-range dependencies
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in sequential data, while being asymptotically more computationally
efficient than Transformers.

In this paper, we explore the use of the Mamba SSM [9] variant for
the analysis of environmental audio data and compare its performance
to that of the Transformer on three downstream tasks. Our main
contributions are the following:

• We establish a baseline for the development of FMs in the context
of environmental audio data analysis using a dedicated dataset.

• We compare masked reconstruction and a novel contrastive learn-
ing task as self-supervised pre-training tasks for environmental
audio data, showing that both approaches can be effective for
different downstream tasks.

• We compare SSM and Transformer-based FMs for environmental
audio data analysis, showing that the former offer comparable
but generally inferior performance to the latter in this setup.

• We evaluate the learned representations on traditional tasks (bird
detection) and novel downstream tasks (temporal and weather
condition prediction), exploring the abilities and limitations of
FMs in extracting complex and informative features.

2. RELATED WORK
In recent years, large-scale pre-trained FMs have been developed
for spectrogram-based audio processing. Most notably, the Audio
Spectrogram Transformer (AST) [5] re-purposes a Vision Transformer
(ViT) backbone to operate on 2-D spectrogram patches, while the
Self-Supervised Audio Spectrogram Transformer (SSAST) trains the
same architecture using a joint masked reconstruction and contrastive
pre-training recipe that remains a strong baseline in self-supervised
spectrogram learning [6].

Regarding SSM-based architectures, the Self-Supervised Audio
Mamba (SSAM) model swaps each ViT block for a Mamba block and
attains comparable downstream performance with fewer parameters
[11]. To mitigate the inherently unidirectional view of 1-D SSMs on
2-D inputs, researchers have been experimenting with multi-directional
analysis of spectrogram patch sequences. For example, AudioMamba
scans spectrograms along four paths for supervised audio tagging [12],
and simpler bidirectional variants including AuM [13], SPMamba
[14] and SSAMBA [15] apply forward and backward SSM passes
before merging the hidden states.

On the topic of environmental data analysis, dedicated CNNs
[16], [17] and masked-prediction Transformers [18] have pushed bird
species recognition. Regarding weather prediction and monitoring,
small datasets have been assembled for rain-intensity classification
via CNNs [19] or for rainfall-rate regression using a Transformer [20].
Wind noise is usually treated as a noise-removal problem rather than
an environmental cue.

3. DATASET
The GardenFiles23 dataset [21], [22] consists of stereo audio
recordings collected from a PAM system installed in a residential back
garden in the Netherlands. The system uses a two-microphone array
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Fig. 1: Overview of pre-training pipelines. Left: Masked reconstruction pre-training. Right: Contrastive pre-training.

which captures 3-second stereo audio clips at a sampling frequency
of 48 kHz in response to detected acoustic events above an adaptive
background noise spectrum model.

In addition to the audio data, the dataset includes metadata such
as precise timestamps of the recordings and environmental context,
which is provided by a Froggit WH3000 SE weather station installed
adjacent to the microphone array in the garden and connected to the
WunderGround service. Moreover, each recording is automatically
annotated using two pre-trained deep learning models, namely MIT-
AST [5], [23], which provides a wide range of geophonic, biophonic
and anthropophonic tags, and BirdNET [16], which is used for bird
species classification. All recordings containing human vocalisations,
based on MIT-AST detections, were removed from the dataset.

This work uses an expanded version of the GardenFiles23 dataset
consisting of 1.3 million samples recorded between August 2023 and
March 2025, out of which a random sample of 100,000 is held out for
testing and the rest for pre-training and validation. We fine-tune on
550,000 samples, 50,000 of which are unseen during pre-training. The
raw waveforms are converted to log-mel-spectrograms using 128 mel
bands with a time resolution of 85.33 ms and a hop size of 42.67 ms.

4. METHODOLOGY
We follow a typical FM pipeline, where we first pre-train our models
on a large dataset using self-supervised tasks and then fine-tune and
evaluate them on a smaller dataset using supervised tasks. The input to
all models consists of log-mel-spectrograms of size T×F = 65×128,
which are split into 104 non-overlapping patches using a window
size of t× f = 5× 16. Our encoding pipeline follows the SSAST
paradigm, consisting of the following sequential steps:

1) The sequence of patches passes through an embedding layer.
2) A ratio of the input patches is masked using the chosen masking

strategy for each pre-training task.
3) Positional encodings are added to the input tokens.
4) Embeddings are extracted through a series of encoder blocks.
5) The extracted embeddings are processed by a task-specific head.
Encoder architectures. Our encoder consists of 12 stacked blocks.

We compare two architectures for each encoder block:
• SSAST [6]: a model based on the Self-Supervised Audio

Spectrogram Transformer architecture. The model is built using
standard ViT blocks [4], using 3 attention heads and a hidden
state dimension of 192.

• Bi-directional Mamba (BiMamba): a model which replaces
the standard ViT blocks with bi-directional Mamba blocks. The
block consists of a single forward convolution which is applied
to the input sequence, followed by two parallel SSM layers, one
for the forward and one for the backward direction, as seen in
[13]. We use a linear projection expansion factor of 3, a hidden
state dimension of 192, a convolution kernel size of 4 and an
SSM hidden state dimension of 24.

Pre-training tasks. The models are pre-trained using the following
self-supervised tasks:

• Masked reconstruction: a standard self-supervised task where
half of the input patches are randomly replaced by a trainable
mask token and the model is trained to reconstruct the original
input from the unmasked patches. For the reconstruction loss
we use the mean absolute error (MAE) and the mean squared
error (MSE). The loss is calculated only on the masked patches.
The masked reconstruction pre-training pipeline is shown in
Fig. 1 (left). In total, we conduct four masked reconstruction
experiments: bimamba-mae, bimamba-mse, ssast-mae,
ssast-mse.

• Contrastive learning: a self-supervised task where the model
is trained to distinguish between positive and negative pairs of
samples using the InfoNCE loss [24]. Instead of creating positive
pairs by applying random augmentations on each sample, we
use the left and right channels of our chosen dataset’s stereo
recordings. The two channels are typically highly correlated, but
often exhibit differing background noise and recording artifacts,
which can be used as a naturally occurring form of weak
augmentation of the same signal. Additionally, two channels
are randomly masked by random noise sampled from a truncated
normal distribution at a ratio of 0.5 in a complementary manner,
meaning that if a patch is masked in the left channel, it is
unmasked in the right channel and vice versa. The contrastive
pre-training pipeline is shown in Fig. 1 (right), and it consists
of two experiments: bimamba-cont and ssast-cont.

Fine-tuning and evaluation. Finally, we fine-tune our models and
evaluate them on the following downstream tasks:

• Bird detection: a binary classification task where the model is
trained to detect the presence or absence of birds in a given audio
clip. The task aims to evaluate each model’s ability to extract
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Table 1: Performance metrics on the downstream tasks. The best performing model for each task is shown in bold.

Model
Bird Detection Time of Day Precipitation Rate Average Wind Speed

Precision Recall F1 MAE STD MAE STD MAE STD

bimamba-cont 70.0 (69.5, 70.4) 87.3 (86.9, 87.6) 77.7 (77.3, 78.0) 0.322 0.225 0.193 0.282 0.381 0.318
bimamba-mae 78.3 (77.9, 78.7) 90.8 (90.5, 91.1) 84.1 (83.8, 84.4) 0.381 0.259 0.113 0.250 0.334 0.268
bimamba-mse 76.5 (76.1, 76.9) 91.0 (90.7, 91.3) 83.1 (82.8, 83.4) 0.284 0.219 0.121 0.250 0.350 0.273

ssast-cont 78.9 (78.5, 79.3) 91.0 (90.7, 91.3) 84.5 (84.2, 84.8) 0.190 0.176 0.098 0.232 0.289 0.238
ssast-mae 77.8 (77.4, 78.2) 92.6 (92.3, 92.9) 84.6 (84.3, 84.9) 0.257 0.204 0.109 0.249 0.338 0.263
ssast-mse 76.9 (76.5, 77.3) 92.2 (91.9, 92.5) 83.8 (83.6, 84.1) 0.278 0.217 0.116 0.254 0.350 0.274

features related to bird vocalisations and distinguish them from
other sounds in the environment. We assign presence and absence
labels by looking for agreement between MIT-AST’s bird-related
tags and BirdNET’s prediction confidence score as follows. Clips
where both models agree that no bird is present (MIT-AST detects
no bird, BirdNET confidence < 0.5) or where MIT-AST finds
a bird but BirdNET is very uncertain (confidence < 0.2) are
labelled as “absence”, while clips where BirdNET’s confidence
exceeds the pre-defined thresholds (0.2 when MIT-AST detects
a bird and 0.5 otherwise) are labelled as “presence”.

• Temporal metadata prediction: a regression task where the
model is trained to predict the time of recording within the day
from a given audio clip, which is treated as a cyclical variable
and encoded by sine and cosine pairs. The goal of this task is to
assess whether the embeddings extracted from each model can
represent complex patterns in the daily activity of humans and
animals.

• Weather metadata prediction: a regression task in which the
model is trained to predict weather metadata associated with each
audio clip, including precipitation rate and average wind speed.
This task aims to evaluate each model’s potential for weather-
related feature extraction, which can be useful for monitoring
climate change and its impact on the environment.

During fine-tuning the pre-trained encoder is frozen and no masking
is applied to the input, while an MLP head is trained specifically for
each of the three tasks.

Resources and training time. Training was conducted on an
internal computing unit provided by Maastricht University, which
is equipped with NVIDIA GeForce RTX 2080 Ti and Quadro RTX
6000 GPUs, as well as on the Snellius computing cluster provided
by SURF [25], which includes NVIDIA A100 and NVIDIA H100
GPUs. Training generally took between 2 and 4 days per experiment
for the pre-training phase and around 1 day per experiment for the
fine-tuning phase.

5. RESULTS AND DISCUSSION

Embedding Analysis. We estimate the alignment and uniformity
metrics [26] to assess the quality of the learned embedding spaces.
Alignment measures how close similar samples are, while uniformity
measures how well the embeddings are distributed on the unit
hypersphere. To produce similar pairs for the alignment metric, we
apply random transformations both on the waveform level (Gaussian
noise, volume gain, pitch shift) as well as the spectrogram level
(Gaussian noise, random roll, random masking). Figure 2 shows
the alignment and negative (absolute) uniformity metrics for all pre-
trained models. The Mamba models achieve lower alignment and
lower absolute uniformity, meaning that the embeddings tend to cover
a tightly clustered area of the unit sphere, while the SSAST models
achieve higher alignment and higher absolute uniformity, indicating
spread-out embeddings regardless of similarity.

Fig. 2: Alignment and absolute uniformity of the embeddings for all
pre-trained models.

Table 1 shows the performance of the pre-trained and fine-tuned
models on the three downstream tasks.

Bird detection. We evaluate the performance of the fine-tuned
models on the bird detection task using the standard accuracy,
precision, recall and F1 score metrics. Confidence intervals are
computed at a level of 95% using 1,000 bootstrap samples. The
results suggest ssast-mae as the best performing model in terms
of recall, while ssast-cont achieves the highest precision, with
both models achieving similar F1 scores. We observe that the Mamba
models generally perform worse than their corresponding SSAST
models for each pre-training technique, while the MAE pre-training
task outperforms the MSE task across both models.

Time of day prediction. To assess performance on the time-of-day
prediction task, we compute the minimum angle difference between the
predicted and ground-truth angles. This difference is then normalized
to the range [0, 1), corresponding to fractions of a 12-hour period. We
calculate the mean absolute error (MAE) and its standard deviation to
quantify the prediction error. The ssast-mae model achieves the
lowest mean absolute error, along with the lowest standard deviation.

We further examine the ability of the models to make predictions
that indicate insights about the acoustic patterns that may appear
throughout a 24-hour period. To this end, we bin the true and
predicted values into 6-hour intervals (Night, Morning, Afternoon,
Evening). We then compute the confusion matrix for the true and
predicted values, which is shown for the two best performing models
of each type in Figure 3. The results show that the models tend to
classify the night hours correctly, which is most likely attributed to the
decreased acoustic activity during the night-time. All models except
for ssast-cont tend to predict “Afternoon” for most samples
outside the night hours. We hypothesise that all models apart from
ssast-cont essentially collapse the task to a binary classification
problem, with one class corresponding to “inactive” hours, which are
predicted during night-time, and the other class to “active” hours,
which are predicted near the dataset mean in the opposite direction,
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(a) ssast-cont (b) ssast-mae

(c) bimamba-mse (d) bimamba-cont

Fig. 3: Confusion matrices for the true and predicted time-of-day
values for all pre-trained models.

i.e., “Afternoon”. Conversely, the ssast-cont model is able to learn
more complex patterns, with most of its misclassifications occurring
between consecutive time intervals of similar acoustic activity. For
example, morning and afternoon hours are expected to present with
similar acoustic patterns in terms of animal and human activity.

Weather metadata prediction. We calculate the mean and standard
deviation of the absolute error between the predicted and true values
for the precipitation rate and average wind speed tasks. We find
that the ssast-cont model achieves the lowest mean absolute
error and standard deviation for both tasks, while the SSAST-based
models outperform the Bi-directional Mamba-based models for each
pre-training technique.

To assess model performance across varying weather conditions,
we divide the precipitation rate and average wind speed values into
five equally sized bins and compute the mean absolute error for
each bin, along with its standard deviation. As shown in Figure 4,
the ssast-cont model achieves the most consistent performance,
with a binned MAE standard deviation of 0.65 for precipitation rate
and 0.09 for wind speed. Regarding precipitation, MAE increases
monotonically with rain intensity for all models. We attribute this
pattern both to the scarcity of heavy rain samples (over 90% of
observations record negligible precipitation) and the fact that intense
rainfall produces overwhelming broadband, high-energy acoustic noise
that obscures finer spectral features. In contrast, wind speed MAE
exhibits a sharp decline after the first bin. Under calm conditions,
estimation error may be elevated because biotic and anthropogenic
sounds dominate the spectrogram, some of which may share similar
acoustic patterns with stronger winds (e.g. distant exhaust sounds),
or because other weather cues may falsely hint at strong winds (e.g.
heavy rain). On the other hand, stronger wind is typically easier to
recognise as it presents with more acoustic cues such as rustling of

(a) Precipitation rate performance per model across intervals.

(b) Average wind speed performance per model across intervals.

Fig. 4: Mean absolute error and standard deviation for the precipitation
rate and average wind speed tasks across 5 equally sized bins.

leaves or a distinctive broadband turbulent airflow (“whoosh”) sound.

6. CONCLUSION
Our results highlight distinct strengths and weaknesses of each pre-
training strategy and model architecture across downstream tasks.
On the one hand, masked reconstruction generally led to better
performance in bird detection, likely due to its focus on reconstructing
structured spectral content, which encourages the model to capture
high-level auditory features such as harmonics and time-frequency
patterns. Across models of the same architecture, the MAE loss
generally leads to better performance than the MSE loss, with the
exception of bimamba-mae versus bimamba-mse on the temporal
prediction task. We attribute this to the fact that MAE is more robust
to outliers as it is not dominated by high-energy pixels, pushing the
models to learn better reconstructions throughout the entire spectra,
which translates to finer feature extraction.

On the other hand, contrastive learning yielded comparable results
in the bird detection task, while producing superior results in the
temporal and weather prediction tasks. These findings suggest that
stereo contrastive learning encourages the extraction of low-level
acoustic cues that can carry information about acoustic patterns
throughout the day and correlate with weather changes. This effect was
most prominent in the Transformer-based models, where contrastive
pre-training produced diverse and well-structured embeddings, leading
to the best overall performance in regression tasks. In comparison,
SSM-based models tended to produce more collapsed representations
and were less stable and performative during fine-tuning, particularly
under contrastive learning. Despite this, SSMs may still offer benefits
for modelling long-range dependencies in future work involving longer
input sequences.
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