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Abstract—This paper introduces a multi-stage self-directed framework
designed to address the spatial semantic segmentation of sound scene (S5)
task in the DCASE 2025 Task 4 challenge. This framework integrates
models focused on three distinct tasks: Universal Sound Separation (USS),
Single-label Classification (SC), and Target Sound Extraction (TSE).
Initially, USS breaks down a complex audio mixture into separate source
waveforms. Each of these separated waveforms is then processed by a
SC block, generating two critical pieces of information: the waveform
itself and its corresponding class label. These serve as inputs for the
TSE stage, which isolates the source that matches this information. Since
these inputs are produced within the system, the extraction target is
identified autonomously, removing the necessity for external guidance.
The extracted waveform can be looped back into the classification task,
creating a cycle of iterative refinement that progressively enhances both
separability and labeling accuracy. We thus call our framework a multi-
stage self-guided system due to these self-contained characteristics. On
the official evaluation dataset, the proposed system achieves an 11.00 dB
increase in class-aware signal-to-distortion ratio improvement (CA-SDRi)
and a 55.8% accuracy in label prediction, outperforming the ResUNetK
baseline by 4.4 dB and 4.3%, respectively, and achieving first place among
all submissions.

Index Terms—Self-guided training, multi-stage framework, universal
sound separation, target sound extraction

1. INTRODUCTION

The DCASE 2025 Task 4 [1], Spatial Semantic Segmentation of
Sound Scenes (S5), aims to detect and separate individual sound
events from multi-channel spatial audio inputs. The core objective is
to isolate target sound events (foreground sources) from a mixture
by distinguishing them from non-target sound events (interference
sources) and background noise, and to perform classification. Each
audio mixture can contain up to three foreground sources, optionally
mixed with interference sources and background noise. Interference
sources are differentiated from background noise by their non-diffuse
spatial characteristics and their association with specific sound classes.
The task defines a set of 18 target classes, while the non-target events
encompass a broader set of 94 classes.

The presence of various sound events, including both non-target
events and background noise, complicates the application of Universal
Sound Separation (USS) techniques. This complexity highlights the
importance of Target Sound Extraction (TSE), a method that leverages
specific clues to isolate the sound of interest. TSE models leverage
various forms of clues, such as a class label [2], an enrollment
sample [3], [4], or a timestamp [5], to isolate a desired waveform from
a mixture. For instance, a class-conditioned TSE model [2] extracts
sound events belonging to a specific class. The SoundBeam [3] using
the enrollment clue can be viewed as an extension of this paradigm,
where an enrollment waveform is provided as the clue. The model then
extracts sounds from the mixture that match the acoustic characteristics
of the enrollment waveform.

*Equal contribution.
TCorresponding author.

Traditional TSE tasks depend on external cues that are separate
from the input mixture. Conversely, in the S5 task, the system must
initially detect the target sound events present in the mixture before
extracting them. This indicates a self-directed approach: the necessary
clues must be extracted from the input mixture itself to guide the
retrieval of the target sound events.

The official DCASE 2025 Task 4 baseline [6] addresses the S5
task by combining Audio Tagging (AT) and TSE. It first performs
AT on the mixture using Masked Modeling Duo for Audio Tagging
(M2D-AT), a variant of M2D [4] specifically fine-tuned for this task.
The resulting multi-hot label, representing the predicted classes, is
then fed as a clue to a TSE model (ResUNet or ResUNetK) [7] to
extract the target events. This baseline approach, however, presents
three notable limitations. First, performing AT directly on a complex
polyphonic mixture is inherently more difficult than classifying
an already isolated sound. Given that mixtures can contain up to
six sources, including background noise, accurately identifying all
target events is a formidable task. Second, the baseline’s AT module
cannot leverage the spatial information available in the multi-channel
input, which can be critical for disambiguating overlapping sources.
Third, the framework lacks a mechanism for iterative refinement; the
information flow is unidirectional, and the extracted waveforms are
not used to improve the initial predictions.

To overcome these drawbacks, we propose a multi-stage self-guided
framework that combines the multi-clue derivation through USS,
Single-Label classification (SC), and TSE. The core of our framework
leverages a modified version of DeFT-Mamba [8], a state-of-the-art
(SOTA) model developed for universal audio separation in multi-
channel polyphonic scenarios. This model, which we term DeFT-
Mamba-USS, first performs USS to decompose the mixture into
estimates for three foreground sources, two interference sources, and
background noise. Subsequently, we perform SC on each separated
target waveform using Masked Modeling Duo for Single-label
Classification (M2D-SC), a version of M2D fine-tuned for classifying
the 18 target classes. In the next step, both the separated waveforms
(as enrollment clues) and their predicted classes (as class clues) are
jointly supplied to DeFT-Mamba-TSE, a variant of DeFT-Mamba
adapted for TSE. This multi-clue approach guides the extraction of
refined target waveforms. Finally, this process is iterated: the newly
extracted waveform is re-classified, and these refined enrollment and
class clues are used for another round of TSE, creating a cycle of
progressive refinement.

This framework significantly lowers the difficulty of class estimation
compared to direct AT on a mixture by performing classification on
preliminarily separated sources. The multi-stage refinement process
enables the system to achieve progressively more accurate waveforms
and corresponding class labels, leading to superior classification
accuracy on the evaluation dataset compared to other teams. This
approach, which integrates multi-clue injection with iterative refine-
ment, demonstrates great effectiveness, enabling us to achieve the
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1% stage — Clue derivation

2nd stage — TSE using multi-clue conditioning
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3rd stage — Iterative refinement
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Fig. 1: Self-guided multi-stage framework (.J: the maximum number of sources, C: the number of classes, L: the waveform length).

highest position in the competition. Our leading standing has been
shown through the class-aware signal-to-distortion ratio improvement
(CA-SDRIi), a comprehensive metric assessing both separation and
classification performance.

2. PRELIMINARY

DeFT-Mamba [8] is a SOTA model designed to perform USS and
classification concurrently. Operating on the complex spectrogram, the
model’s architecture is composed of IV}, stacked blocks of F-Hybrid
Mamba and T-Hybrid Mamba modules, which are designed to model
relationships along the frequency and time dimensions, respectively.
A key distinction from previous speech enhancement models with
similar architectures [9]-[12] is its replacement of the traditional
Feed-Forward Network (FFN) within each transformer block with a
Mamba Feed-Forward Network (Mamba-FFN). The model performs
separation at the feature level. These separated features are then fed
into two parallel decoders: an audio decoder to estimate waveforms
and a class decoder to predict their corresponding labels. This dual-
head decoder structure effectively resolves the pair-wise ambiguity
between the estimated waveforms and their predicted classes, ensuring
each separated sound is correctly associated with its label.

3. PROPOSED SELF-GUIDED FRAMEWORK

The self-guided multi-stage framework performs progressive sepa-
ration and classification through a combination of USS, SC, and
TSE. As illustrated in Fig. 1, our framework consists of three main
stages: 3.1 clue generation via DeFT-Mamba-USS and M2D-SC, 3.2
TSE guided by multi-clue conditioning, and 3.3 iterative refinement
for enhanced separation and classification.

3.1. Stage 1: Clue derivation via DeFT-Mamba-USS and M2D-SC

The first stage employs DeFT-Mamba-USS to decompose complex
multi-channel spectrograms into distinct object-level features. Unlike
conventional architectures of DeFT-Mamba, DeFT-Mamba-USS adopts
a modified design with F-Hybrid Mamba and T-Hybrid Mamba blocks.
To reduce computational complexity while preserving performance,
we exclude the unfold operation and simplity the F-Hybrid Mamba
blocks by removing the embedded Mamba modules. This architecture
generates six object-level features corresponding to three foreground
sources, two interference sources, and one background noise source.
Each object feature is then processed by two parallel decoders: an
audio decoder reconstructing the waveform, and a class decoder
predicting the associated class label.

Once the waveform has been reconstructed, each source is fed
into a single-label classifier named as M2D-SC. This classifier builds
upon the M2D architecture [13] and is adjusted specifically for single-
label prediction among 18 target classes. Given that some predicted
waveforms actually represent silence—indicating non-existent or
inactive sources—M?2D-SC is also designed to recognize these silences
through an energy-based approach [14]. In particular, M2D-SC
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Fig. 2: Inference procedure of M2D-SC (a) The model predicts class and
calculates the energy score from unnormalized logits. (b) Silence is determined
by comparing the energy score with a class-specific threshold.

generates an energy score from its raw logits and employs class-
specific thresholds to identify silent segments. As depicted in Figure 2,
M2D-SC uses the mel spectrogram from a separated signal as input,
and its transformer layers are fine-tuned to predict the signal’s class
label. The model computes an energy score from the resulting raw
logits to determine silence. If this score surpasses a predetermined
threshold, the source is categorized as silence irrespective of predicted
labels; if not, the model outputs the class assigned by the classifier.
The threshold is adapted specifically for each class, as the complexity
of identifying silence varies between classes.

3.2. Stage 2: TSE using multi-clue conditioning

In the second stage, we perform targeted refinement using DeFT-
Mamba-TSE, which leverages the clues generated in 3.1. DeFT-
Mamba-TSE inherits the architectural backbone of DeFT-Mamba-
USS but is modified for TSE through multi-clue conditioning. Unlike
traditional TSE models [3], [4] that encode enrollment clues into
embeddings (often resulting in loss of fine-grained details), DeFT-
Mamba-TSE injects raw separated waveforms directly. The complex
spectrograms of the enrollments are concatenated with those of
mixtures along the channel axis prior to the up-convolutional layers
of DeFT-Mamba. In parallel, class clues are injected into intermediate
feature maps via Residual Feature-wise Linear Modulation (Res-
FiLM) [7], [15]. Here, class-dependent embeddings (3, ~) are
computed from the one-hot vectors of the predicted class and
consistently applied across all DeFT-Mamba blocks, ensuring strong
and stable conditioning throughout the network. After this guided
extraction, the refined waveforms are classified again using M2D-SC
in the same manner as in the previous stage. This second round of
classification not only corrects potential errors from the initial stage
but also further refines class clues for the next stage.
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3.3. Stage 3: Iterative refinement for enhanced separation and
classification

In the final stage, we introduce an iterative refinement mechanism to
further improve the performance of both separation and classification.
The refined waveforms and updated class labels are reinjected into
DeFT-Mamba-TSE for an additional extraction cycle. This cyclic
process allows the system to progressively correct errors and sharpen
source boundaries while refining class predictions. At each iteration,
new enrollments and class clues are generated internally, making
the framework fully self-guided without external supervision. By
integrating iterative refinement, the framework effectively mitigates
error propagation from earlier stages and achieves superior perfor-
mance in terms of signal-to-distortion ratio improvement (SDRi) and
classification accuracy.

4. EXPERIMENTAL SETTINGS

The models for three stages were trained individually, and since the
output of DeFT-Mamba-USS was used as the enrollment clue for
training DeFT-Mamba-TSE, DeFT-Mamba-USS was trained prior to
DeFT-Mamba-TSE. To obtain higher-quality speech training data, we
replaced the speech data provided from the challenge dataset with the
VCTK corpus [16] resampled to 32 kHz. In addition, we augmented
the percussion class data by collecting additional samples from open-
source databases (Pixabay'). These extra sources were spatialized by
SpatialScaper [17], mixing 1-3 target events with a signal-to-noise
ratio (SNR) of 5-20 dB and up to two interference events at 0—15dB.

4.1. DeFT-Mamba-USS

DeFT-Mamba-USS was trained using the same data configuration as
the baseline system [6], and optimized with the AdamW optimizer
with a learning rate of 4e-4. The model was trained in a multi-task
learning setup, simultaneously performing source separation through
the audio decoder and source classification through the class decoder.
Separation The negative Source-Aggregated Signal-to-Distortion
ratio (SA-SDR) loss [18] was applied for estimating foreground
and interference sources. Given M estimated signals 3,, and their
corresponding ground truth s,,, the negative SA-SDR loss is defined
as:

M
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For the background noise object, the negative Scale-Invariant Signal-
to-Noise Ratio (SI-SNR) loss was used:
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where n and 7 denote the ground truth and estimated background
noise. The overall loss for USS Lyss is formulated as:

Luss =Lr+ X (L1 + Ln) 3)

@
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with the sum of SA-SDR losses for the foreground sources Lr and
the interference sources Li. L is the SI-SNR loss for estimating
the background noise. The losses for interference sources £; and
background noise Ln were weighted with A = 0.01 for concentrating
on the separability of the target sound events.

Classification The class decoder in DeFT-Mamba-USS predicts the
class label for each separated source by minimizing a cross-entropy
loss on foreground sources to ensure precise label assignment. For
silent or non-existing sources, a Kullback—Leibler (KL) divergence

Uhttps://pixabay.com/sound-effects/
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loss was used to enforce the predicted class probabilities to be close
to a uniform distribution, thereby avoiding overconfident or spurious
predictions on silence.

pSC(k)
LKL KL prHu (k)

) log “)

Zpac

where p.. € R denotes the estimated probabilities for a silent
segment, and u = é]l € R denotes the uniform target when C' is
the total number of classes. Additionally, a binary classification branch
with a sigmoid output is included to explicitly detect silence, trained
using binary cross-entropy loss and thresholded at 0.5 during inference
to decide whether a source is active or silent. This combination enables
reliable class prediction while robustly handling silent segments.

4.2. M2D-SC

M2D-SC is a fine-tuned variant of M2D, and only the last two
transformer layers and the classification head were fine-tuned. The
M2D-SC was fine-tuned in two steps to maximize classification
accuracy while maintaining robust performance for silence detection.
ArcFace-based Discriminative Training In the first step, we adopted
the ArcFace loss [19] to improve inter-class separability and intra-class
compactness. For the ground truth class y; of i-th data, the ArcFace
loss is defined as:

eScos (By,; +m)

e5°cos (0y; +m) 4 Zk

where s = 32 is a scale factor, m = 0.5 is the addltlve angular margin,
and 6, is the angle between the output feature from the classifier
and the trained class center. For silent segments, KL divergence loss
is applied to approximate the estimated probability distribution to a
uniform distribution, following the same strategy adopted in the class
decoder.

Energy-based Silence Detection For the energy-based silence
detection, we incorporated a hinge loss securing a margin between
energy scores of silence and foreground sources. The energy score is
given by

—log &)

£ =
ArcFace 69 cos (61)

C
—log) e, ©6)
k=1

where [, represents the raw logit value corresponding to the k-th
class. A lower energy score indicates a higher likelihood of being
an active source, while higher value suggests silence. For the input
sample x, the hinge loss is defined as

£energy = Ezm,\,Dmain (max (07 E(-Tiu) - min))2
+E,,~prmain (max (0, mout — E(Touw)))®  (7)
where margins mi, = —6.0 and mout = —1.0 were chosen to control

the decision boundaries. The hinge loss for energy-based silence
detection was weighted with a factor of A = 0.001. Specifically, The
loss functions adapted in each step are as follows:

Lég = LArcFace + LKL, ®)
Lg%d - ﬁArcFace + ﬁKL + )\e . 'Cenergy~ (9)
4.3. DeFT-Mamba-TSE

DeFT-Mamba-TSE was trained using the same data configuration
as DeFT-Mamba-USS. However, the outputs separated from DeFT-
Mamba-USS were used as enrollment clues. This approach ensures that
the model focuses on isolating the target source from the mixture rather
than replicating the enrollment clue directly. For class clues, ground
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truth one-hot vectors were employed to minimize confusion and
provide explicit conditioning signals. The audio decoder within DeFT-
Mamba-TSE was trained using the masked SNR loss [6] to emphasize
precise foreground extraction. The masked SNR loss computes the
SNR only for active sources, ignoring silent segments.

5. EVALUATION METRICS

5.1. CA-SDRi

The official ranking metric of the challenge, CA-SDRi [1], evaluates
both source separation quality and class prediction accuracy by
including the SDRi of true positives only. In contrast, false positive
or false negative cases act as a penalty by including their numbers in
the denominator of the metric. The CA-SDRI is given by

> n

kecul

CA-SDRi = — -
|CUC]

10)

where C and C denote the sets of ground-truth and predicted classes
present in the mixture, respectively. Py is the SDRi of the estimated
signals when the class k belongs to C N C, and 0 for the other classes.
Silent segments are excluded from this computation, ensuring that
the metric focuses solely on active sources.

5.2. Mixture-level accuracy

We evaluate the mixture-level accuracy by counting the number of
data samples only when the predicted set of labels C exactly matches
the ground-truth set C. Writing I for the indicator function and N
for the number of data samples, the accuracy is given by
1 &

AcCmix = — Y 1[G = Ci]. 11
Cmix = 77 ; [ ] (in

5.3. Source-level accuracy
Each separated waveform is evaluated independently. Let M; be the
number of separated foreground waveforms from mixture x;. For
the the target and predicted labels y;; and ¢;; in the j-th waveform

separated from x;, the overall ratio of correctly labeled tracks is given
by

S Mgy = vy
N
Zz‘:l M;

In the S5 setting, M; is always 3 because each mixture ¢ contains up
to three foreground sources, including those detected as silences.

Accgre = . (12)

6. RESULTS

The experimental results are summarized in Table 1. We evaluated five
configurations based on different combinations of Foreground Source
Separation (FSS) and Class Prediction (CP) available at various stages
of the proposed framework. The configurations include (1) FSS 1
+ CP 1 using the separated waveforms and estimated classes from
DeFT-Mamba-USS, (2) FSS 1 + CP 1-1 using the waveforms from
DeFT-Mamba-USS but processing them by M2D-SC to estimate
classes, (3) FSS 2 + CP 1-1 performing the second stage processing
using DeFT-Mamba-TSE but using the classification results from the
first stage M2D-SC, (4) FSS 2 + CP 2 using the waveforms separated
by DeFT-Mamba-TSE and classes predicted by feeding them into the
second-stage M2D-SC, (5) FSS 3 + CP 3 applying the two-stage TSE
model. Among all configurations, the FSS 3 + CP 3 model achieved
the best performance, demonstrating the effectiveness of the proposed
two-stage multi-clue framework. Accordingly, this configuration was
used to run inference on the private evaluation set for our official
challenge submission. These results demonstrate the effectiveness of
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using USS-derived outputs as multi-clue to perform self-guided target
sound extraction. Table 2 summarizes the results of the leaderboard

Table 1: Experimental results of FSS-CP configuration in the proposed
framework. CA-SDRi and SNRi in [dB] and Accgrc in [%]

CA-SDRit SNRit Accyc +
FSS1+CP1 10.8 15.1 732
FSS1 + CP1-1 12.7 15.1 81.8
FSS2 + CP -1 14.6 18.3 81.8
FSS2 + CP2 14.7 18.3 83.4
FSS3 + CP3 14.9 18.4 84.5

on the DCASE 2025 Task 4 challenge. The ground-truth annotations
are not publicly released for the evaluation set, while the test set
includes accessible reference labels. Our system (Rank 1) achieves
the highest CA-SDRi on the evaluation set (11.00 dB) and strong
mixture-level accuracy (Accmix) of 55.80%. On the test set, it also
demonstrates competitive CA-SDRi performance (14.94 dB) and a
solid accuracy of 61.80%. A detailed analysis of these results, along
with complete leaderboard rankings and breakdowns, can be found
on the official challenge page®.

Table 2: DCASE 2025 Task 4 leaderboard with CA-SDRi in [dB] and Accpix
in [%].

Evaluation Set Test Set

Rank CA-SDRi T Accmix T CA-SDRi T  Accmix
1 (Ours) [20] 11.00 55.80 14.94 61.80
2 [21] 9.77 61.60 15.04 77.07
3 [22] 9.73 51.54 14.00 59.80
4[23] 7.84 41.72 14.38 73.93
5 [24] 7.55 49.51 13.31 64.07
6 [25] 6.69 47.22 13.22 76.53
7 [26] 6.60 51.48 11.12 60.67
8 (Baseline) [6] 6.60 51.48 11.09 59.80
9 [27] 3.84 2241 11.78 65.47

7. CONCLUSION

We proposed a novel self-guided multi-stage framework for spatial
semantic segmentation of sound scenes (S5). By tightly integrating
USS (DeFT-Mamba-USS), single-label classification (M2D-SC), and
multi-clue TSE (DeFT-Mamba-TSE), the system effectively decom-
poses complex mixtures and iteratively refines source separation
and class prediction. Comprehensive experiments demonstrated that
our approach achieves superior performance in both CA-SDRi and
classification accuracy compared to existing baselines. The final two
stages highlight the effectiveness of using internally generated clues
for robust self-guided extraction. These results suggest that leveraging
joint separation-classification refinement and multi-clue conditioning
can provide a strong foundation for future research in spatial audio
scene understanding and beyond.
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