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Abstract—We propose a method for accurately detecting bioacoustic
sound events that is robust to overlapping events, a common issue in
domains such as ethology, ecology and conservation. While standard
methods employ a frame-based, multi-label approach, we introduce an
onset-based detection method which we name Voxaboxen. For each
time window, Voxaboxen predicts whether it contains the start of a
vocalization and how long the vocalization is. It also does the same in
reverse, predicting whether each window contains the end of a vocalization,
and how long ago it started, and fuses the two sets of bounding boxes
with a graph-matching algorithm. We also release a new dataset of
temporally-strong labels of zebra finch vocalizations designed to have
high overlap. Experiments on eight datasets, including our new dataset,
show Voxaboxen outperforms natural baselines and existing methods,
and is robust to vocalization overlap.

Index Terms—Bioacoustics, sound event detection, machine learning

1. INTRODUCTION

Detecting animal sounds is the foundation of bioacoustics research. In
practice, these sounds often overlap, but identifying each individual
acoustic unit is necessary for a diversity of tasks, including species
recognition and population estimation, which can be critical for
ecology and conversation [1].

When multiple individuals from a single species co-occur, the
sounds they produce can overlap with each other, often with important
functional consequences, e.g. in bats [2], zebra finches [3], frogs [4],
and elephants [5]. To understand these communication systems, large-
scale identification of individual vocalizations, including accurate
classification of overlapping sounds, is of critical importance.

Motivated by this, we desire a sound event detection (SED) method
that can predict the onset time, offset time, and class label (e.g., species
label) for overlapping sound events. Commonly, SED methods adopt a
frame-based approach: for each time frame, for each class, predicting
whether a sound of that class occurs in that frame [6; 7; 8; 9], and
merging consecutive frames with the same class into a single event.
This does not accommodate overlaps from the same class.

To address this limitation, we propose a method we name
Voxaboxen, For each frame, Voxaboxen makes a binary prediction
as to whether it contains an event onset, plus a regression prediction
for how long that event will last, and a class prediction (e.g. species
label). This design choice means the duration of one predicted event
can extend past the onset of a second event, thus allowing the model
to predict overlapping vocalizations without them being merged.

To investigate how well Voxaboxen deals with overlapping
vocalizations, we introduce a new dataset of recordings of eight
female zebra finches (ZFs) spontaneously interacting in a laboratory
environment, annotated with onset and offset of each vocalization,
and featuring a high degree of overlap. We also introduce a series of
synthetic datasets, consisting of ZF vocalizations with a controlled
overlap-to-vocalization ratio. We find that Voxaboxen consistently
outperforms alternatives, even in the presence of a high degree of
overlap, on our new dataset as well as seven previously-published
bioacoustics datasets.

Taken together, our results demonstrate the general effectiveness
of Voxaboxen for bioacoustic SED, including for situations with
overlapping vocalizations. To democratize putting boxes around
vocalizations, we open source the code for our model and new dataset.

To summarize, the contributions of this paper are as follows:
1) introducing Voxaboxen, and SED model leveraging pretrained

audio encoders, which can predict overlapping vocalizations;
2) releasing a new dataset, Overlapping Zebra Finch (OZF),

specifically focused on overlapping vocalizations;
3) experimental evaluation on a diverse set of eight datasets,

showing SotA performance for Voxaboxen.

2. RELATED WORK

In bioacoustics applications, SED has typically been framed as a multi-
label classification problem [1], with temporal resolution ranging
from tens of milliseconds [8; 10], to multiple seconds [11; 12].
Recent post-processing techniques decouple event durations and detec-
tions [9; 13]; but still use frame-based predictions and cannot handle
within-class overlaps. Other approaches include matrix factorization
algorithms [14] or probabilistic models [15].

Visual object detection methods such as Faster-RCNN [16] can
accommodate overlapping objects, and have occasionally been applied
to bioacoustic SED [17]. CornerNet [18] is an object detection method
that, similar to Voxaboxen, matches predicted boundaries into a
single event, but differs in that it matches boxes based on feature
similarity, which can be inaccurate for animal vocalizations, where
highly stereotyped events mean that different events can share very
similar features. Our approach accounts for this by matching based
on intersection over union (IoU) instead.

Given an audio recording with a mixture of sound sources, source
separation is the task of predicting the audio of the pre-mixture sounds.
Prior work in bioacoustics [19] has demonstrated the effectiveness of
source separation for improving accuracy in downstream classification
tasks. In our context, a source separation model could theoretically
separate vocalizations from multiple individuals into different audio
tracks, thus reducing the complexity of the audio passed to a
downstream detection model. We investigate this type of approach as
an alternative to Voxaboxen.

A related task is speaker diarization, which segments recordings of
multiple speakers and assigns each segment to a speaker. Approaches
typically assume a maximum number of speakers (e.g., two or four),
and make use of the assumption that speakers can be re-identified by
their vocal characteristics across multiple segments [20]. In contrast,
we assume no maximum number of speakers, and do not expect to
re-identify individuals within a recording.

3. METHOD

3.1. Bounding Box Regression
Our method, which is architecture-agnostic, uses a frame-based audio
encoder ϕ : RT → RT ′×F to produce a sequence of latent vectors.
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Here T is the original number of samples, T ′ is the final number
of frames, and F is the feature dimension. A final linear layer
h : RF → R2+C makes three types of predictions, for each time
frame: a prediction of the probability that an event starts in that frame,
a prediction of the duration of the event (should it start in that frame),
and a prediction of a class label (logits across C classes).

Using gradient descent, we minimize the loss function L = Ldet +
λLreg + ρLcls, λ, ρ ≥ 0, which includes a detection term Ldet, a
regression term Lreg , and a classification term Lcls. The detection
term is inspired by the penalty-reduced focal loss in [18]:

Ldet = − 1

T

T∑
t=1

{
(1− p̂t)

α log p̂t pt = 1

(1− pt)
β p̂αt log(1− p̂t) pt < 1.

(1)

Here, T is the duration in frames of the audio clip, and α, β are
hyperparameters. In (1), the model’s predicted detection probability
at time t is p̂t, and the target pt is obtained by smoothing each event
onset with a Gaussian kernel and taking the maximum value at each
frame, across all events (following [18]):

pt = max
x∈Events

exp

(
− (t−Onset(x))2

Dur(x)2/s

)
. (2)

In (2), Events is the set of events in an audio clip, and for x ∈ Events,
Onset(x) and Dur(x) denote the onset time and duration of x, and
s is a hyperparameter.

The regression term Lreg is L1 loss, applied only to frames
in {Onset(x) | x ∈ Events}, i.e. frames where an event begins.
Similarly, the classification term Lcls is a categorical cross-entropy
loss, again applied only when an event begins. At inference time,
we apply a peak-finding algorithm to the time-series of detection
probabilities. Detection peaks above a threshold become boxes, with
duration and class prediction determined by the value of the regression
and classification predictions at the peak. The detection threshold
is swept (for computing metrics), or fixed as a hyperparameter; see
Section 5. Finally, we apply soft non-maximal suppression [21] to
remove duplicate boxes.

3.2. Bidirectional Predictions
One drawback of using these predicted boxes directly is the difficulty
for the model in making accurate regression predictions. In preliminary
experiments, we observed that both onset and duration predictions can
be slightly inaccurate, meaning that the model sometimes correctly
detects an event but the edges of the bounding box are slightly off
where they should be. To reduce error in bounding box edges, we
make a second set of backward predictions which are the mirror
image of the first (forward) set. The backward predictions are a
binary prediction for each frame as to whether it contains an offset,
plus a regression for how long the event lasted. We then compute
an optimal way to fuse the forward and backward predictions into
a single set of predictions, by casting the problem as a maximal
bipartite graph matching problem. The bipartite graph has all boxes as
vertices. Forward and backward boxes are linked by an edge if their
IoU exceeds a threshold. The Hopcroft-Karp-Karzonov algorithm [22]
computes the maximal matching sub-graph, and edge-linked box pairs
are fused. The onset of the fused box is defined to be the midpoint
of the onset of the forward box, with the offset minus duration of the
backward box (and similarly for the offset of the fused box).

4. OVERLAPPING ZEBRA FINCH DATASET (OZF)
4.1. OZF Real-World Portion
We recorded 65 minutes (divided into 60-second files) of 8 adult (> 1
year) female ZFs housed in a large group cage in a sound attenuating

chamber (TRA Acoustics, Ontario, Canada). We continuously recorded
using Audacity (3.3.3) through two omnidirectional microphones
(Countryman, Menlo Park, CA) positioned above and to the side of the
cage. Food and water were provided ad libitum and all procedures were
approved by the McGill University Animal Care and Use Committee
in accordance with Canadian Council on Animal Care guidelines.

Female ZFs make short, discrete vocalizations of about 100ms,
consisting of a flat or downward sweeping harmonic stack, with
most energy located between 0.5 and 8 kHz. The recordings were
divided among three annotators, who marked the onset and offset time
of each vocalization using Raven Pro (Cornell Lab of Ornithology,
v.1.6.5). Annotators covered 25 minutes each. One 5 minute section
was annotated by all three, where the mean pairwise inter-annotator
F1@0.5IoU of 93.5, and 78.1 on the subset that overlaps.

Out of a total of 8504 vocalizations in the dataset, 1449 (17.04%)
overlap with at least one other. The total number of overlaps is slightly
higher at 1463, as some can overlap more than one other. The number
of vocalizations per 60 s file ranges from 19 to 245, with between
0 and 73 overlapping. The duration of silence per 60 s file ranges
from 35.5 to 58.1 seconds. We observe a roughly linear relationship
between the two. The duration of each vocalization ranges from 3
ms to 350 ms and is strongly peaked around the mean of 109 ms.

It is possible to show that, assuming independent vocalizations
from each bird that can be modelled with a Poisson distribution, the
expected number of pairwise overlaps is d(n− 1)(1− 1/B − 1/n),
where d is the ratio of total call durations to time window size, n is
the number of vocalizations and B is the number of birds (details
provided at project github). In our case, B = 8, n ≈ 120 and d ≈ 0.1.
Plugging in the values for n and d from each 60s file the average ratio
of overlap to number of vocalizations should be 20.46%, significantly
above the 17.04% we observe.This is consistent with prior work
showing evidence for turn-taking in female ZFs [23].

4.2. OZF Synthetic Portion
We generate six additional, synthetic ZF datasets where in each 60-
second file, the ratio of overlaps to number of calls is controlled. We
add cropped denoised female ZF vocalizations, drawn randomly from
a call database, to a background track (recorded using the same setup
as the OZF dataset, but without vocalizations).

There are 65 recordings in each synthetic dataset, each mimicking
one 60-second source recording in OZF (same number of vocalizations
and placed in the same train/val/test split). To construct one synthetic
recording, we count the number of calls present in the OZF source
recording and randomly draw an equal number from the call database,
and add them sequentially to the background track, to achieve a
target overlap-to-call ratio in R ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} When
R > 0.2, the first 25% of calls are placed uniformly at random to
reduce clumping of calls around one point. Otherwise, each call is
placed to overlap an existing call if and only if the current overlap ratio
is below R. This method achieves an overlap ratio within 0.005 of R
for each choice of R. Call amplitude is chosen so that signal-to-noise
ratio falls uniformly at random between -15dB and 0dB.

5. EXPERIMENTAL EVALUATION

Implementation Details We first extract features from the raw audio
using a backbone encoder, and then make the predictions described
in Section 3 from the extracted features. The encoder converts input
audio (mono, 16 kHz) to a frame-based representation, which is
a sequence of latent vectors produced at 50 Hz (window size 10s,
hop size 5s). For the main experiments, we use BEATs [30] as a
backbone encoder. BEATs is an encoder-only transformer, with 12
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Dataset Cls Dur (h) Events Avg dur (s) Overlap % Type Location Taxa

AnSet[24] 10 26.82 7807 6.23 0.61 TPAM Brazil Anura

BV10[25] 1 10.00 9024 0.15 21.68 TPAM NY, USA Passeriformes

HawB[26] 9 50.88 55713 1.11 2.54 TPAM HI, USA Aves

HbW[27] 1 13.38 4776 0.99 5.07 UPAM N Pacific M. novaeangliae

Katy[28] 1 4.49 11961 0.17 12.57 TPAM Panama Tettigoniidae

MT[25] 1 1.26 1294 0.15 0.08 On-body S Africa S. suricatta

Pow[29] 6 6.42 9919 1.11 6.99 TPAM PA, USA Passeriformes

OZF 1 1.08 8504 0.11 17.20 Lab Lab T. castanotis

Table 1: Summary of datasets used to evaluate model performance. Terrestrial and underwater passive acoustic monitoring units are abbreviated as TPAM and
UPAM, respectively. Avg dur (s): average duration of vocalizations. Overlap %: Number of within-class overlaps divided by number of vocalizations

layers, hidden size 768 and 8 attention heads, pretrained on Audioset
[31]. In Section 5.2, we explore different choices of backbone. The
detection, regression and classification predictions are then each made
using a linear layer. The loss function hyperparameters were fixed
at α = 2, β = 4, and s = 6 following [18]. During training and
inference, audio is divided into 10-second windows, with 5-second
step size between windows. Training lasts for 50 epochs, with the
encoder frozen for the first 3 epochs. We use Adam with ams-grad,
β1 = 0.9, β2 = 0.999, and a cosine annealing scheduler. For all
models, we select a learning rate from {1e-4, 3e-5, 1e-5}, based
on mean average precision @0.5IoU on the val set. We apply soft
non-maximal suppression [21] with σ = 0.5.

Datasets In addition to our newly released OZF dataset, we evalu-
ated Voxaboxen using seven existing datasets (Table 1), selected for
their taxonomic diversity: amphibians (AnuraSet), insects (Katydid),
birds (BirdVox-10h, Hawaiian Birds, Powdermill), and mammals
(Humpback, Meerkat). The preprocessing steps we performed on
these datasets is described at the project github. For Katy, BV10 and
OZF, the events of interest were brief and, for Katy and BV10, often
above the 8kHz Nyquist frequency assumed by several of the models
we evaluated. For all models, we use a half-time version of BV10
and OZF, and a sixth-time version of Katy. This effectively increases
the output frame rate to 100 Hz for BV10 and OZF, and 300 Hz
for Katy. Initial experiments indicated that using these slowed-down
versions dramatically improved performance.

Evaluation As a metric, we first match predicted events to true
events as in [25], only counting matches that exceed a certain IoU
threshold. Then, we compute mean average precision (mAP) using
1001 equally-sized intervals. We report results for an IoU threshold
of 0.5 and of 0.8.

Comparison Models We compare the performance of Voxaboxen
to several frame-based methods. Three of these consist of a linear
layer on top of a encoder-only transformer, initialized with pre-trained
weights. The encoders are Frame-ATST [7] (25 Hz output frame
rate, pretrained on AudioSet), BEATs [30] (50 Hz, pretrained on
AudioSet) and BirdAVES [32]1 (50 Hz, pre-trained on animal sound
datasets). Outputs are median filtered, with kernel size (ks) 1, 3, 7, or
11, selected based on mean average precision @0.5IoU on the val set.

As an additional frame-based method, we compare to a
convolutional-recurrent neural network (CRNN) [6; 8; 10]. Model
inputs are log-mel spectrograms (256 mel bands), and the model
consists of a 2d conv layer (ks=7, hidden size 64), mean-pooling in
the frequency dimension (ks=2), two 2d residual blocks (ks=3), mean

1https://github.com/earthspecies/aves

pooling in both directions (ks=2), and finally a bi-LSTM, with hidden
size 1024. The weights are randomly initialized.

Finally, we compare to two existing object detection models coming
from computer vision, Faster-RCNN [16] (X-101 model checkpoint
pretrained on MS COCO)2 and SEDT [33], an encoder-decoder
transformer, adapted to detect 1d events from a spectrogram3.

We implement an additional baseline that uses pre-trained source-
separation model, BirdMixIT model [19], to separate audio into four
stems. These stems are fed into BirdAVES, followed by a linear
classification layer fine-tuned on the original (non-separated) data.
We combine the four sets of detections and apply soft non-maximal
suppression to de-duplicate boxes. We evaluated this method on OZF-
synthetic, but based on its performance there did not evaluate it on
the other datasets.

5.1. Main Results
As shown in Table 2, Voxaboxen outperforms other methods in
almost all cases, and in is far ahead of all other models in several cases,
e.g. 10+ points on mAP@0.5 on BV10, HawB, HbW, and Katy. At
mAP@0.8, Voxaboxen scores 5+ points ahead of others on BV10,
HawB, HbW, MT, and OZF. The diversity of animal sounds in the
datasets especially highlights the general effectiveness of our method.
Faster-RCNN generally performs well on OZF and MT, and slightly
surpasses Voxaboxen on Katy mAP@0.8. However, it struggles
with datasets with more than one class (AnSet, HawB, and Pow), as
well as HbW. Of the frame-level SED models, Frame-ATST, BEATs
and BirdAVES, BEATs is generally the strongest, which is consistent
with our findings for the backbone choice in Voxaboxen (see Table
3). SEDT is poor. Pretrained on datasets mostly of ambient city noises,
it transfers badly to animal vocalizations.

5.2. Ablation Studies
Table 3 shows the effect of changing the encoder backbone of
Voxaboxen, and of removing the forward-backward matching
procedure. We found that using BirdAVES as a backbone for
Voxaboxen reduced performance compared with the version of that
used the BEATs encoder. This was surprising considering BirdAVES
was designed specifically for animal sounds; however differences
in pre-training data volume and training regimes may explain the
performance difference. Removing forward-backward matching (i.e.
only using forward predictions) also consistently lowers the mAP
scores. Mostly the difference is 1-2 points but larger for some datasets,
e.g. HbW and Pow.

2https://github.com/facebookresearch/detectron2
3https://github.com/Anaesthesiaye/sound event detection transformer
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Metric Method AnSet BV10 HawB HbW Katy MT Pow OZF

mAP@0.5IoU

CRNN 9.89 35.59 22.72 21.03 17.24 82.97 35.45 71.80
Faster-RCNN 8.06 55.49 7.39 21.66 25.93 84.22 14.08 90.20
SEDT 0.18 3.79 2.79 3.95 2.30 18.58 2.71 2.26
Frame-ATST 14.87 40.62 32.19 33.62 17.88 87.58 45.42 73.48
BEATs 15.71 48.01 35.37 37.13 20.12 86.08 50.32 77.94
BirdAVES 14.21 42.09 32.67 26.54 19.11 86.11 43.52 78.33
Voxaboxen 27.08 77.32 53.87 59.92 36.04 90.96 56.77 97.92

mAP@0.8IoU

CRNN 2.43 12.96 5.04 3.39 1.90 37.10 16.54 30.05
Faster-RCNN 3.43 29.08 2.24 3.03 9.53 53.54 9.09 69.06
SEDT 0.16 0.18 0.12 0.10 0.11 0.13 0.16 0.10
Frame-ATST 4.72 18.20 10.55 8.28 2.66 24.70 23.44 27.11
BEATs 5.18 18.98 10.31 9.77 2.93 51.00 27.11 42.27
BirdAVES 4.52 19.28 9.12 5.14 3.08 48.29 23.04 42.44
Voxaboxen 9.58 43.03 20.26 22.54 7.86 66.18 35.89 81.23

Table 2: Mean average precision scores at 0.5 and 0.8 IoU. Best results in bold. With one exception, Voxaboxen outperforms existing methods, and is
sometimes far ahead, for example on BV10, HawB, and OZF.

Metric Method AnSet BV10 HawB HbW Katy MT Pow OZF

mAP@0.5IoU
Voxaboxen 27.08 77.32 53.87 59.92 36.04 90.96 56.77 97.92
with BirdAVES encoder 22.86 46.33 49.22 48.04 26.59 88.78 50.21 96.36
no fwd-bck matching 25.04 75.97 52.10 56.99 34.97 89.39 50.02 95.77

mAP@0.8IoU
Voxaboxen 9.58 43.03 20.26 22.54 7.86 66.18 35.89 81.23
w/ BirdAVES encoder 8.64 25.56 18.55 12.22 5.16 56.31 32.31 74.32
no fwd-bck matching 7.46 37.70 16.82 18.73 7.14 36.22 26.79 80.36

Table 3: Ablation studies on the backbone encoder and the forward-backward matching method. The main model uses the BEATs encoder. Best results in bold.
Both ablation settings give a moderate, consistent drop in performance, showing the superiority of the BEATs encoder over BirdAVES, and the effectiveness of
the Voxaboxen forward-backward matching method.

Fig. 1: mAP on the synthetic portion of our OZF dataset, which comes in
six varieties with increasing overlap, ranging from 0 to 1 in increments of
0.2. Existing methods, especially the frame-based BirdAVES and BirdAVES
+ BirdMixIT, deteroriate as the overlap ratio increases. Voxaboxen is
consistently the most accurate and drops only slightly with increasing overlap.

5.3. Performance on OZF-synthetic

Figure 1 shows the performance of Voxaboxen on the synthetic
portion of our newly-released OZF dataset, for increasing overlap
ratio. Voxaboxen outperforms the comparison models at all overlap
ratios, and maintains a high accuracy (92.77 mAP@0.5, 83.19
mAP@0.8), even at the highest over ratio of 1. BirdAVES, with
and without BirdMixIT, deteriorates sharply with increasing overlap
ratio, consistent with our argument that frame-based methods are
insufficient for handling overlapping vocalizations. FasterRCNN fares
better than other baselines, but is still firmly behind Voxaboxen.

6. CONCLUSION
In this work, we introduced Voxaboxen, a novel method for sound
event detection in bioacoustic recordings, specifically designed to ad-
dress the challenges posed by overlapping vocalizations. Voxaboxen
uses bidirectional predictions of vocalization boundaries combined
with a graph-matching algorithm to accurately identify and localize
events. To advance evaluation of overlapping vocalization detection,
we released a new dataset, OZF, of zebra finch recordings with
temporally-strong annotations and frequent overlaps. Extensive testing
on seven existing datasets and our new dataset demonstrates that
Voxaboxen achieves state-of-the-art performance, with particularly
notable improvements over standard SED methods in scenarios with
high overlap. This work highlights the potential of Voxaboxen to
advance bioacoustic research in ethology, ecology, and conservation.

DATA AVAILABILITY
Data used in this study is available at https://zenodo.org/records/
15507508. The code used in this study is available at https://github.
com/earthspecies/voxaboxen.

REFERENCES
[1] D. Stowell, “Computational bioacoustics with deep learning: a

review and roadmap,” PeerJ, vol. 10, p. e13152, 2022.
[2] E. Gillam and M. B. Fenton, Bat Bioacoustics. New York, NY:

Springer, 2016, ch. Roles of Acoustic Social Communication in
the Lives of Bats, pp. 117–139.

[3] J. E. Elie, H. A. Soula, N. Mathevon, and C. Vignal, “Dynamics
of communal vocalizations in a social songbird, the zebra finch

138



Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

(Taeniopygia guttata),” The Journal of the Acoustical Society of
America, vol. 129, no. 6, pp. 4037–4046, 2011.

[4] S. Clulow, M. Mahony, L. Elliott, S. Humfeld, and H. C.
Gerhardt, “Near-synchronous calling in the hip-pocket frog Assa
darlingtoni,” Bioacoustics, vol. 26, no. 3, pp. 249–258, 2017.

[5] J. Soltis, K. Leong, and A. Savage, “African elephant vocal
communication I: antiphonal calling behaviour among affiliated
females,” Animal Behaviour, vol. 70, no. 3, pp. 579–587, 2005.

[6] E. Cakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Vir-
tanen, “Convolutional recurrent neural networks for polyphonic
sound event detection,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, no. 6, pp. 1291–
1303, 2017.

[7] N. Shao, X. Li, and X. Li, “Fine-tune the pretrained ATST model
for sound event detection,” in 2024 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2024, pp. 911–915.

[8] K. Martin, O. Adam, N. Obin, and V. Dufour, “Rookognise:
Acoustic detection and identification of individual rooks in
field recordings using multi-task neural networks,” Ecological
Informatics, vol. 72, p. 101818, 2022.

[9] J. Ebbers, F. G. Germain, G. Wichern, and J. L. Roux, “Sound
event bounding boxes,” in Interspeech 2024 Proceedings, 2024,
pp. 562–566.

[10] Y. Cohen, D. A. Nicholson, A. Sanchioni, E. K. Mallaber,
V. Skidanova, and T. J. Gardner, “Automated annotation of
birdsong with a neural network that segments spectrograms,”
Elife, vol. 11, p. e63853, 2022.

[11] B. Ghani, T. Denton, S. Kahl, and H. Klinck, “Global birdsong
embeddings enable superior transfer learning for bioacoustic
classification,” Scientific Reports, vol. 13, no. 1, p. 22876, 2023.

[12] D. Robinson, M. Miron, M. Hagiwara, and O. Pietquin,
“Naturelm-audio: An audio-language foundation model for bioa-
coustics,” in Proceedings of the International Conference on
Learning Representations (ICML), 2025.

[13] T. Yoshinaga, K. Tanaka, Y. Bando, K. Imoto, and S. Morishima,
“Onset-and-offset-aware sound event detection via differentiable
frame-to-event mapping,” IEEE Signal Processing Letters, pp.
186–190, 2024.

[14] A. Dessein, A. Cont, and G. Lemaitre, “Real-time detection of
overlapping sound events with non-negative matrix factorization,”
in Matrix Information Geometry. Springer, 2012, pp. 341–371.

[15] D. Stowell and D. Clayton, “Acoustic event detection for
multiple overlapping similar sources,” in 2015 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics
(WASPAA). IEEE, 2015, pp. 1–5.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE
transactions on pattern analysis and machine intelligence,
vol. 39, no. 6, pp. 1137–1149, 2016.
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