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Abstract—This work investigates how humans describe audio and visual
content by analysing single-sentence captions for each modality. While
prior research has focused on improving captioning models and their
evaluation, less attention has been paid to how linguistic features differ
across modalities. We analyse the distribution of parts of speech and
domain-specific vocabulary and examine how a structure-based method
and neural network-based model classify captions as audio-based or image-
based. The structure-based approach reveals how audio captions include
verbs related to sound production (e.g., heard, speaking, playing), while
image captions use verbs describing physical actions (e.g., sitting, walking,
holding). We also study how the input captions influence neural network
predictions using gradient-based attribution. Attribution scores from
integrated gradients reveal that words like growling, sounded, howling,
and chirp strongly support audio classification, while words like grouped,
cupcakes, and participates are linked to image captions.

Index Terms—audio captioning, image captioning, classification, natural
language processing.

1. INTRODUCTION
Audio and image captioning have become prominent tasks in
multimodal AI, aiming to generate natural language descriptions
from audio or visual signals. The task of automatic captioning
consists of generating coherent and relevant textual descriptions from
a media input, therefore the machine should be able to interpret
and communicate perceptual information in a human-readable form.
Examples of applications that can benefit from this capability are
content retrieval [1], human-machine interaction [2] and automated
media annotation [3]. In addition to direct applications, captioning data
is also used in training multimodal language models. These models
aim to understand and generate textual descriptions from different
modalities, such as image [4], audio [5] and video [6].

While captioning systems aim to describe perceptual content,
understanding how humans naturally perceive and describe their
surroundings can provide valuable insights into the design and
evaluation of such systems. Foundational work in visual perception by
Gibson [7] and in auditory perception by Gaver [8] explores perception
as a direct interaction with the environment. Gaver’s approach to
auditory events was inspired by Gibson’s ecological theory of vision,
and both emphasize the idea of the actionable properties of objects
and events. However, the nature of these properties differs across
modalities: visual perception focuses on spatial layout, motion, and
surface characteristics, while auditory perception categorizes sounds
based on the events and materials that produce them. These ecological
perspectives have been used to better understand scene and event-
based perception, and they help explain why captions may differ
between audio and image modalities.

Understanding perceptual differences is essential, but equally
important is how these perceptions are translated into language during
the annotation process, which can vary significantly across datasets.
Recent work has examined the impact of dataset characteristics on
caption quality. For example, in [9] authors investigate differences
across datasets from various modalities (audio, image, and video)
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with a particular emphasis on the data collection process. Their study
highlights how the formulation of annotation instructions significantly
influences the nature and quality of the collected captions. This is
an important aspect to consider, as these captions are later used to
train the models, which tend to reproduce the same linguistic patterns
in their outputs. In [10] authors argue that when evaluation relies on
standard captioning metrics such as BLEU [11], METEOR [12] or
SPIDEr [13], among others, models can achieve high scores simply
by exploiting dataset patterns. They also compare the Part-Of-Speech
(POS) patterns in machine generated and human-annotated captions,
showing that human-annotated captions are more complex and diverse
than the machine-generated ones. In [14], authors investigate how
human and model-generated image captions vary semantically and
expressively across languages. Their results show how captioning
models could benefit from a multilingual dataset, to achieve more
diverse and semantically richer descriptions. Although they focus on
a single modality, their work highlights the difference in perception
among different users and languages and how the model is affected
by this differences.

Audio and image modalities represent different kinds of information,
so the way people describe them also differs. Studying linguistic
differences, such as sentence structure and vocabulary, is essential
for understanding how each modality is expressed in language and
for designing better captioning models. To the best of our knowledge,
there are no existing studies that specifically examine the linguistic
differences between audio and image captions. Understanding these
differences is important because audio and image captions are used
to train multimodal models, and each modality may require distinct
linguistic structures to capture its unique characteristics.

In this paper, we present a detailed comparative analysis of
caption content across audio and image captioning datasets. Rather
than proposing a new model or metric, our goal is to understand
the linguistic and structural characteristics of captions and see
what makes a caption more likely to belong to one modality. By
analysing vocabulary usage, POS distributions, and semantic patterns,
we highlight both shared trends and modality-specific differences.
Additionally, we apply interpretability methods to identify which
words influence a neural network’s decision when classifying captions
into belonging to one domain or the other. This study aims to deepen
our understanding of how humans describe their surroundings in
different modalities, and how these linguistic patterns influence the
behavior and decision-making of models trained on such captions.

2. DATASETS
In this work, we have used a diverse set of benchmark datasets
from both the image and audio captioning domains to support our
comparative analysis of caption content. These datasets vary in size,
domain, and linguistic characteristics, offering a broad foundation for
studying caption structure, vocabulary, and semantics. From the image
domain, we include three widely used datasets in image captioning:
MS COCO [15], Flickr30k [16] and Conceptual Captions [17];
From the audio domain, we include four datasets that represent a
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Table 1: Overview of the datasets analysed in this study.

Dataset Description Number of
captions

Average caption
length (in words)

CLOTHO Mturk annotated, with curated stage, audios from FreeSound 29 614 11.3
AudioCaps Mturk annotated, audios from Youtube 98 611 8.5
MACS Volunteers annotators, three acoustic scenes 16 264 9.5

WavCaps Formed by AudioSet SL, BBC sound effects, FreeSound,
SoundBible metadata and tags, use LLM to generate captions 330 701 8.4

MS COCO Mturk annotated, images from Flickr 593 968 10.5
Flickr30k Crowdsourcing annotated, images from Flickr 158 439 12.3
Conceptual captions Raw descriptions are from the Alt-text HTML, images from Google 2 361 004 10.2

Table 2: Part-of-speech (POS) tag distribution in the audio and image datasets,
shown as normalized frequencies in parentheses. With examples of the top
five most frequent words per POS tag, first from the audio domain, followed
by the top five from the image domain.

POS tags Top five words

Nouns Audio (0.33): sounds, man, background, noise, wind
Image (0.37): person, man, background, woman, people

Verbs Audio (0.19): heard, speaking, making, playing, talking
Image (0.10): sitting, standing, holding, looking, walking

Adjectives Audio (0.05): human, other, small, male, loud
Image (0.09): white, young, black, old, beautiful

Adverbs Audio (0.02): then, by, nearby, loudly, repeatedly
Image (0.02): next, just, together, very, outside

Adpositions Audio (0.08): in, with, of, on , by
Image (0.16): of, in, on, with, at

Pronouns Audio (0.01): someone, something, there, it, their
Image (0.03): his, it, her, that, I

Determinants Audio (0.12) Image (0.15): a, the, an, this, some

Others Audio (0.18) Image (0.07)

range of acoustic environments and captioning styles: CLOTHO [18],
AudioCaps v2 [19], MACS [20] and WavCaps [21]. An overview of
the datasets is presented in Table 1.

For the remainder of this paper, we refer to the three image
captioning datasets collectively as the image dataset, and the four
audio captioning datasets as the audio dataset. The linguistic analysis
is conducted on these two aggregated datasets, and used for training
the caption classification models. To evaluate the proposed methods we
use AVCaps dataset [1], an audio-visual dataset that contains separate
textual captions for the audio, visual, and audio-visual contents of
video clips. This dataset allows for the independent analysis of audio
and visual information, as well as the study of how video captions
represent a combination of both modalities, which is often imbalanced.
For evaluation, we use the training, validation and test splits of the
dataset together. The analysis is conducted separately per caption type:
audio (captions based only on the audio modality), visual (captions
describing silent videos without audio), AV (captions describing both
audio and visual content), and GPT AV (AV captions rephrased using
a large language model, providing a balanced representation of the
visual and audio content). Please refer to [1] for more details on the
dataset creation.

3. LINGUISTIC ANALYSIS OF CAPTIONS

This section presents a detailed linguistic analysis of the image and
audio captioning datasets, which share a total of 17699 common
words. Part-of-Speech (POS) tags are an important part of the analysis
and evaluation process in captioning tasks, as they help assess the
grammatical structure and linguistic quality of generated captions.

POS tagging helps to examine whether models produce syntactically
coherent sentences and to what extent they capture the diversity of
natural language. For instance, analysing the distribution of nouns,
verbs, adjectives, and adverbs in generated captions can reveal whether
a model tends to overuse object-centric descriptions (e.g., nouns) while
neglecting actions or attributes (e.g., verbs and adjectives) [22], [23].
This kind of analysis is particularly useful in both image and audio
captioning, where the goal is not only to identify content but also to
describe it in a way that is informative and human-like.

Table 2 shows the distribution of POS tags in the audio and
image datasets. The values are normalized frequencies, meaning they
represent the proportion of each POS tag in the total number of words.
The last column gives examples of the most frequent words for each
POS tag. Nouns are the most common POS tag in both datasets, with
slightly higher frequency in the image domain (0.37) than in audio
(0.33). Verbs are more frequent in the audio dataset (0.19) compared
to the image dataset (0.10), which reflects how humans typically
describe generic audio using nouns, describing the sound sources and
verbs, describing their action [24]. Adjectives appear more often in
the image dataset (0.09) than in audio (0.05), likely because visual
descriptions often rely on adjectives.

When we take a closer look at the top three POS tags, nouns,
verbs, and adjectives, we can observe clear differences in vocabulary
between the audio and image domains. In the audio domain, captions
often include sound-related nouns such as sounds, noise, wind, birds,
and music. In contrast, image captions tend to use nouns that refer to
people, objects, or places, such as person, man, woman, people, player,
view, city, and street. A similar pattern appears with verbs. Audio
captions frequently include verbs related to sound production, such
as heard, speaking, making, playing, talking, recorded, and singing.
On the other hand, image captions often use verbs that describe
physical positions or actions, like sitting, standing, holding, looking,
walking, and wearing. Finally, adjectives also reflect these domain-
specific differences. In the audio domain, adjectives such as male,
loud, female, distant, present, high, and low are commonly used to
describe sound characteristics. In contrast, image captions more often
include adjectives related to visual appearance, such as white, black,
red, young, old, and beautiful. Adverbs and adpositions show similar
patterns in both datasets, although adpositions are more frequent in the
image domain (0.16 vs. 0.08). Pronouns and determiners are relatively
low in both datasets, but determiners are more common than pronouns.
The ”Others” category is higher in the audio dataset (0.18), which
include interjections, numerals, symbols or unclassified words.

4. STRUCTURE-BASED CAPTION CLASSIFICATION

To understand whether main semantic content of a caption can reveal
its modality, we construct Subject-Verb-Object (SVO) triplets for
both audio and image captions. The goal is to determine whether a
caption can be classified as audio-based or image-based by analysing
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its SVOs. An SVO triplet represents a basic syntactic structure in
which a subject performs an action (verb) on an object, for example,
“people-make-noise”. This approach is conceptually aligned with the
use of scene graphs in visual understanding, as introduced in [25]. In
their work, scene graphs are used to represent visual content through
structured relationships between objects, typically in the form of
subject-predicate-object triplets (e.g., “man-riding-horse”). Similarly,
our use of SVO triplets captures the core semantic structure of a more
general caption, not being modality-specific.

These triplets were extracted using the open-source Natural Lan-
guage Processing library spaCy1. Prior to extraction, we preprocessed
the captions by removing punctuation and applying lemmatization to
ensure consistency in the vocabulary. Additionally, we filtered out
non-informative or malformed triplets such as “that-have-it,” “this-
have-it,” “that-have-be,” “this-have-be,” and “it-be-there,” which did
not contribute meaningful semantic content.

Table 3: Top 5 SVO triplets for audio and image modalities. The values in
parentheses represent normalized frequency, calculated as the count of each
triplet divided by the total number of triplets.

Audio triplets (freq) Image triplets (freq)

Bird-make-call (0.0048) Actor-attend-premiere (0.0010)
Man-speak-noise (0.0041) Man-stand-next (0.0007)
Bird-chirp-background (0.0029) Man-stand-front (0.0006)
Car-pass-by (0.0026) Actor-arrive-premier (0.0005)
There-be-sound (0.0024) Man-sit-bench (0.0005)

By analysing each caption from both the image and audio
datasets, we extracted Subject-Verb-Object pairs/triplets and compiled
domain-specific SVO lists, referred to as image-SVO and audio-
SVO throughout the rest of the paper. Example: “a trolley train is
approaching and it is ringing a bell”, extracted SVO: (’trolley train’,
’approach’) and (’it’, ’ring’, ’bell’). Once all the SVOs are extracted
from all the captions, the number of each triplet/pair is counted and
normalized based on the total size of the audio/image dataset. Table 3
shows top 5 collected triplets extracted after analysing all the audio
and image datasets.

Table 4: Structure-based caption classification into audio/image by caption
type.

Caption type Audio (%) Image (%)
audio captions 3690 (76.80%) 1115 (23.20%)
visual captions 929 (16.85%) 4584 (83.15%)
AV captions 1121 (20.07%) 4464 (79.93%)
GPT AV captions 2208 (41.97%) 3053 (58.03%)

We collected all the splits (train, validation, and test) from the
AVCaps dataset and combined them into a single set for evaluation.
Then, we separated the captions by caption type: audio, visual, AV
(audio visual) and GPT AV (rephrased using LLM). Classifying
AVCaps dataset by modality (audio/image) based on their linguistic
content allows us to explore which actions and entities are more
typical of each modality.

Steps to classify a given caption as audio or image caption based
on their grammatical structure.

1) Preprocess the caption: remove punctuation and apply lemmati-
zation to standardize word forms.

2) Extract SVO structure: identify the Subject-Verb-Objects from
the caption.

3) Compare with reference list: find in which list, audio-SVO or
image-SVO, the extracted SVO triplets/pairs is.

1https://spacy.io/models/en#en core web trf

4) Determine the domain: classify the caption to the domain (audio
or image) based on the audio-SVO and image-SVO counts. In
case of the extracted SVO belonging to both list, the one with
higher normalized frequency will be selected.

Table 4 shows the average classification results by caption type.
Our structure-based classification method achieved high accuracy,
correctly identifying 76.80% of audio captions and 83.15% of visual
captions. On the AV captions type, almost 80% are classified as
image, similar to the visual captions case. These results align with
the observations in [1] that AV captions are visual-centric, while the
GPT AV captions are more balanced.

This is an input text

[start] This is an input text

Embeddings

[Batch, seq len, emb dim]

[Batch, emb dim, seq len]

[Batch, n_filters*len(filter_sizes)]

Conv 1D

Conv 1D

Conv 1D

FC

Max pooling 
over sequence length

[Batch, output dimension]

Fig. 1: CNN model for sentence classification. The input is a rearranged to fit
1D convolution layers, each convolutional layers has 100 filters with sizes 3, 5
and 7. After ReLU activation and max pooling, the outputs are combined and
sent to a fully connected layer with one output neuron for binary classification.

5. NEURAL NETWORK-BASED CAPTION CLASSIFICATION

In this section, we present a neural network-based classification system
to compare against the structure-based classification method presented
in Section 4. The model was trained to classify whether a caption
is from the audio or image domain, based on its textual content.To
accommodate for a large corpus and improve generalization, we used
pre-trained word vectors from the wiki-news-300d-1M.vec model [26].
These embeddings provide rich semantic information learned from a
large text corpus, which helps the model understand word meanings
and relationships more effectively.

The model architecture was selected to be a simple convolutional
neural network (CNN) model. The architecture is based on the
model proposed by Kim [27], originally designed for sentiment
analysis of text (e.g., classifying positive vs. negative reviews).
The structure of our model is illustrated in Figure 1. For training,
we split both the image dataset and audio dataset into training
and validation sets, maintaining the same proportion for each.
Since the datasets are imbalanced, having more image than audio
captions, we applied a resampling strategy to balance the classes
during training. Finally, input to the model has a dimensionality
of [number of tokens, embedding dimensionality], where the embed-
ding dimensionality is fixed at 300, matching the size of the pre-trained
word vectors.
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Table 5: Neural Network-based caption classification into audio/image by
modality.

Caption type Audio (%) Image (%)
audio captions 4386 (71.78%) 1724 (28.22%)
visual captions 787 (10.36%) 6812 (89.64%)
AV captions 1001 (12.92%) 6745 (87.08%)
GPT AV captions 1895 (30.65%) 4288 (69.35%)

Table 5 shows the average classification results by caption type.
Our classification model achieved high accuracy, correctly identifying
71.78% of audio captions and 89.64% of visual captions.

When comparing the results with the structure-based classification,
we observe that it assigns slightly more captions to the audio category
than the neural network-based method. In contrast, the neural-network
based classifier consistently labels a higher percentage of captions as
visual across all caption types. This suggests that the neural-network
based model is more confident, or biased, towards the visual modality.
One possible explanation for this behavior is overfitting in the CNN
model. Although we applied a resampling strategy to balance the
training data, the overall dataset still contains significantly more
visual captions than audio ones. This imbalance may have influenced
the model to favor the visual class during prediction, especially in
ambiguous cases.

6. MODEL INTERPRETABILITY
In the structure-based method, is possible to interpret the output
because classification is based on SVO triplets. In contrast, the neural
network-based classification behaves more like a black box, making
it harder to understand why a sentence is classified as an audio or
image caption. To address this, we use integrated gradients, introduced
in [28], a method to understand which input features contribute most
to the model’s prediction. It works by comparing the model’s output
on the actual input to a baseline input (e.g. all zeros), which represents
the absence of features. The method computes gradients of the model’s
output with respect to the input. Integrated gradients satisfy two key
axioms: Sensitivity, which ensures that features affecting the output
receive non-zero attribution, and implementation invariance, which
guarantees consistent attributions for functionally equivalent models.
This makes it a theoretically sound and interpretable method for
explaining deep learning predictions.

For our experiments we use Captum2, an open source library
for model interpretability built on PyTorch. To obtain word-level
attribution scores, we apply the Integrated Gradients method and sum
the attribution scores across all embedding dimensions for each word.
This gives us a single attribution score per word, indicating how
much that word contributed to the model’s final decision. The overall
attribution score for a sentence is then the sum of its word-level
attributions. In our case, illustrated in Figure 2, the model is trained to
classify sentences into two modalities, class 0 corresponds to image
captions; class 1 corresponds to audio captions.

The attribution scores help us understand how much each word
pushed the model toward or away from predicting a specific class. A
positive attribution score means the word contributed toward predicting
class 1 (audio), while a negative score indicates a push toward
class 0 (image). Table 6 shows the top ten words with highest and
lowest attribution scores, with words like growling, sounded, howling,
chirp, and chirping as strongly associated with the audio modality. In
contrast, words with strong negative attribution scores include grouped,
cupcakes, administers, powerful, and participates are more aligned
with the image modality. If we look at the top 10 most frequent

2https://captum.ai/docs/extension/integrated gradients

Fig. 2: Visual representation of the word-level attribution in the model output
prediction. The green and red color represents audio (class 1) and image
(class 0) respectively, while the intensity indicates attribution strength. The
first column is the true label, the second column is the predicted label and the
third column is the attribution score.

Table 6: Top 10 words with the highest and lowest average attribution scores
in the AVCaps dataset. Positive scores indicate stronger association with
audio captions, while negative scores suggest stronger association with image
captions.

Word Average
attribution Word Average

attribution

growling 0.88 badge -0.76
sounded 0.83 attracts -0.76
howling 0.82 yogurt -0.76
chirp 0.81 celebrity -0.76
mumbling 0.77 purchased -0.79
requests 0.75 participates -0.80
murmurs 0.72 powerful -0.81
conversed 0.71 administers -0.83
meows 0.69 cupcakes -0.85
hums 0.69 grouped -0.89

words in the AVCaps dataset, we have words like “speaking” (0.64),
“talking” (0.58), and “singing” (0.42) have high positive attribution
scores, indicating that they strongly support the model’s prediction of
the audio class. These words are semantically related to sound actions.
In contrast, words such as “sitting” (-0.54), “man” (-0.24), and “child”
(-0.19) have negative attribution scores, suggesting they are more
indicative of the image class. These terms typically describe visual
scenes or entities, which are more likely to appear in image captions.
Interestingly, some high-frequency words like “playing” (0.09) and
“baby” (-0.11) have attribution scores closer to zero, indicating a more
neutral or ambiguous role in the classification task. This could be due
to their presence in both audio and image contexts, making them less
discriminative.

7. CONCLUSION
In this work we have studied the linguistic and structural differences
between audio and image captions, highlighting how these differences
and similarities affects the model outputs. The linguistic analysis
revealed clear modality-specific patterns, with audio captions favoring
sound-related vocabulary and image captions focusing on visual
elements such as people and scenes. Through the Subject-Verb-Object
structures, we created a modality-specific references, which were then
compared to an CNN classifier. While the CNN model performed
well, it showed a consistent bias toward the visual modality, likely
influenced by dataset imbalance. To further interpret model behavior,
we applied integrated gradients, which confirmed that words strongly
associated with sound (e.g., growling, chirping) positively contributed
to audio predictions, while visually descriptive terms (e.g., grouped,
cupcakes) supported image predictions. These findings emphasize the
importance of understanding linguistic patterns in multimodal datasets,
as they directly shape model outputs and can inform the design of
more balanced and interpretable captioning systems.
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