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Abstract—We propose an anomaly score rescaling method based on
variance minimization for domain-generalized anomalous sound detection
(ASD). Current state-of-the-art ASD methods face significant challenges
due to pronounced domain shifts, which lead to inconsistent anomaly
score distributions across domains. One promising existing approach
to address this issue is to rescale anomaly scores based on local data
density in the embedding space. To enable more flexible and adaptive
rescaling, our proposed method introduces weighting parameters into
the rescaling process and analytically optimizes them based on the score
variance minimization. Experimental evaluations on the DCASE 2021–2024
ASD datasets demonstrate that our proposed method achieves significant
improvements on the DCASE 2022–2024 datasets. We also confirm that
the proposed method obtains weighting parameters that lead to high ASD
performance.

Index Terms—anomalous sound detection, domain generalization,
anomaly score rescaling,

1. INTRODUCTION
Anomaly Sound Detection (ASD) is the task of identifying abnormal
sounds from audio data. Since it is difficult to collect anomalous sound
data, we need to develop ASD systems by using only normal sound
data [1]–[5]. One of the main challenges in the ASD task is domain
shift [6]. Domain shifts are variations – in acoustic environments,
recording equipment, or operational conditions – that do not affect
whether a sample is normal or anomalous. Domain shifts can occur
during system deployment, and ASD systems must be able to perform
robustly even in domains where only a small amount of data is
collected during the development. ASD systems must be robust to
domain shifts and perform robustly not only in domains with abundant
data but also in domains with only a few samples. Here, it is common
to refer to domains with abundant normal data as the source domain,
and those with only a few normal samples as the target domain.

Current state-of-the-art ASD methods predominantly employ dis-
criminative approaches [7]–[11]. These methods leverage labels asso-
ciated with sounds, such as machine types or operational parameters,
and train a feature extractor through the classification task. Anomaly
scores are then calculated based on the distance between test samples
and the training samples within the discriminative embedding space.
The underlying principle is that anomalous sounds are not included
in the training data; they are not correctly classified, causing them
to deviate from the normal sound distribution in the discriminative
embedding space and resulting in high anomaly scores. Although
this approach achieves high performance, the limited training data
in the target domain still often causes inconsistent anomaly score
distributions across domains, as shown in Fig. 1. In such cases, the
optimal threshold for distinguishing normal and anomalous samples
in the source domain does not generalize well to the target domain.

One promising approach to handle this challenge is the anomaly
score rescaling approach [12]. This method rescales anomaly scores
based on the local density, where low-density target domains tend
to exhibit higher anomaly scores. While this rescaling framework
has proven effective, its performance is limited by the assignment of
suboptimal fixed hyperparameters across different embedding spaces.

Fig. 1: Discrepancies of anomaly scores between domains.

In this paper, we aim to further enhance domain generalization
ability by proposing a new anomaly score rescaling method that
automatically adjusts the degree of rescaling according to the
embedding space. Our proposed method introduces a weighting
parameter into the rescaling process and analytically optimizes it
based on the minimization of the variance of anomaly scores over
normal samples in both the source and target domains. In experimental
evaluations, we demonstrate that our proposed method outperforms
existing anomaly score calculation methods on the DCASE 2022–
2024 datasets. Furthermore, the experimental analysis shows that
our method obtains a weighting parameter that leads to high ASD
performance through analytical optimization.

2. ANOMALY SCORE CALCULATION METHODS
2.1. Baseline method
The anomaly score A(x,Xref) for a test embedding x is typically
calculated as the distance to its nearest neighbor in a reference set
Xref consiting of normal training samples as follows:

A(x,Xref) := miny∈XrefD(x,y), (1)

D(x,y) :=
1

2
(1− ⟨x,y⟩) (2)

where x and y are the normalized embeddings with ∥x∥ = ∥y∥ = 1,
D(·, ·) is the cosine distance, ⟨·, ·⟩ is the inner product operation. We
set this approach as our baseline.

2.2. Over- and under-sampling techniques for data imbalance
To address the data imbalance between the source and target domains,
techniques such as K-means clustering and SMOTE (Synthetic
Minority Over-sampling Technique) are widely employed in the
anomaly score calculation process [7], [13]–[15]. K-means clustering is
applied to the source domain samples [7], and the obtained centroids
and the original target domain samples are used as the reference
samples Xref in Eq. 1. SMOTE generates synthetic samples in the target
domain by linearly interpolating original samples [16]. The augmented
target domain samples and the original source domain samples are used
as the reference samples Xref [13]. These methods aim to mitigate the
discrepancies in anomaly score distributions between the source and
target domains by balancing the number of samples across domains.
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2.3. Anomaly score rescaling
Recently, to address discrepancies in anomaly score distributions,
a new approach has been proposed [12]. This method rescales
anomaly scores based on the local density of reference samples
in the embedding space. It is motivated by the observation that the
target domain tends to exhibit higher anomaly scores due to a lack
of sufficient reference samples, as shown in Fig. 1.

This method calculates the anomaly score Ascaled(x,Xref) as
follows:

Ascaled(x,Xref) := miny∈Xref

D(x,y)

b(y,Xref,K)
, (3)

b(y,Xref,K) =
1

K

K∑
k=1

D(y,yk), (4)

where yk denotes the k-th closest sample to y in Xref. This method
rescale the distance between a test sample x and a reference sample
y by dividing it by the local density term b(y,Xref,K), which is
calculated as the average distance from the reference sample y to
its K nearest neighbors within Xref. By using this local density
term, it can prevent the high anomaly scores due to the scarcity
of reference samples, thus reducing the discrepancies in anomaly
score distributions. Furthermore, unlike techniques such as K-means
clustering and SMOTE, this method does not require domain labels
and can handle minor domain shifts within the source domain that
are not reflected in the domain labels. Despite these advantages, its
performance still depends on the manually selected hyperparameter
K. Although K = 16 was found to perform well across several
datasets in their experiments, this fixed value is not optimal for every
embedding space.

3. PROPOSED METHOD
To address the performance limitations caused by the suboptimal
fixed hyperparameter in the previous anomaly score rescaling method,
we propose a new method that adaptively rescales anomaly scores
according to each embedding space. Our proposed method calculates
the anomaly score Aprop(x,Xref, α) as follows:

Aprop(x,Xref, α) := miny∈Xref (D(x,y)− α · b(y,Xref,K)) , (5)

where the anomaly score is rescaled by subtracting a bias term,
b(y,Xref,K), weighted by a newly introduced parameter α. The
optimal weighting parameter α⋆ is obtained as follows:

y⋆(z,Xref) = argminy∈XrefD(z,y), (6)

α⋆ = argminα (7)

Var(D(z,y⋆(z,Xref))− α · b(y⋆(z,Xref),Xref,K) | z ∈ Xval),

=
Cov(D(z,y⋆(z,Xref)), b(y

⋆(z,Xref),Xref,K)|z ∈ Xval)

Var(b(y⋆(z,Xref),Xref,K)|z ∈ Xval)
,

(8)

where Var(·) and Cov(·) are variance and covariance, respectively.
D(z,y⋆(z,Xref)) is identical to A(z,Xref), and Eq. 7 yields the
value of α that minimizes the variance of the anomaly scores in
the validation set Xval. This variance minimization encourages the
alignment of anomaly scores across domains and reduces the need
for careful tuning of the hyperparameter K.

For the validation data Xval, we propose four different approaches.
1) TrainAll: We use all available normal training data from both

source and target domains as Xval.
2) TrainRandom: To reduce imbalances between domains in Xval,

we construct a balanced validation set consisting of all target

training samples and randomly sampled source training samples,
such that the number of source samples matches that of the
target domain.

3) TrainCluster: Another approach to reduce imbalances between
domains in Xval is to use clustering. We first perform K-means
clustering on the source domain, and then select the original
source samples closest to the centroids as Xval, instead of using
the centroids directly. This approach eliminates randomness,
unlike TrainRandom approach.

4) TestAll: We also consider the case where we can utilize test data
as Xval. Since test samples observed during the operational phase
lack both domain and normal/anomalous labels, we simply use
all test as Xval. Assuming that ASD systems are deployed in
both the source and target domains, this approach enables the
use of balanced validation data including sufficient samples;
however, it may include anomalous samples.

Note that TrainRandom and TrainCluster require the domain labels
while TrainAll and TestAll does not. Since Xref includes all training
samples and overlaps with Xval, we ensure that y⋆(z,Xref) ̸= z by
excluding z from Xref.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental setups

We conducted experimental evaluations using the DCASE 2021–2024
Task 2 Challenge datasets [2]–[5]. These datasets provide labels
for machine types, sections, domains, and attributes. The section
identifies each individual instance of the same machine type, while
the attribute labels reflect the operational state of the machine. The
DCASE 2021 and 2022 datasets consist of seven machine types,
each with six sections. The DCASE 2023 and 2024 datasets consist
of 14 and 16 machine types, respectively, with each machine type
having only one section. One section contains approximately 1,000
normal training samples and 400 or 200 test samples. In the training
dataset, three samples in DCASE 2021 and ten in each of the DCASE
2022–2024 datasets are from the target domain, while the remaining
samples are from the source domain. In the test dataset, the source
and target domains, as well as normal and anomalous samples, are
approximately balanced (i.e., approximately 100 or 50 samples for
each combination of domain and normal/anomalous classes). Each
recording is approximately ten seconds long, consisting of a single-
channel signal sampled at 16 kHz. Each of these datasets is divided
into dev and eval subsets based on section or machine type, and the
evaluation results are aggregated accordingly.

The discriminative feature extractor was similar to that used in [8].
This extractor received an amplitude spectrum and an amplitude
spectrogram as input features and processed them in parallel using
two separate neural networks, a spectrum network and a spectrogram
network. The spectrum network consisted of 1D convolutional layers,
while the spectrogram network consisted of 2D convolutional layer-
based ResNet [17] blocks, Squeeze-and-Excitation [18] blocks, and
multilayer perceptrons. The final output was obtained by concatenating
the outputs from spectrum and spectrogram networks. For the
spectrogram, we used a DFT size of 1024 and a hop length of 512.
The frequency range was restricted to 200-8000 Hz. We trained the
feature extractor for 16 epochs jointly using machine type, section,
domain, and attribute labels. The optimizer was AdamW [19] with a
fixed learning rate of 0.001 and a batch size was set to 64. For the loss
function, we used Sub-cluster AdaCos (SCAC) [20] with the number
of sub-clusters set to 16 and a fixed scale parameter. While previous
work [7] showed that fixed class centers lead to better performance
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Table 1: Mean (± Standard Deviation) of official score [%] for DCASE 2021–2024 datasets using fixed SCAC loss. † requires the domain labels.

Method 2021 2022 2023 2024

dev eval dev eval dev eval dev eval

Baseline 67.31 ± 0.51 66.28 ± 0.65 68.97 ± 0.75 63.79 ± 0.92 62.11 ± 0.98 57.00 ± 1.51 58.63 ± 0.71 51.59 ± 0.73
w/ K-means clustering† 65.27 ± 0.59 64.02 ± 0.59 70.49 ± 0.81 61.82 ± 1.04 63.63 ± 0.70 59.17 ± 1.44 59.24 ± 0.96 52.15 ± 0.63
w/ SMOTE† 67.48 ± 0.48 66.43 ± 0.62 69.46 ± 0.74 64.63 ± 0.95 63.24 ± 0.75 59.27 ± 1.52 59.36 ± 0.78 52.16 ± 0.73

Rescaling (K = 8)
Previous [12] 63.38 ± 1.39 61.43 ± 1.65 64.08 ± 1.81 62.68 ± 0.77 58.94 ± 1.34 65.32 ± 1.37 60.08 ± 1.63 51.47 ± 1.38
Prop (TrainAll) 52.46 ± 2.11 49.83 ± 2.53 69.10 ± 1.55 66.34 ± 0.83 61.20 ± 1.64 67.41 ± 1.58 58.56 ± 1.74 54.10 ± 1.25
Prop (TrainRandom)† 60.69 ± 3.61 59.15 ± 2.93 70.60 ± 0.96 66.84 ± 1.05 62.62 ± 2.16 66.18 ± 1.52 58.20 ± 2.59 54.06 ± 1.35
Prop (TrainCluster)† 60.44 ± 3.60 58.55 ± 2.87 70.63 ± 1.00 66.84 ± 1.02 62.23 ± 1.93 66.25 ± 1.80 57.92 ± 2.84 54.40 ± 1.06
Prop (TestAll) 64.02 ± 1.04 62.75 ± 1.24 70.47 ± 1.19 65.28 ± 0.67 64.97 ± 0.95 67.91 ± 0.96 59.43 ± 1.85 56.58 ± 0.68

Rescaling (K = 16)
Previous [12] 63.62 ± 1.38 61.58 ± 1.68 63.33 ± 1.68 61.90 ± 0.85 58.71 ± 1.58 63.92 ± 1.47 59.67 ± 1.71 48.18 ± 0.98
Prop (TrainAll) 51.07 ± 3.17 50.46 ± 1.99 66.71 ± 1.92 65.85 ± 0.87 60.40 ± 1.99 66.09 ± 1.38 58.18 ± 1.81 54.16 ± 1.27
Prop (TrainRandom)† 60.65 ± 3.32 58.72 ± 3.17 70.32 ± 1.11 67.59 ± 0.92 62.81 ± 2.07 65.63 ± 1.75 58.47 ± 2.02 53.52 ± 1.11
Prop (TrainCluster)† 60.21 ± 3.45 58.04 ± 3.07 70.20 ± 1.14 67.55 ± 0.87 62.41 ± 1.90 65.46 ± 1.81 57.96 ± 2.37 53.63 ± 1.11
Prop (TestAll) 63.93 ± 1.10 62.47 ± 1.31 69.43 ± 2.77 65.24 ± 0.92 65.43 ± 0.99 67.39 ± 0.86 59.35 ± 1.68 56.21 ± 0.68

Table 2: Mean (± Standard Deviation) of official score [%] for DCASE 2021–2024 datasets using trainable SCAC loss. † requires the domain labels.

Method 2021 2022 2023 2024

dev eval dev eval dev eval dev eval

Baseline 68.82 ± 0.60 65.22 ± 0.64 70.82 ± 0.63 67.32 ± 0.56 63.96 ± 1.10 63.68 ± 3.49 60.42 ± 1.03 56.16 ± 0.71
w/ K-means clustering† 67.01 ± 0.98 63.96 ± 0.62 70.23 ± 1.11 64.34 ± 0.70 65.53 ± 0.99 65.47 ± 2.83 61.54 ± 1.16 55.71 ± 0.64
w/ SMOTE† 69.05 ± 0.57 65.30 ± 0.55 71.12 ± 0.67 67.86 ± 0.60 65.31 ± 0.93 65.60 ± 2.55 61.82 ± 0.99 56.20 ± 0.78

Rescaling (K = 8)
Previous [12] 69.39 ± 0.85 64.47 ± 0.78 66.53 ± 1.39 66.60 ± 0.80 61.87 ± 1.66 67.23 ± 0.89 62.74 ± 1.14 52.59 ± 0.93
Prop (TrainAll) 66.99 ± 0.94 62.26 ± 0.75 67.79 ± 1.26 67.61 ± 0.70 64.94 ± 1.37 69.75 ± 1.22 62.63 ± 1.15 55.02 ± 0.70
Prop (TrainRandom)† 68.52 ± 1.26 64.50 ± 0.80 70.98 ± 0.88 68.80 ± 0.62 66.51 ± 0.84 69.04 ± 1.38 62.74 ± 0.70 57.05 ± 0.77
Prop (TrainCluster)† 67.72 ± 0.87 63.60 ± 0.36 70.87 ± 0.78 68.89 ± 0.61 66.44 ± 0.94 69.33 ± 1.53 62.44 ± 1.02 56.22 ± 0.89
Prop (TestAll) 68.75 ± 0.79 64.62 ± 0.50 71.66 ± 0.63 67.36 ± 0.57 66.19 ± 0.69 69.91 ± 1.25 62.40 ± 1.48 58.63 ± 0.79

Rescaling (K = 16)
Previous [12] 69.47 ± 0.83 64.48 ± 0.83 65.41 ± 1.40 65.77 ± 0.64 60.95 ± 1.33 66.28 ± 0.54 62.39 ± 1.12 49.82 ± 0.84
Prop (TrainAll) 66.33 ± 0.99 61.83 ± 0.70 67.93 ± 1.11 67.69 ± 0.83 64.22 ± 1.48 69.19 ± 1.32 62.59 ± 1.10 55.64 ± 1.22
Prop (TrainRandom)† 68.51 ± 1.15 64.59 ± 0.80 71.04 ± 0.81 69.03 ± 0.62 66.46 ± 0.87 68.61 ± 1.50 62.72 ± 0.74 56.76 ± 1.03
Prop (TrainCluster)† 67.76 ± 0.87 63.73 ± 0.41 70.85 ± 0.74 68.97 ± 0.55 66.24 ± 0.85 69.07 ± 1.42 62.28 ± 0.89 56.20 ± 1.21
Prop (TestAll) 68.69 ± 0.76 64.61 ± 0.56 71.79 ± 0.68 67.80 ± 0.57 66.23 ± 0.71 69.07 ± 1.01 62.36 ± 1.39 57.88 ± 0.70

than trainable class centers, we found that trainable class centers
performed better. Accordingly, we conducted experiments using both
fixed and trainable centers in the SCAC loss. Additionally, we applied
Mixup [21] to the input waveforms with a probability of 0.5.

We evaluated our proposed method with four comparison previous
backend methods: the baseline method (Eq.1), the baseline method
with K-means clustering or SMOTE described in Sec.2.2, and the
anomaly score rescaling method [12] described in Sec. 2.3. For the
baseline method with K-means clustering, we set the number of
clusters to 16. For the SMOTE, we set the oversampling ratio to 5%
and the number of neighbors to 5. For the anomaly score rescaling
approach, we set K to 8 and 16 following the previous work [12]. For
TrainCluster in our proposed method, we used K-means clustering
with the number of clusters set to match the number of samples in
the target domain (i.e., three for DCASE 2021 and ten for DCASE
2022–2024).

As evaluation metrics, we used the official DCASE metrics for each
dataset: the harmonic mean of the area under the receiver operating
characteristic (ROC) curve (AUC) and the partial AUC (pAUC) with
p = 0.1 over all machine types and domains. We calculated the
arithmetic mean and standard deviation of the official scores across
ten independent trials.

4.2. Experimental results

Tables 1 and 2 show the evaluation results when using fixed and
trainable class centers for the SCAC loss, respectively. For the DCASE
2022–2024 datasets, our proposed method consistently achieves high
performance, significantly improving performance in several subsets.
For example, in 2023 eval of Table 1, baseline, K-means clustering,
SMOTE, and the previous rescaling with K = 8 achieved 57.00%,
59.17%, 59.27%, and 65.32%, respectively, while our proposed
TrainAll achieved 67.41% with K = 8. Additionally, TrainAll of our
proposed method achieves high performance without requiring domain
labels, whereas the K-means clustering and SMOTE techniques rely
on them. Comparing Tables 1 and 2, we can see that using trainable
SCAC loss improves overall performance. Although this reduces the
relative performance gain of our method, it still consistently contributes
to performance improvement.

We can also see that the previous rescaling method [12] can cause
performance degradation, whereas our proposed method improves
or keeps the baseline performance in most cases of the DCASE
2022–2024 datasets, regardless of whether the hyperparameter K is
set to 8 or 16. For example, in 2023 dev of Table 2, the previous
method with K = 8 degrades performance from 63.96% of baseline to
61.87%, whereas the proposed method TrainAll with K = 8 achieves
64.94%. In contrast, in 2023 eval of Table 2, the previous method
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Fig. 2: Graphs of the official score improvement for DCASE 2024 evaluation
data (one trial with a fixed SCAC loss, K = 16). The horizontal axis shows
α, and the vertical axis shows official score [%]. Plotted points indicate the
α selected by each validation data selection method (Orange: TrainAll, Red:
TrainRandom, Green: TrainCluster, Gray: TestAll) for each machine.

with K = 8 improves the performance from 63.68% of baseline
to 67.23%, where the proposed method TrainAll with K = 8 also
improves the performance to 69.75%.

Regarding validation data selection, the comparison among TrainAll,
TrainCluster, and TrainRandom shows that the best choice varies
depending on the dataset, and there is no consistent trend. On the
other hand, Test approach achieves the highest performance in most
cases. For example, in 2023 dev of Table 1, the proposed method
Test with K = 16 achieves 65.43%, in 2024 eval of Table 1, the
proposed method Test with K = 8 achieves 56.58%, and in 2024 eval
of Table 2, the proposed method Test with K = 8 achieves 58.63%.
This suggests the importance of using validation datasets in which
the source and target domains are balanced with sufficient samples.

We confirm that α⋆ indeed leads to high performance. Fig. 2
illustrates the relationship between α and the official score, along
with the α⋆ obtained using each validation data selection method.
This figure is generated for each machine type in the DCASE 2024
evaluation subset, when using the fixed SCAC loss and K = 16 under
a specific random seed. Here, the proposed method with α = 0 is
equivalent to the baseline method. The figure clearly shows that the
optimal value of α varies across machine types, and that the proposed
method adaptively selects values of α that yield high performance
for each type.

Despite the overall performance improvements in the DCASE 2022–
2024 datasets, we observe that the proposed methods and the previous
rescaling method [12] exhibit degraded performance on the DCASE

Fig. 3: The plots show the embedding of the test samples of section 3
and training samples of all sections for the pump machine from the DCASE
2021 dataset (one trial with a fixed SCAC loss). The AUC for these test
samples of the baseline method, the previous rescaling using K = 8, and
the proposed method using K = 8 and TrainAll were 86.69%, 67.01%, and
43.98%, respectively.

2021 dataset compared to other methods. To investigate the reason
for this degradation, we examine the embedding space. Figure 3
visualizes a partial excerpt of the embedding space for pump machine
using UMAP [22]. In the highlighted frame within the figure, we can
observe that a single training sample is embedded apart from the other
training samples, while many anomalous samples are located nearby.
Due to the low density of training samples in that area, the rescaling
method inadvertently reduces the anomaly scores of anomalous sounds,
leading to performance degradation.

5. CONCLUSION
This paper introduced an anomaly score rescaling method based on
variance minimization for domain-generalized ASD. Our proposed
method introduced weighting parameters into the local data density
based rescaling process and analytically optimized them based on
the score variance minimization. Experimental results demonstrated
that (1) the proposed method significantly improves performance
over existing anomaly score calculation methods; (2) ore stable with
respect to random seed than the previous rescaling method [12]; and (3)
the weighting parameters derived through our variance minimization
scheme adaptively rescale anomaly scores for each machine type,
leading to high performance.
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