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Abstract—Incremental learning aims to continually learn new input
tasks while overcoming the forgetting of previously learned ones. Existing
incremental learning methods for audio classification tasks assume that
the incoming task either contains new classes from the same domain or
the same classes from a new domain, referred to as class-incremental
learning (CIL) and domain-incremental learning (DIL), respectively. In
this work, we propose a universal incremental learning (UIL) method for
few-shot bird sound classification, in which the incoming task contains
new or a combination of new and previously seen bird classes from a
new domain. Our method uses generalizable audio embeddings from a
pre-trained model, which is trained on focal recordings, to develop an
incremental learner that solves few-shot bird sound classification tasks
from diverse soundscape datasets. These datasets are selected from BIRB
(Benchmark for Information Retrieval in Bioacoustics), a large-scale bird
sounds benchmark, and used to demonstrate the performance of the
proposed method. Results show that our method adapts to the incoming
tasks effectively with minimal forgetting of previously seen tasks.

Index Terms—Incremental learning, class-incremental learning, domain-
incremental learning, audio embeddings, few-shot bird sound classification

1. INTRODUCTION

Incremental or continual learning for audio classification aims to
acquire new knowledge from incoming audio data over time without
significantly forgetting the previously acquired knowledge. In this
work, our focus is on the incremental learning of bird sounds. Birds
live in most environments, and their diverse species act as indicators of
ecosystem health. Specifically, birds are sensitive to the environment,
and investigation of bird sounds is highly useful for understanding
the shifts in ecosystems and climate [1]. Deep learning models for
bird sound classification have reached performance levels that allow
their use as biodiversity monitoring systems [1]. In most cases, the
annotated data for training these deep models is obtained from citizen
science initiatives like Xeno-Canto (XC) [2] that includes over one
million vocalizations from more than 10,000 bird species.

On the other hand, bird researchers usually collect their data
from a specific soundscape using a noninvasive passive acoustic
monitoring (PAM) method. The collected data is used locally to
monitor species and perform different studies, such as determining the
species’ behavioral changes. However, XC and PAM follow different
data collection procedures. XC recordings are typically focal, which
concentrate on the bird’s vocalization of interest. In contrast, PAM
recordings are captured in natural soundscapes, which include a
mixture of sounds of different species overlapped with background
environmental noise. These differences in recording conditions create
a domain shift between focal and soundscape recordings [3]. Recently,
contrastive learning-based pre-trained models have been developed
using focal recordings [4]-[6], and the robust audio embeddings from
these pre-trained models were shown to be capable of generalizing to
soundscape recordings [3].

We acknowledge CSC Finland for awarding this project access to the
LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by
CSC (Finland) and the LUMI consortium through Jane and Aatos Erkko
Foundation, grant number 230048, ”Continual learning of sounds with deep
neural networks”.
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In this work, we propose a method for few-shot incremental learning
for bird sounds classification using soundscape datasets. From a
learning perspective, the method needs to cope with domain shifts
caused by a mismatch between acoustic conditions, background noises,
and diverse recording devices. This domain shift can cause catastrophic
forgetting of previously learned classes when the model learns to
classify bird sounds from a new soundscape. Further, a soundscape
dataset includes unique species, typical for the specific location, but
also common species that are present in other datasets.

The existing incremental learning methods for audio classification
typically fall into two scenarios. One is class-incremental learning
(CIL), where incoming tasks contain new audio classes from the same
domain [7] [8], as illustrated in Fig. 1a. Another is domain-incremental
learning (DIL), where incoming tasks contain the same audio classes
from the new domains [9], illustrated in Fig. 1b. These scenarios are
based on a strong assumption that incoming sequential tasks either
contain the same classes or domains. This assumption is not valid in
the case of datasets containing bird sounds. An incoming soundscape
dataset, in other words, a new domain, may include a combination of
both new and already seen classes from previous domains. Specifically,
a model learns a new domain in each incremental time step, and that
domain includes new or previously seen classes, as illustrated in Fig. 1.
For this, we propose a universal incremental learning method (UIL)
for few-shot bird sound classification.

The existing few-shot incremental learning methods for audio
classification [10]-[12] or bird sound detection [13] are based on CIL.
Most of these methods include one base task or session, followed by
multiple incremental tasks, with sufficient training samples available
in the base task to train the model from scratch offline for several
iterations, and only a few training samples available in incremental
tasks to update the model to adapt to new classes.

In this work, we propose using a fixed pre-trained model trained on
focal recordings as a generic feature extractor and use its embeddings
to adapt to any number of incremental soundscape datasets. We
use a cosine classifier that works based on the class prototypes
to learn domains incrementally and accumulate the inexpensive
class prototypes of previously learned domains to avoid forgetting.
Additionally, we inject a random projection (RP) layer with an
activation function between the audio embeddings and the classifier
as in [14], which expands the dimension of the audio embeddings and
enhances the linear separability before computing the class prototypes
for the cosine classifier. The proposed method is free from a base
session and is online. It adapts to a new domain by only a single
forward pass through the training samples, with minimal forgetting of
previously learned domains. The proposed method is domain-agnostic
and does not require any domain ID during inference for prediction.

The contributions of this work are as follows. (1) We propose a
universal incremental learning framework that is suitable for few-shot
bird sound classification from diverse datasets; (2) We show that
the proposed method incrementally adapts to any new soundscape
datasets by passing through a few training samples only once; the
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(a) Class-incremental learning (CIL) (b) Domain-incremental learning (DIL) (c) Universal incremental learning (UIL)

Fig. 1: Comparison of incremental learning protocols. Color shade denotes the domain groups, solid box denotes the class groups, and arrows denote incremental
steps. (a) Class-incremental learning (CIL) learns new classes from the same domain; (b) domain-incremental learning (DIL) learns the same classes from new
domains; (c) Proposed universal incremental learning (UIL) learns new and already seen classes from new domains in incremental steps.
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Fig. 2: Overview of the proposed universal incremental learning (UIL) method. Features v extracted from a frozen pre-trained model P for given input samples
x are projected into a higher-dimensional space using frozen random weights W, followed by a nonlinear activation function. Randomly projected features u
are then used as inputs to the cosine classifier for prediction. The class prototypes of the cosine classifier are updated based on the new or old classes in the

incoming new domain.

proposed method only requires audio embeddings from a fixed pre-
trained model without any base session; (3) We analyze performance
concerning each component of the proposed method in one-shot and
five-shot incremental tasks.

The rest of the paper is organized as follows: Section 2 presents the
incremental tasks setups, notations and the proposed method for UIL.
Section 3 introduces the datasets, training setup, baselines, implemen-
tation details, evaluation metrics, and results. Finally, conclusions are
given in Section 4.

2. UNIVERSAL INCREMENTAL LEARNING
2.1. Tasks setup and notations

In our universal incremental learning framework, a sequence of T’
domains or tasks, here presented as different datasets, D1, --- ,Dr is
introduced to the model for few-shot classification of bird sounds. A
domain D, includes the audio samples of different bird species, and
the model does not have access to previous domains at any learning
stage. The proposed UIL combines the functionalities of both CIL
and DIL protocols to learn the classes present in the incoming domain.
CIL learns new classes from the same domain. In contrast, UIL learns
the new classes from the new incoming domain, and it works like DIL
whenever the same classes are present in the new domain. We refer to
D; as the soundscape dataset, domain, task, or stage interchangeably
throughout this paper.

We denote the total number of training samples in each soundscape
dataset as My, and the total number of classes learned so far as
C. xX¢,m and y¢,», are the m-th training sample and corresponding
one-hot encoded label of length C. v¢ ,, € RE and vies: € RE are
embeddings of dimension K, extracted from a frozen pre-trained
model P for input training sample Xt ., and test sample Xiest,
respectively. An overview of the proposed UIL method is given
in Fig. 2. It includes two major components: a random projection
layer and a cosine classifier, which are explained as follows.

91

2.2. Random projection layer

RP layer is injected between the pre-trained model and the classifier.
The feature embeddings of an input training sample, obtained via the
pre-trained model, are projected into a dimension G (G > K) using
a random weight matrix W € R¥*¢ followed by an element-wise
nonlinear activation function ¢ (e.g., ReLU) in each domain as:

T

Ut,m = w(vt,mw)7 Utest — w(vlstWL (1)

where ut ., and ues: are new features of length G in training and
inference phases. W contains training-free random weights, which
are generated once and kept frozen in all incremental learning stages.
The projected features are used to compute class prototypes for the
cosine classifier.

2.3. Cosine classifier

Inspired by [14], [15], we propose using a cosine classifier. The
weights of the cosine classifier are the class prototypes, computed by
averaging the randomly projected embeddings of the training samples
within classes. We denote class prototypes of a class y as cy.

In the proposed UIL setup, the incoming domain either contains
only new classes or a combination of both new and previously seen
(old) classes. For new classes in the incoming domain, we expand
the classifier to accommodate new classes and compute their class
prototypes. For old classes in the incoming domain, we compute class
prototypes and add these to the class prototypes of the same classes
in previously seen domains. This update to the class prototypes of the
old classes helps to acquire incremental domain-specific knowledge.
During inference, the class of a test sample ¥4 is predicted by finding
the maximum cosine similarity s, between its randomly projected
feature embeddings and the set of class prototypes as:

— u;restcy
[[wsese|l - lley |l

Ytest = argmax Sy, 2)

y'e{1,--,C}

Sy
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Table 1: Final average accuracy (AAr) and forgetting (F R ) of the methods over all the tasks 7" = 6 for one-shot and five-shot bird sounds classification.

Higher accuracy and lower forgetting are better.

One-shot Five-shot
Method RP  ReLU AAr FRy ‘ AAg FRyp
Online
Linear probe 0.5+0.3 0.6£0.3 0.5£0.2 0.940.3
Joint linear probe 0.8+0.4 4.540.8
Offline
Linear probe 6.1+1.7 13.1+1.4 8.8+04  27.3%£l5
Joint linear probe 14.9+1.3 36.7£1.2
Proposed
Universal incremental learning | v/ v | 165+14 18402 | 33.5+£08 5.6+1.0
Ablations
Universal incremental learning 16.3£1.6  2.441.1 32.1£1.1 6.0£1.0
Universal incremental learning | v/ 16.6+£1.8  2.3%+0.7 325409  6.5+1.0

During training, we only update the class prototypes in the cosine
classifier by a single forward pass through the few-shot training
samples.

3. EVALUATION AND RESULTS
3.1. Datasets, training setup and baselines

We use 6 soundscape datasets from BIRB (benchmark for information
retrieval in bioacoustics) [16]; these datasets were further preprocessed
and provided in [3], [17]. A summary of these datasets is provided
in the Table 2, including the number of audio recordings and the
number of classes/species. Each soundscape dataset includes unique
bird species and common bird species which are present in other
soundscapes.

Table 2: A summary of the soundscape datasets from BIRB.

Dataset | Abbreviation | Recordings | Classes
Peru [18] PER 14,798 132
Colombia, Costa Rica [19] NES 6,952 89
Island of Hawai’i, USA [20] UHH 59,583 27
High Sierra Nevada, USA [21] HSN 10,296 19
New York State, USA [22] SSwW 50,760 96
Sierra Nevada [23] SNE 20,147 56

We adopt an episodic training and testing strategy. For training,
we randomly select one and five training samples per class from
a dataset for one-shot and five-shot bird sound classification tasks,
incrementally. The remaining test samples of all the datasets seen so
far are considered for evaluation. Samples in the training and testing
sets are different in all experiments. In this work, we learn the datasets
in the following order: PER — NES — UHH — HSN — SSW —
SNE.

We compare the performance of the proposed UIL method with
two different methods used to solve the same problem: (1) a linear
probe classifier trained on each incremental soundscape dataset using
embeddings extracted from the pre-trained model. A linear probe is
widely used to demonstrate the generalization ability of a pre-trained
model’s embeddings in classification tasks [24], [25]. (2) a joint linear
probe classifier trained using embeddings of all the soundscape datasets
seen so far. This joint training violates the incremental learning setup,
but it is given for completeness.

3.2. Implementation details and evaluation metrics

We use the CvT-13 pre-trained transformer model [26], trained on
focal recordings of XC by [3]. The 384-dimensional feature vectors
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are extracted for audio recordings in each soundscape dataset using
CvT-13 that was trained using Prototypical Contrastive Learning of
Representations (ProtoCLR). For complete details about the training
procedure and parameters of CvT-13, we refer the reader to [3]. We
compute log-mel spectrograms from audio recordings of soundscape
datasets and apply the augmentation techniques using the configuration
provided in [3]. ReLU is used as a nonlinear activation function in Eq.
(1). The dimension G is set to 2048 based on preliminary experiments
performed with different values of G.

For the baseline methods, linear and joint linear probes are trained
using cross-entropy loss, Adam optimizer [27] with a learning rate of
5 x 10™* and the CosineAnnealingLR [27] scheduler. The proposed
method updates only the cosine classifier and does not require Adam-
based weight updates. The number of epochs is set to 1 for online
and 25 for offline training, to train both linear and joint linear probes.

Following the standard practice in incremental learning [9], [14],
we evaluate the performance of the method after learning the current
domain D; using average accuracy and forgetting of all the domains
seen so far. Average accuracy is defined as:

t
1
72 ACC,
j=1

where ACCY ; is the accuracy of j-th domain after learning the ¢-th
domain. Average forgetting is defined as:

AA = 3

t—1

}(AOC,g’j - ACCt,j), @)

t—1
where ACC} ; is the maximum accuracy of the previously seen j-th
domain after learning the ¢-th domain.

We compute AA; and F'R; after learning D; in both one-shot
and five-shot classification setups. We run each incremental few-shot
experiment 10 times with different random seeds and report the results
using mean and standard deviation over average accuracy values and
forgetting values across the runs.

3.3. Results

We report final average accuracy (AAr) and forgetting (F Rr) of
different methods after learning all the tasks (7" = 6) in Table 1. For
a detailed task-wise analysis, we show average accuracy (AA;) and
forgetting (F'R:) of different methods after learning each soundscape
dataset, in Fig. 3.

As expected, the offline linear probe performs better than the online
linear probe, which is trained using a single epoch. The linear probe
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Fig. 3: Average accuracy and forgetting of the methods after learning the task D;. Average accuracy (a) and forgetting (b) of the current D; and previously
seen tasks for one-shot classification; Average accuracy (c) and forgetting (d) of the current D; and previously seen tasks for five-shot classification.

Table 3: Accuracy of the methods on the current task D; for one-shot and five-shot bird sounds classification.

Method | PER NES UHH HSN SSwW SNE
One-shot classification

ProtoCLR [3] 9.23+1.6  38.64+5.1 184423 212473 155423 258452
Proposed universal incremental learning 9.9+1.3 39.44+4.1 142432  11.64£39 11.7+12 21.7£33
Five-shot classification

ProtoCLR [3] 19.2+£1.1  679+£28 36.1+4.3 48.0+4.3 34.64+23 48.6+2.8
Proposed universal incremental learning | 19.6+1.2  68.44+2.8 33.3£3.1 36.94+6.1 304+£1.6 412419

does not have access to the previous soundscape datasets. Training
an offline linear probe on the current soundscape dataset for multiple
iterations improves the performance on the current soundscape dataset,
but overwrites the parameters of the previously learned classes, leading
to increased average forgetting, as observed in Fig. 3b and 3d, and
reduced average accuracy in Fig. 3a and 3c after learning each
dataset. The performance of the online joint linear probe is worse, but
the offline joint linear probe achieves competitive results by taking
advantage of full access to the training samples of all the datasets
seen so far. A joint linear probe requires multiple iterations and more
training samples from all the datasets to perform better.

The proposed UIL outperforms the joint linear probe in a one-shot
incremental learning setup, as can be seen in Fig. 3a and Table 1. We
can see from Fig. 3c that the proposed UIL also shows competitive
performance as compared to the joint linear probe in a five-shot
incremental learning setup. UIL suffers from minimal forgetting
despite potential abrupt changes in the domain distributions and
increasing numbers of classes in incremental stages.

Without the random projection or only with the cosine similarity
classifier, UIL gives comparable results. However, class prototypes
from the randomly projected feature embeddings perform better, and
a nonlinear activation function, ReL.U, helps extract the important
nonlinear interactions in feature embeddings, reducing the average
forgetting.

We compare the accuracy of the proposed UIL on the current
domain D; with the existing (non-incremental) few-shot bird sound
classification method in [3]; the numbers for each domain/dataset are
presented in Table 3. The work in [3] uses the feature embeddings
from the same ProtoCLR-based CvT-13 pre-trained model, but uses
a separate classifier to learn each soundscape dataset, with each
classifier handling only the classes present in the current dataset. In
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the incremental learning setup, the number of classes in the cosine
classifier keeps increasing as the model learns a new dataset; therefore,
a single classifier handles all the classes seen so far. The proposed
UIL approach outperforms ProtoCLR [3] in the first datasets (PER
and NES in this experimental setup) in both one-shot and few-shot
learning. As it learns more datasets in sequence, the number of classes
increases and known classes are updated to the new domain, affecting
the overall accuracy.

4. CONCLUSION

In this paper, we presented a universal incremental learning method
for few-shot bird sound classification. Our proposed approach is
specifically designed to learn bird sound classes from multiple datasets
incrementally, dealing with the presence of both new, previously
unseen classes and classes that were already seen, but are now recorded
in different acoustic conditions. It outperforms online and offline linear
probes in both one-shot and five-shot incremental learning setups.
The proposed approach relies on the audio embeddings of the CvT-13
pre-trained model, that uses focal recordings for training, but needs to
update only the class prototypes in the cosine classifier to account for
the domain mismatch. Our method is suitable for realistic deployments,
being able to adapt to any new domains and new classes in a few-shot
scenario. Future research includes the investigation of the effectiveness
of the proposed approach on other animal datasets or combinations
or different kinds of audio data.
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