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ABSTRACT
This paper introduces the task description for the Detection and
Classification of Acoustic Scenes and Events (DCASE) 2025 Chal-
lenge Task 2, titled “First-shot unsupervised anomalous sound de-
tection (ASD) for machine condition monitoring.” Building on the
DCASE 2024 Challenge Task 2, this task is structured as a first-
shot problem within a domain generalization framework. The pri-
mary objective of the first-shot approach is to facilitate the rapid de-
ployment of ASD systems for new machine types without requiring
machine-specific hyperparameter tunings. For DCASE 2025 Chal-
lenge Task 2, sounds from previously unseen machine types have
been collected and provided as the evaluation dataset. We received
119 submissions from 35 teams, and an analysis of these submis-
sions has been made in this paper. Analysis showed that various
approaches can all be competitive, such as fine-tuning pre-trained
models, using frozen pre-trained models, and training small mod-
els from scratch, when combined with appropriate cost functions,
anomaly score normalization, and use of clean machine and noise
sounds.

Index Terms— anomaly detection, acoustic condition monitor-
ing, domain shift, first-shot problem, DCASE Challenge

1. INTRODUCTION
Anomalous sound detection (ASD) [1–7] involves determining
whether the sound emitted from a target machine is normal or
anomalous. This capability plays a crucial role in automating the
detection of mechanical failures, which is essential in the era of the
fourth industrial revolution and AI-driven factory automation.

One of the key challenges in developing ASD systems lies in
the scarcity and limited diversity of anomalous samples available
for training. To address this, the first ASD task was introduced
in the DCASE Challenge 2020 Task 2 [8], focusing on “unsuper-
vised ASD (UASD),” which aimed to detect unknown anomalous
sounds using only normal sound samples for training. Building on
this, subsequent challenges in 2021 and 2022 [9, 10] tackled the is-
sue of domain shifts to enable broader application of ASD systems.
Domain shifts refer to discrepancies between data from the source
and target domains, arising due to variations in machine operational
conditions or environmental noise.

The DCASE 2023/2024 Task 2 (“first-shot” UASD) [11, 12]
targeted a realistic setting where systems must detect anomalies

for entirely novel machine types without access to similar-type
data for training or hyperparameter tuning. This reflects rapid-
deployment scenarios in which collecting diverse training or test
data—especially anomalous samples—is infeasible, and therefore
manual test-driven tuning is unrealistic. Accordingly, the evalua-
tion data comprise machine types absent from the development set
to enforce this constraint.

The DCASE2025 Challenge Task 2 maintains the previous task
setting as a first-shot problem under domain generalization condi-
tions, using newly recorded machine sound data as the evaluation
dataset. In addition, there are several modifications: We provide
additional supplementary data for each machine, including clean
machine recordings or noise samples, which can optionally be used
to enhance ASD performance in noisy environments. Also, partic-
ipants are asked to provide the computational complexity of their
solutions. Although this score is not used for the official rankings,
it helps clarify the balance between model complexity and perfor-
mance—a key factor for lightweight ASD applications on edge de-
vices. In this paper, we provide explanations on this task and discuss
the challenge results.

2. FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND
DETECTION UNDER DOMAIN SHIFTED CONDITIONS

Consider an audio clip x, which contains sounds produced by a ma-
chine. The objective of the ASD task is to classify the machine as
either normal or anomalous by calculating an anomaly score Aθ(x)
using an anomaly score calculator A with parameters θ. The input
of A can be the audio clip x with or without additional information
such as labels indicating the operation condition of the machine.
The machine is then determined to be anomalous when Aθ(x) ex-
ceeds a pre-defined threshold ϕ as

Decision =

{
Anomaly (Aθ(x) > ϕ)
Normal (otherwise). (1)

The primary difficulty in this task is to train the anomaly score cal-
culator with only normal sounds (UASD). The DCASE 2020 Chal-
lenge Task 2 [8] was designed to address this issue, and all the fol-
lowing tasks stand on this UASD setting.

Addressing the domain-shift problem is also essential for the
practical implementation of ASD systems. Domain shifts refer to
variations in conditions between training and testing phases, which
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alter the distribution of the observed sound data. These variations
can result from differences in operating speed, machine load, heat-
ing temperature, microphone arrangement, environmental noise,
and other factors. Two domains are defined: the source domain,
representing the original condition with sufficient training data, and
the target domain, representing another condition where only lim-
ited samples are available. This year’s task follows the 2022 to 2024
Task 2 [10–12] setting, where the domain information is assumed
to be unknown in the test phase and anomalies from both domains
have to be detected with a single threshold. In this case, domain
generalization is required to achieve good performance.

To further pursue the rapid development of ASD systems in
real-world scenarios, solving ASD (a) against completely novel ma-
chine types (b) with only one section of training data (c) without
handcrafted tunings that depend on test data, are highly important.
This is because in real-world scenarios, customers may only pos-
sess a single novel machine, and collecting test data-especially the
anomalous samples-for handcrafted tuning may be infeasible. This
problem setting was named as the “first-shot problem”, and the
2023 and 2024 Task 2 [11,12] was organized based on this problem
setting. The first-shot problem was implemented by introducing
two key features to the dataset: (i) The development and evalua-
tion datasets consist of entirely different sets of machine types, and
(ii) Each machine type in the dataset contains only a single section.
Note that until 2022 Task 2, the provided dataset included multiple
sections for each machine type, and the development and evaluation
datasets sharing the same machine types.

The DCASE2025 Challenge Task 2 retains the previous task
setting as a first-shot problem under domain generalization con-
ditions, while introducing several modifications. First, we have
provided additional supplementary data, including clean machine
recordings and noise samples. These resources may reflect practi-
cal scenarios—such as collecting clean machine data when a factory
is idle or gathering noise recordings when the machine is not run-
ning. Participants are free to incorporate these additional sources
to enhance the accuracy of their models. Second, although large-
scale models—such as pretrained networks and ensembles—have
become increasingly popular in this task, lightweight models capa-
ble of running on edge devices also remain an important area of
research. To acknowledge this, participants were optionally asked
to report the computational complexity of their solutions in terms
of Multiply-Accumulate Operations (MACs). Although this metric
does not affect the official rankings, it provides valuable insight into
the balance between model complexity and performance.

3. TASK SETUP

3.1. Dataset
The dataset for this task is divided into three categories: the de-
velopment dataset, the additional training dataset, and the eval-
uation dataset. The development dataset contains seven machine
types, while the additional training and evaluation datasets include
nine machine types, with each machine type consisting of a single
section. A machine type refers to the category of machines, such as
fans or gearboxes, and a section represents a subset or the entirety
of the data associated with each machine type.

All recording are single-channel, lasting 6 to 10 seconds, and
have a sampling rate of 16 kHz. The machine sounds recorded at
laboratories were mixed with environmental noise recorded at fac-
tories and in the suburbs to create each sample in the dataset. For
further details of the recording process, please refer to the papers on

ToyADMOS2 [13] and MIMII DG [14].
The development dataset provides seven machine types (fan,

gearbox, bearing, slide rail, valve, ToyCar, ToyTrain), and each ma-
chine type has one section that contains a complete set of the train-
ing and test data. Each section contains (i) 990 normal clips from
a source domain for training, (ii) 10 normal clips from a target do-
main for training, (iii) 100 clips of supplementary sound data con-
taining either clean normal machine sounds in the source domain
or noise-only sounds, and (iv) 100 normal clips and 100 anomalous
clips from both domains for the test. To assist participants, domain
information (source/target) was included in the test data. For four
machine types (fan, gearbox, valve, and ToyCar) details regarding
operational or environmental conditions were provided in the file
names and attribute CSV files. However, for the remaining three
machine types, these attributes were not disclosed.

The additional training dataset provides novel nine machine
types (AutoTrash, HomeCamera, ToyPet, ToyRCCar, BandSealer,
Polisher, ScrewFeeder, CoffeeGrinder). Each section consists of
(i) 990 normal clips in a source domain for training, (ii) 10 nor-
mal clips in a target domain for training. and (iii) 100 clips of
supplementary sound data containing either clean normal machine
sounds in the source domain or noise-only sounds. For five machine
types (HomeCamera, ToyRCCar, BandSealer, and CoffeeGrinder),
attributes were provided in this dataset. For the other four machine
types, attributes were concealed. The evaluation dataset provides
the test clips that correspond to the additional training dataset, e.g.
data of the same machine types as the additional training dataset.
Each section consists of 200 test clips, none of which have a condi-
tion label (i.e., normal or anomaly), domain information, or attribute
information. Participants are required to train a model for each new
machine type using only a single section per machine type.

3.2. Evaluation metrics
To assess overall detection performance, we employed the area un-
der the receiver operating characteristic curve (AUC). Additionally,
we used the partial AUC (pAUC) to evaluate performance in a low
false-positive rate range [0, p], where we set p = 0.1. To evaluate
each system under the domain generalization setting, we compute
the AUC for each domain and pAUC for each section as

AUCm,n,d =
1
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n
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where m and n represent the index of a machine type and a section
respectively, d ∈ {source, target} represents a domain, ⌊·⌋ is the
flooring function, and H(y) returns 1 when y > 0 and 0 otherwise.

Here, {x−i }
N−

d
i=1 are the normal test clips in domain d in section n

of machine type m and {x+j }
N+

n
j=1 are all the anomalous test clips in

section n of machine type m. N−
d , N

−
n , N

+
n represent the number

of normal test clips in domain d, normal test clips in section n, and
anomalous test clips in section n, respectively.

The official score Ω is given by the harmonic mean of the AUC
and pAUC scores overall machine types and sections:

Ω = h
{
AUCm,n,d, pAUCm,n |

m ∈ M, n ∈ S(m), d ∈ {source, target}} , (4)
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where h {·} represents the harmonic mean, M is the set of given
machine types, and S(m) represents the set of sections for machine
type m. Specifically, S(m) = {00} for the dataset in 2024-2025.

Additionally, although not included in the official rankings, par-
ticipants were optionally asked to provide information on the com-
putational complexity of their models in terms of MAC operations.
It was recommended that this be calculated using the open-source
implementation available in [15].

3.3. Baseline systems and results
The task organizers offer a baseline system using Autoencoders
(AEs) with two operating modes, identical to the 2023 Task 2 base-
line. While both modes use Autoencoders for training, they differ
in anomaly score computation. This paper presents the system and
its detection performance; details can be found in [16].

3.3.1. Autoencoder training
The AE is trained for both operating modes using log-mel-
spectrograms of training sound clips X = [X1, . . . , XT ], where
Xt ∈ RF for t = 1, . . . , T represents frame-wise feature vectors
at frame t, where F = 128 and T is the number of mel-filters and
time-frames, respectively. For input, P = 5 consecutive frames
are concatenated as ψt = [XT

t , . . . , X
T
t+P−1]

T ∈ RD for each t,
with D = P × F = 640. Model parameters are trained by mini-
mizing the mean squared error (MSE) between the input ψt and the
reconstructed output rθ(ψt) for all inputs from the training data.

3.3.2. Simple Autoencoder mode
This mode uses the mean MSE of all features derived from the given
sound clip as its anomaly score, e.g.,

Aθ(X) =
1

DK

K∑
k=1

∥ψk − rθ(ψk)∥22, (5)

where K = T − P + 1, and ∥ · ∥2 represents ℓ2 norm.

3.3.3. Selective Mahalanobis mode
In this mode, the Mahalanobis distance between the system input
and reconstructed feature is used to compute the anomaly score.
The anomaly score is defined as

Aθ(X) =
1

DK

K∑
k=1

min{Ds(ψk, rθ(ψk)), Dt(ψk, rθ(ψk))}, (6)

Ds(·) = Mahalanobis(ψk, rθ(ψk),Σ
−1
s ), (7)

Dt(·) = Mahalanobis(ψk, rθ(ψk),Σ
−1
t ), (8)

where Σ−1
s and Σ−1

t are the covariance matrices of rθ(ψk) − ψk

for the source and target domain data of each machine type, respec-
tively.

3.3.4. Results

Tables 1 present the AUC and pAUC results for the two baseline
systems on the development dataset, with the averages and standard
deviations computed from five independent trials.

Table 1: Baseline results for development dataset.

Machine type Mode AUC [%] pAUC [%]
Source Target

ToyCar MSE 71.05 ± 0.50 53.32 ± 0.56 49.79 ± 0.49
MAHALA 73.17 ± 0.39 50.91 ± 0.85 49.05 ± 0.05

ToyTrain MSE 61.76 ± 0.74 56.46 ± 0.47 50.19 ± 0.25
MAHALA 50.87 ± 2.88 46.15 ± 1.77 48.32 ± 0.05

bearing MSE 66.53 ± 2.63 53.15 ± 1.99 61.12 ± 0.59
MAHALA 63.63 ± 1.15 59.03 ± 1.79 61.86 ± 0.36

fan MSE 70.96 ± 0.94 38.75 ± 0.74 49.46 ± 0.53
MAHALA 77.99 ± 0.23 38.56 ± 0.58 50.82 ± 0.06

gearbox MSE 64.80 ± 1.48 50.49 ± 1.22 52.49 ± 0.37
MAHALA 73.26 ± 0.78 51.61 ± 0.52 55.07 ± 0.47

slider MSE 70.10 ± 1.01 48.77 ± 1.07 52.32 ± 0.36
MAHALA 73.79 ± 1.95 50.27 ± 1.15 53.61 ± 0.26

valve MSE 63.53 ± 2.90 67.18 ± 1.75 57.35 ± 1.96
MAHALA 56.22 ± 2.22 61.00 ± 2.98 52.53 ± 1.32

4. CHALLENGE RESULTS

4.1. Overall results

We received 119 submissions from 35 teams. 20 teams outper-
formed both baselines, which slightly increased compared to last
year’s task (11 out of 27 teams). Looking at the results for each
domain separately, six teams surpassed the baselines on the source-
domain AUC, while 25 did so on the target-domain AUC. Four
teams achieved higher AUCs than the baselines in both domains.
This shows the difficulty of improving the performance on both the
source and target domain at the same time. Figure 1 shows the
AUC values for the top 10 teams. In the source domain, whether
each team could beat the baseline was highly machine-dependent,
and many teams struggled to outperform the baseline on average.
Specifically, machines for which attribute information was avail-
able tended to perform poorly, although it is unclear whether this
factor is actually relevant. In contrast, all of the top 10 teams out-
performed the baselines in the target domain in the harmonic mean.

Figure 2 compares the AUC values of the top 20 teams between
the development and evaluation datasets. As can be seen, achiev-
ing high AUC values in the development dataset does not indicate
high AUC in the evaluation dataset. This is a typical trend in the
first-shot problem setting which started from 2023, and shows the
difficulty in finding an approach robust to machine types in the ab-
sence of test data. Thus, building an ASD system that works well
for unknown machine types remains both a difficult and important
challenge. In Figure 3, we compare the harmonic mean AUC val-
ues in the source and target domain of the evaluation dataset among
the top 20 teams. The figure shows a negative correlation between
the AUC in the source and target domain. While the top 3 teams
achieved very close official scores (within 1.0% difference), their
balance between the source and target AUC varied. Achieving well
balanced performance between the source and target domain may
be important to achieve high ranks.

4.2. Trends in model size

We analyzed the computational-complexity trends of the submitted
systems. MACs were reported by 21 teams. Figure 4 plots each
submission’s MAC count against its official score; if a team submit-
ted multiple systems with identical MAC values, only the highest-
ranked system was retained.

The figure shows a broad range of MAC counts across submis-
sions. It also highlights that larger computational budgets did not
necessarily yield higher scores. Notably, two submissions from dif-
ferent teams [17, 18] achieved scores exceeding the baselines while
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* * * *

Figure 1: Evaluation results of top 10 teams in ranking. Average source (top) and target-domain AUC (bottom) for each machine type (“*”
indicates that attributes are hidden.). Labels “A” and “M” on denote simple Autoencoder mode and selective Mahalanobis mode, respectively.

Figure 2: Comparison of harmonic mean of AUC for development
and evaluation dataset across teams.

Figure 3: Comparison of harmonic mean of AUC for source and
target domain in evaluation dataset across teams.

using fewer MACs. This shows the feasibility of computationally
efficient solutions for first-shot UASD, and could be one of the fu-
ture directions for research.

4.3. New approaches seen in the top-ranked teams

a. Use of pretrained models
This year, following the trend from previous years, many

participants adopted pretrained models in their anomaly-detection
pipelines. Many of those teams fine-tuned them with an attribute
or domain classification-based auxiliary task, such as the 1, 4, 5th
ranked teams [19–21]. On the other hand, interestingly, several of
the high-ranking teams achieved strong performance using frozen
pretrained networks, exploiting intermediate-layer features along
with anomaly-score normalization [22]. The 2nd [23] and 8th [24]

Figure 4: Comparison of officials scores of submissions against the
MACs values.

place teams solely used frozen models within their submissions,
while the 4th-place team [20] ensembled frozen networks to the
fine-tuned ones. Nevertheless, teams that trained lightweight mod-
els from scratch with classification-based tasks also achieved high
ranks, including the 3rd ranked team [17, 18], showing that pre-
trained models are not an absolute prerequisite for competitive per-
formance. Overall, diverse approaches were all competitive this
year and each approach may still have room for further research.

b. Use of supplemental data
Participants tried utilizing the newly released supplemental

clean-machine and noise recordings, applying them in two distinct
ways. In the first way, they were used for data augmentation. The
1st [19] and several other top-10 teams [24–26] injected the sup-
plemental clips as an extra class in auxiliary classifiers, blended
the noise signals with training samples, or leveraged them in con-
trastive learning [18] to enrich feature space diversity. Conversely,
the 3rd and 4th-place teams [17, 20], used the clean/noise data to
build enhancement modules that extracted or denoised target ma-
chine sounds from the noisy training data, and supplied these ex-
tracted signals to their main anomaly-detection networks.

5. CONCLUSION

We presented an overview of the DCASE 2025 Challenge Task
2. The task’s aim was to develop ASD systems that work for a
novel machine type with a single section for each machine type,
where supplemental data such as clean machine sounds or noise-
only sounds were also provided. We discussed several new ap-
proaches seen in the challenge, such as how pretrained models were
(or were not) used and the use of the newly provided supplemental
data. While we were not able to discuss all new approaches, we
hope that all the technical reports will contribute to the advance-
ments in the field of anomalous sound detection.
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