
Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

A REVISIT OF AUDIO EVALUATION THROUGH HUMAN
IMPRESSIONS: DEFINING AND MODELING A

MULTIDIMENSIONAL PERCEPTUAL TASK
Hiroshi Nishijima1, Daisuke Saito1, Nobuaki Minematsu1

1The University of Tokyo, Japan. {hiroshi, dsk saito, mine}@gavo.t.u-tokyo.ac.jp

Abstract—Current audio evaluation paradigms predominantly rely on
technical metrics or single-dimensional subjective scores. These methods in-
adequately capture the multifaceted nature of human auditory perception.
This paper reframes audio evaluation as a multidimensional perceptual
task. We formally define subjective impression as a computational problem
with measurable dimensions. To this end, we introduce a new dataset
of 4,110 environmental sounds from FSD50K. It is annotated with five
perceptual dimensions: pleasantness, clarity, brightness, calmness, and
immersion. Our analysis reveals both independence and meaningful
correlations within this perceptual space. A notable finding is the
strong relationship between pleasantness and calmness. Furthermore,
we demonstrate the feasibility of automated impression prediction. Our
baseline models use fine-tuned BEATs representations and achieve a mean
squared error below 0.7. This value corresponds to an average deviation
of less than one point on a seven-point scale. This work provides the
foundation for a human-centered evaluation of audio generation systems
and sound design. It enables assessment based on nuanced perceptual
qualities rather than technical fidelity alone.

Index Terms—Subjective impression, Subjective audio evaluation,
Multidimensional perception, Semantic differential, Environmental sound

1. INTRODUCTION

Audio generation systems have been steadily maturing from research
prototypes to practical applications. Recent text-to-audio models such
as Tango [1], Tango2 [2], Make-An-Audio [3], AudioLDM2 [4], and
AudioGen [5] exhibit remarkable technical performance. In addition,
ElevenLabs offers a system capable of generating realistic sound
effects from textual input, enabling practical use cases [6]. Given
these developments, the quantitative evaluation of system performance
and generated audio quality is becoming increasingly important.

Current evaluation methods for generated audio comprise technical
and subjective assessments. Technical evaluations operate at two
levels. Signal-level metrics, such as Signal-to-Noise Ratio (SNR)
and Perceptual Evaluation of Speech Quality (PESQ), measure
acoustic fidelity against a ground-truth signal. In contrast, embedding-
level metrics aim to capture higher-level semantic properties. For
instance, Fréchet Audio Distance (FAD) [7] measures the distributional
similarity between the embeddings of generated audio and those
of real-world recordings, while CLAPScore [3] evaluates semantic
alignment by computing the similarity between their corresponding
audio and text embeddings. On the other hand, subjective evaluations
rely on human judgment. The most common method is the Mean
Opinion Score (MOS), where listeners rate perceptual quality, often
supplemented by tasks that assess the relevance of the audio to a given
textual prompt. Crucially, a common thread unites all these approaches:
they invariably require a reference for comparison, whether it is a
ground-truth signal, a distribution of existing audio, an input text, or
a human listener’s internal standard of quality and relevance.

However, humans possess the remarkable ability to evaluate sounds
in an absolute, non-referential manner, even when a ground-truth
signal or a real-world counterpart does not exist. For instance, an
abstract, synthesized sound can consistently evoke rich semantic

impressions such as “brightness,” “clarity,” or “tension” without
any direct comparison. Furthermore, this perceptual experience is
often multifaceted, allowing for multiple, coexisting interpretations
of a single audio clip. This capability stands in stark contrast to
existing metrics, which are confined to measuring fidelity or semantic
alignment against a predefined reference. Consequently, they are ill-
equipped to quantify the intrinsic, absolute qualities of generated audio,
offering only a limited perspective on a system’s true capabilities.

Therefore, integrating this human-like, non-referential evaluative
capability into assessment frameworks of audio is a crucial next step.
Such an approach promises significant benefits. For one, it would
enable the meaningful evaluation of novel or abstract sounds for
which no ground truth exists. Moreover, it would allow us to move
beyond mere fidelity and begin to quantify more elusive yet critical
qualities like the “creativity” or “expressiveness” of generative models.
Developing a system capable of this absolute quality assessment is
thus essential for a more holistic and meaningful evaluation of modern
audio generation technologies.

To achieve this, we propose a framework that reframes audio
evaluation by defining it as a human-centered, multidimensional
perceptual task. Our primary contributions are as follows:

1) A formal specification of subjective impression as a computa-
tional problem with well-defined, measurable dimensions.

2) A dataset of 4,110 environmental sounds, systematically anno-
tated across five key perceptual dimensions using the semantic
differential (SD) method.

3) An empirical analysis of the dataset that reveals both the
independence and the meaningful correlations within this
perceptual space.

4) Baseline computational models that demonstrate the feasibility
of automatically predicting these perceptual impressions directly
from audio signals.

This framework represents a transition from metric-based quality
assessment to human-centered perceptual task modeling.

2. RELATED WORK

Recent studies have explored various aspects of environmental sound
perception, including emotional responses and contextual influences.
Research on emotional responses has shown that different acoustic
environments evoke feelings such as pleasantness and arousal, with
human emotions tracking changes in acoustic features like frequency,
intensity, and speed [8]. Furthermore, the role of context, which
encompasses spatial, temporal, and functional factors, has been
shown to significantly shape how individuals perceive and evaluate
soundscapes, highlighting that the same sound can be perceived
differently depending on its surrounding environment [9], [10]. To
investigate these aspects, methods such as the Semantic Differential
(SD) scale [11] or Russell’s Circumplex Model of Affect [12] are
adopted to quantify these experiences [13]–[15].
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Fig. 1: Histograms of the subjective ratings for each of the five evaluation axes.

Several studies have applied the SD method to examine the
impressions of sounds formed by listeners. A line of works conducted
listening experiments with 38 pairs of bipolar adjectives grouped into
timbral, informational, and affective categories [16], [17]. Another line
investigated the prevalence of 12 pairs of representative adjectives in
the prior literature [18]. There is another study that analyzed whether
addition of visual imagery alters auditory impression [19]. The results
of the factor analysis obtained in these investigations converge on
three fundamental perceptual dimensions of sound: an aesthetic factor,
a brightness factor, and a quantitative factor.

3. DATASET CREATION

3.1. Dataset selection

A dataset was constructed by extending a subset of the FSD50K [20],
a large-scale collection of environmental sounds with event-based cat-
egorical annotations. To ensure balanced representation across sound
categories, 4,110 clips were extracted from both the development set
(40,966 clips) and the evaluation set (10,231 clips). This was achieved
with a random selection process, by which approximately 8% of the
clips from each class were selected. We chose FSD50K as the basis
because its clips typically contain a single dominant sound event.
This property makes it suitable for investigating relationships between
acoustic events and human impressions.

3.2. Five-dimensional impression space

Based on extensive preliminary pilot studies on environmental sound
perception, we define the following five evaluation axes that capture
distinct aspects of subjective auditory experiences: Pleasantness
evaluates the hedonic quality of sounds, ranging from pleasant
to unpleasant. This dimension captures the fundamental affective
response to auditory stimuli. Clarity characterizes the perceived
sharpness and articulateness of sounds, ranging from clear to in-
distinct or vague. It may reflect the listener’s ability to resolve
and differentiate sound sources. Brightness measures the spectral
character impression, ranging from bright to dark. This perceptual
dimension often encompasses subjective brightness perception beyond
simple spectral analysis. Calmness evaluates the emotional impacts
related to stress and relaxation, ranging from calming to irritating.
It captures the potential influence of sounds on listener stress levels
and emotional state. Immersion assesses the spatial and engaging
quality of sounds, ranging from immersive to non-immersive. This
dimension may reflect the sound’s ability to create a sense of spatial
presence and engagement.

In selecting the above perceptual axes, we first chose one bipolar
adjective pair from each of the three groups identified in prior
work: timbral, informational, and affective. As a result, we obtained
Brightness, Calmness, and Immersion. We made this choice in a
deterministic manner to avoid redundancy among axes. After that, we
added two further factors, Pleasantness and Clarity, which showed the

Fig. 2: Heatmap of the correlation matrix between the five evaluation axes.

highest contribution ratios reported in [19]. This procedure yielded a
five-factor framework.

3.3. Annotation methodology

The SD method was adopted to collect subjective impression annota-
tions. Each audio clip was independently evaluated three times, each
by a different annotator who used a seven-point bipolar scale ranging
from −3 to +3. The midpoint of this scale, 0, was interpreted as
neutral. The annotation process was conducted through a web-based
interface that presented each audio clip with five evaluation axes
simultaneously.

3.4. Analysis of dataset

Figure 1 depicts the distribution characteristics of our dataset. The
majority of dimensions manifest approximately normal distributions,
with Clarity and Immersion exhibiting positive skews as a consequence
of the superior quality of FSD50K clips.

Figure 2 is a correlation matrix of the five axes. It reveals that there is
a strong positive correlation between Pleasantness and Calmness (r=
0.79), while pairs of the other three dimensions, such as Pleasantness
and Immersion, Clarity and Calmness, Calmness and Immersion, show
weak correlations (|r|<0.1). The results suggest the complementary
nature of our evaluation framework.

4. PREDICTION MODEL

In order to evaluate the characteristics and effectiveness of our
collected dataset, and to demonstrate the feasibility of automated
impression prediction, predictive models were constructed that estimate
scores for each perceptual dimension by extracted acoustic features.
The following section first details the methodologies to transform
raw audio data into meaningful representations for machine learning,
followed by the architectures of the prediction models.
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4.1. Feature extraction
In this study, we extracted two sets of features for different analytical
purposes. Conventional acoustic features were used to investigate
which specific signal characteristics contribute to each perceptual
dimension, with Support Vector Regressor (SVR). In parallel, audio
representations from a self-supervised learning (SSL) model were
utilized to establish a strong performance benchmark for the regression
task.

Conventional acoustic features: Based on previous studies that aim
to score musical impressions [21], we extracted a set of conventional
audio features from each clip, covering signal energy, spectral shape,
rhythm, and timbre. The extracted features are:

• Root Mean Square (RMS) and Zero Crossing Rate (ZCR): mean,
standard deviation, and frame-to-frame deviation.

• Spectral centroid, rolloff, and bandwidth: first to fourth moments
(mean, standard deviation, skewness, kurtosis).

• Spectral contrast: computed over 7 frequency bands with average
and variability.

• Mel-frequency cepstral coefficients (MFCCs): 13 coefficients
with their delta and delta-delta derivatives.

• Tempo and beat statistics: beat count, mean interval, and its
variation.

• Chroma features: harmonic structure over 12 pitch classes.
All features were normalized to have zero mean and unit variance
across samples.

Audio representations from SSL models: The efficacy of SSL
models in the domain of audio representation learning has been
demonstrated across a range of downstream tasks. In this study,
we utilized representations extracted from the pre-trained BEATs
model [22] as a feature extractor.

4.2. Models
All models in this study are designed as regression models that output
continuous values rather than discrete scores. This design choice
enables the models to capture the nuanced gradations in human
perception that exist between discrete rating points on the 7-point
scale.

Mel-spectrogram Regressor (Baseline): As the primary baseline,
we implemented a convolutional regressor that takes mel-spectrograms
as input features. To ensure a fair comparison with other models, we
scaled its architecture to approximately 90 million parameters. This
scale matches that of the model created by fine-tuning the BEATs
iter3+ pre-trained model.

Support Vector Regressor (SVR): As another baseline, we adopted
an SVR with a radial basis function (RBF) kernel, which is well-suited
for modeling non-linear relationships.

Multi-Layer Perceptron (MLP) regressor: In order to assess
the impact of various input representations and model configurations
on prediction performance, several Multi-Layer Perceptron (MLP)
regressors were investigated. All MLP models were designed to have a
total parameter count of approximately 90 million. The configurations
under investigation are listed as follows:

• Audio: Uses frozen BEATs audio representations as input.
• Audio + Label: Concatenates frozen BEATs audio representa-

tions with the 200 FSD50K sound classes.
• Audio (Fine-tuned): Fine-tunes the pre-trained BEATs model

end-to-end with the MLP regressor, adapting audio representa-
tions to the task.

• Audio + Label (Fine-tuned): Fine-tunes the pre-trained BEATs
model along with the MLP, incorporating concatenated sound
classes.

Table 1: Comparison of prediction model performance on the test set (510
samples). All models except SVR are trained on five dimensions simultaneously.

Model MSE↓ MAE↓ LCC↑ SRCC↑ KTAU↑

Baseline 0.879 0.741 0.519 0.588 0.427
SVR (Average) 1.571 0.988 0.280 0.374 0.281
Audio (Freeze) 0.693 0.665 0.667 0.693 0.517

+ Label 0.723 0.679 0.625 0.675 0.502
Audio (Fine-tuned) 0.691 0.652 0.696 0.705 0.528

+ Label 0.691 0.652 0.695 0.704 0.528
Label Only 1.209 0.871 0.327 0.379 0.265

• Label Only: Utilizes only learned embeddings of the 200
FSD50K sound classes as input.

4.3. Training details

The training dataset comprised 3,216 clips (78.2%) for training, 384
clips (9.4%) for validation, and 510 clips (12.4%) for testing. A
key difference in our experimental setup was the handling of the
five perceptual dimensions. For the SVR baseline, which was trained
on the conventional acoustic features, we trained five independent
regressors, each of which dedicated to predicting a corresponding
single dimension. In contrast, other models were trained to predict
all five dimensions jointly from a single model. This multi-output
design allows the models to potentially leverage inter-dimensional
dependencies during learning.

The baseline and all MLP models and were optimized using the
Mean Squared Error (MSE) loss. Training adopted the AdamW
optimizer [23] with a learning rate of 1×10−4 and weight decay of
0.01. Early stopping based on validation loss was applied to mitigate
overfitting.

5. EXPERIMENTS AND RESULTS

5.1. Model prediction results

The performance of the constructed models was evaluated by multiple
metrics; Mean Squared Error (MSE), Mean Absolute Error (MAE),
Spearman’s Rank Correlation Coefficient (SRCC), and Kendall’s Tau
(KTAU).

Table 1 summarizes the performance of various models in the test
set. The fine-tuned MLP models achieve MSE values around 0.69.
Given our 7-point scale ranging from −3 to +3, this value indicates
that 68% of predictions fall within ±0.83 scale points of ground
truth (assuming normal error distribution). The result demonstrates
the practical utility of the model for most applications.

The performance difference between models with and without class
labels is marginal (MSE: 0.6909 vs. 0.6914). It suggests that fine-
tuned BEATs features already encode substantial semantic information.
The label-only model (MSE: 1.2089) performs considerably worse
than the audio-based models. This degradation demonstrates that single
use of class labels without audio information is insufficient to capture
perceptual impressions. Table 2 presents performance across individual
impression axes using the best performing model (Audio Fine-tuned).
Performance varies considerably between dimensions, with Immersion
showing the poorest prediction accuracy (LCC: 0.465) compared
to other dimensions. This performance disparity can be partially
explained by the distributional characteristics and inter-dimensional
relationships observed in our dataset. Pleasantness and Calmness,
which share a strong positive correlation, both achieve relatively robust
prediction performance with similar error patterns. This suggests that
their shared variance may provide mutually reinforcing signals during
multi-dimensional training. The distribution characteristics also play a
crucial role: Clarity and Immersion both exhibit positive skews in our
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Table 2: Performance evaluation across perceptual dimensions using the Audio
(Fine-tuned) model. Std. represents the standard deviation of absolute prediction
errors.

Dimension LCC ↑ SRCC ↑ KTAU ↑ MAE ↓ Std.

Pleasantness 0.6300 0.5989 0.4492 0.6353 0.8248
Clarity 0.6296 0.6444 0.4760 0.7221 0.9034
Brightness 0.6129 0.6120 0.4515 0.6309 0.8047
Calmness 0.5816 0.5874 0.4332 0.6219 0.7848
Immersion 0.4652 0.4805 0.3440 0.6522 0.8225

Fig. 3: Comparison of Pearson correlation matrices computed from ground-
truth scores (Target, left) and Audio (Fine-tuned) model predictions (Preds,
right).

dataset (Figure 1), indicating concentration toward higher ratings. This
skewed distribution reduces the diversity of training examples across
the full perceptual range, particularly for negative ratings, which may
contribute to their relatively higher prediction errors.

Figure 3 is a comparison between Pearson correlation matrices
computed from ground-truth scores (left) and those matrices based on
predictions from the Audio (Fine-tuned) model (right) on the test set.
The model largely captures the strong positive correlation between
pleasantness and calmness (ground truth: r = 0.85, predictions:
r=0.91). In particular, dimension pairs with low correlation in ground
truth, such as pleasantness–immersion and calmness–immersion, main-
tain their low correlations similarly in predictions. This demonstrates
that our multidimensional simultaneous training successfully captures
inter-dimensional dependencies while avoiding unnecessary coupling
between independent perceptual axes.

5.2. Feature importance analysis
To identify the acoustic drivers for each perceptual dimension, we
treated the analysis as a classification problem. The continuous outputs
from each SVR model were discretized into seven classes, and Linear
Discriminant Analysis (LDA) was then applied to determine the most
discriminative input features for separating these classes.

The analysis revealed dimension-specific acoustic signatures. Bright-
ness was strongly associated with variability in high-frequency
components. These fluctuations in spectral energy at higher bands
played a key role in how sounds were perceived as bright. Calmness
depended on temporal regularity such as rhythm stability and onset
variability. It was also related to reduced low-frequency energy, which
reflected the soothing impression of steady and less energetic sounds.

5.3. Error analysis
As shown in Figure 4, the predictions track the diagonal most closely
near the frequent scores, namely +1 for Clarity and Immersion and 0
for Pleasantness, Brightness, and Calmness. In these regions the ample
training data yield small bias and narrow confidence intervals. Toward
the scale extremes the mapping contracts: ground-truth values of ±3
are predicted at about ±1.5, and the error bars widen. This regression

Fig. 4: Mean predicted impression scores for each perceptual axis, averaged
over discretized target scores. The dashed line represents the ground truth.

to the mean reflects both the scarcity of extreme samples and the
quadratic penalty imposed by the mean-squared-error objective. The
results indicate that stronger class balancing and ordinal-aware loss
functions are required to maintain calibration across the full rating
range.

6. DISCUSSION AND LIMITATIONS
While our results demonstrate feasibility of automated impression
prediction, several limitations exist. First, our dataset derives from
FSD50K’s high-quality recordings, which may limit generalizability
to real-world audio that often contains overlapping acoustic events and
diverse recording conditions. Notably, our annotations are restricted
to clips containing a single dominant sound event, whereas ambient
sounds in real-world environments typically involve complex mixtures
of multiple concurrent sources. Second, the annotation process may
reflect cultural or demographic biases despite following established
methodology. The performance gap at extreme ratings highlights the
sparse training examples at perceptual boundaries. This suggests that
specialized data collection strategies would be necessary.

The strong pleasantness-calmness correlation (r=0.79) suggests
certain perceptual qualities naturally co-occur, enabling more efficient
annotation protocols. Our continuous regression approach captures
subtle perceptual gradations lost in discrete categorization, particu-
larly valuable for audio generation systems requiring fine-grained
optimization feedback.

In addition, our framework does not exclude degradations such as
noise or artifacts; they can be reflected in impression scores through
dimensions like clarity, pleasantness, and calmness. It complements
fidelity-based metrics by linking potential degradations with broader
perceptual impact.

7. CONCLUSION
We have presented a framework that reframes audio evaluation as
a multidimensional perceptual task. Our approach moves beyond
referential metrics and captures the absolute characteristics of sound.
We have created a dataset of environmental sounds with five-
dimensional subjective annotations and developed models that have
achieved practical prediction accuracy. This success confirms both that
human impressions can be formulated as a computational problem
and automated assessment is feasible. Our approach opens new
possibilities for evaluating audio based on human-centered criteria,
not just technical fidelity. For future work, this framework should
be extended to broader acoustic domains and integrated with audio
generation systems for human-centered optimization.
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