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Abstract—This paper proposes a method for generating machine-type-
specific anomalies to evaluate the relative performance of unsupervised
anomalous sound detection (UASD) systems across different machine types,
even in the absence of real anomaly sound data. Conventional keyword-
based data augmentation methods often produce unrealistic sounds due to
their reliance on manually defined labels, limiting scalability as machine
types and anomaly patterns diversify. Advanced audio generative models,
such as MIMII-Gen, show promise but typically depend on anomalous
training data, making them less effective when diverse anomalous examples
are unavailable. To address these limitations, we propose a novel synthesis
approach leveraging large language models (LLMs) to interpret textual
descriptions of faults and automatically select audio transformation
functions, converting normal machine sounds into diverse and plausible
anomalous sounds. We validate this approach by evaluating a UASD system
trained only on normal sounds from five machine types, using both real
and synthetic anomaly data. Experimental results reveal consistent trends
in relative detection difficulty across machine types between synthetic and
real anomalies. This finding supports our hypothesis and highlights the
effectiveness of the proposed LLM-based synthesis approach for relative
evaluation of UASD systems.

Index Terms—Large language model, Relative evaluation, Anomalous
sound detection

1. INTRODUCTION

Detecting anomalies in machine sounds is a critical aspect of
predictive maintenance, aiming to prevent equipment failures and
reduce downtime in industrial operations [1]. Machine sounds provide
valuable insights into equipment health, where anomalies may
indicate issues such as mechanical wear, misalignment, or impending
component failure. Traditional anomaly detection methods [2]–[4] rely
heavily on data, but collecting extensive datasets of real anomalous
sounds is challenging due to the rarity and unpredictability of faults.
Deliberately inducing faults is often impractical or hazardous, leading
to a fundamental scarcity of real anomalous data.

This scarcity and lack of diversity in available real anomaly data
significantly hinder not only training but also the evaluation of anoma-
lous sound detection (ASD) systems across diverse fault conditions.
Rigorous assessment of system capabilities requires suitable test data,
which is often unavailable or fails to adequately represent real-world
conditions. While conventional data augmentation [5]–[7] and text-to-
audio (TTA)-based anomaly generation [8]–[10] attempt to address
this, they face limitations: synthesized sounds may lack realism, or
advanced generative models may require anomalous samples for
training, further complicating evaluation when real-world anomaly
data are sparse or absent. Consequently, reliably benchmarking ASD
performance against diverse, realistic fault conditions across different
machine types remains a significant challenge.

To address this issue, we first introduce the concept of “relative
evaluation”, which complements conventional absolute evaluation.
Relative evaluation assesses a system’s comparative strengths and
weaknesses by verifying detection performance rankings across
machine types, where the system performs well for some machine
types but poorly for others. This approach is essential in heterogeneous
industrial environments, where maintenance engineers must know
where a system is trustworthy and where it is not, enabling optimized

sensor allocation, inspection scheduling, and risk management. Tra-
ditional absolute metrics, such as the Area Under the ROC Curve
(AUC), can fluctuate with the severity of anomaly samples and become
unreliable when real anomaly data are scarce. Specifically, severe
anomalies in the test set lead to easy detection and high AUC scores,
while mild anomalies make detection harder, resulting in lower AUC
scores. In contrast, relative evaluation focuses on the comparative
difficulty of detection tasks across machine types, providing consistent
insights even when anomaly severity varies.

We further propose a novel method for synthesizing anomalous
sounds to enable relative evaluation of ASD systems across machine
types. The method leverages LLMs’ implicit world knowledge—
i.e., “common sense”—to interpret textual descriptions of faults and
automatically apply appropriate acoustic transformations to normal
machine sounds, thereby generating plausible acoustic characteristics
for the described faults. This approach generates diverse, controllable
synthetic anomalies without requiring prior anomalous data or manual
intervention, facilitating relative evaluation of ASD systems’ strengths
and weaknesses across machine types.

2. RELATED RESEARCH

2.1. Unsupervised anomalous sound detection

Unsupervised Anomalous Sound Detection (UASD) is critical for ASD,
especially when anomalous data is unavailable. The DCASE chal-
lenges [1], [11]–[14] have advanced this field by providing datasets like
ToyADMOS series [15]–[18] and MIMII series [19]–[21], enabling
benchmarking of techniques like autoencoder-based methods [22],
Gaussian-Mixture-Model-based methods [23], embedding-similarity-
based approaches [24], etc. Despite these advancements, evaluating
detection systems across diverse fault conditions remains difficult due
to the lack of representative anomalous test data, highlighting the
need for synthetic datasets that simulate realistic anomalies.

2.2. Anomalous sound generation

Synthetic data generation addresses the shortage of real anomalous
sounds for training and evaluation. Most conventional methods for
anomalous sound generation focus on data augmentation to train
UASD systems using anomalous examples.

One common approach is basic data augmentation, which includes
pitch-shifting and time-stretching [5], Mixup-based augmentation [6],
and statistics-exchange-based augmentation [7]. However, these
methods often produce unrealistic sounds that are unsuitable for
robust evaluation.

Another approach is TTA-based anomalous sound generation (See
Table 1). Zahedi et al.’s method [8] generates anomalous sounds by
randomly selecting prompts created by ChatGPT and feeding them
into AudioLDM [25]. However, this method cannot achieve realistic,
machine-type-specific synthesis because it does not consider machine
type when selecting prompts. Zhang et al.’s method [9] converts
metadata into captions, which are then input into AudioLDM. This
approach can potentially achieve realistic synthesis by leveraging
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Table 1: Conventional Approaches for TTA-based Anomalous Sound Generation

Characteristic Zahedi et al. [8] Zhang et al. [9] MIMII-Gen [10] This work

Machine-type-aware realistic synthesis No Yes (uses metadata) Yes (uses metadata) Yes (uses metadata)

Trainable with normal data alone Yes No No Yes

Purpose Training Training Evaluation (absolute) Relative evaluation

metadata such as machine type, but it requires anomalous samples
for training. MIMII-Gen [10] has been proposed specifically for
evaluating anomaly detection systems. Similar to Zhang et al. [9],
MIMII-Gen converts metadata into captions and uses these captions
as input for a diffusion model to generate anomalous sounds. While it
can potentially achieve machine-type-aware realistic synthesis, it also
requires anomalous samples for training, which limits its applicability
when such data are sparse.

2.3. TTA models

This subsection highlights representative TTA models, which serve
as the foundation for the above TTA-based anomaly-generation ap-
proaches [8]–[10]. TTA models leverage the contextual understanding
of LLMs to generate speech, music, or environmental sounds directly
from textual prompts. For high-fidelity generation, latent diffusion
models have demonstrated exceptional effectiveness. AudioLDM [25]
pioneered CLAP [26]-conditioned latent diffusion, enabling zero-
shot audio generation. Building on similar approaches, recent works
have achieved improvements in multi-domain synthesis quality and
enhanced temporal coherence [27]–[29]. To address inference latency,
some models compress diffusion into fewer steps [30]–[32]. TANGO
2 [33] employs preference optimization to align audio outputs
with human-perceived prompt consistency, using reinforcement-style
feedback to train more reliable generators. However, none of the above
TTA models are trained on industrial machine recordings, while Zhang
et al. [9] and MIMII-Gen [10] explicitly train their generators on
machine-type-labeled industrial sound datasets, enabling type-specific
fault synthesis.

2.4. Research gap and contribution

As mentioned earlier, traditional absolute metrics commonly used
in anomaly detection benchmarks [1], [11]–[14] fluctuate with the
severity of anomaly samples, making them unreliable when real
anomaly data are scarce. Severe anomalies in the test set lead to easy
detection and high AUC scores, while mild anomalies make detection
harder, resulting in lower AUC scores.

To address this limitation, our first contribution is the introduction
of relative evaluation, which verifies detection performance rankings
across machine types. Unlike absolute evaluation, which is sensitive
to anomaly severity, relative evaluation identifies where the system
performs better or worse.

Our second contribution is a scalable method for generating
diverse and realistic anomalous sounds using LLMs to enable relative
evaluation. Instead of directly generating synthetic anomalies or
manually adding them, our approach leverages LLMs to interpret
machine types and their corresponding anomalies, transforming normal
machine audio into anomalous audio. As shown in Table 1, unlike the
conventional TTA-based anomalous sound generation methods [8]–
[10], our approach enables realistic synthesis tailored to specific
machine types and operates with training only on normal data. This
ensures reliable evaluation across different machines, even when real
anomaly data are limited.

3. PROPOSED METHOD
Our proposed method introduces a novel approach to generating
anomalous machine sounds by leveraging LLMs to intelligently select
and apply appropriate sound effects to normal machine audio based
on descriptive captions. The comprehensive workflow illustrated in
Fig. 1 consists of two major parts: (a) synthetic anomalous sound
generation and (b) relative evaluation of anomaly detection systems
across different machine types.

3.1. Synthetic anomaly sound generation
3.1.1. Workflow: The synthetic anomaly generation process follows

a systematic workflow as illustrated in the block diagram:
• Input metadata: The process begins with metadata that provides

contextual information about machine types, operating and
environmental conditions.

• Generate caption: Based on the input metadata, the system
generates descriptive caption using Flan-T5 [34] that characterize
the machine’s operational state.

• Generate normal sound: Using the MIMII-Gen latent diffusion
model [10], we generate high-fidelity normal machine audio that
serve as the foundation for anomaly introduction.

• Initialize prompt: This step consists of carefully crafted system
prompt, user prompt containing generated caption and anomalous
sound effect functions described in section 3.1.2.

• Request to LLM: In this step, the initialized prompt is sent
to a Large Language Model via an API call. The language
model analyzes the captions and autonomously selects the most
appropriate sound effect to simulate potential anomaly relevant
to the operating condition present in the caption.

• Receive and interpret answer from LLM: The system parses
the LLM’s response, extracts the selected function name, and
maps it to the corresponding audio processing function from a
predefined library of anomalous sound effects.

• Anomalous audio generation: The selected function is applied to
the normal sound obtained from MIMII-Gen, transforming it into
anomalous audio with context-appropriate fault characteristics.
The generated anomalous sounds are stored along with the applied
anomaly effects.

3.1.2. Anomalous sound effect functions: We implement a com-
prehensive library of sound effect functions that simulate various
machine fault conditions:

• Squeaking or Squealing: High-pitched sounds indicating faulty
bearings or friction between components.

• Rattling or Knocking: Noises suggestive of loose parts or
misalignment.

• Grinding or Scraping: Sounds indicative of severe mechanical
wear or damage.

• Humming or Buzzing: Low-frequency sounds resulting from
electrical issues or resonance.

• Whistling or Hissing: Sounds associated with air leaks or high-
pressure flow.

• Clicking or Tapping: Noises caused by relay switches or
intermittent contacts.
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Fig. 1: Workflow of Our Approach

• Pulsing or Chattering: Effects indicating fluctuating power
supply or control issues.

• Pop or Bang: Sudden sounds simulating abrupt failures or
explosive events.

• Changes in Tonal Quality or Frequency: Alterations represent-
ing shifts in machine operation.

• Broadband Noise Increases: Overall noise level increases to
simulate general degradation.

Each function uses specific digital signal processing techniques to
modify normal sound waveforms, creating realistic fault signatures.

Example: The sound effect functions are implemented using Python
libraries such as NumPy, Librosa, and SoundFile, manipulating the
audio waveforms to introduce the selected anomalies.

def add_squeaking(audio, sr,
duration=2.0, freq=4000, intensity=0.3):
# Adds a high-pitched squeaking sound
# to the audio
# Function implementation
return audio_with_squeaking

3.2. Anomaly detection system evaluation
3.2.1. Unsupervised anomaly detection system: The UASD system

is trained exclusively on real normal sound and calculates anomaly
scores, such as reconstruction errors in autoencoders, to identify
anomalies. This unsupervised approach aligns with real-world scenar-
ios where anomalies are rare and underrepresented in training data.
The UASD system can utilize methods such as autoencoder-based [22],
Gaussian Mixture Model-based [23], or embedding-similarity-based
approaches [24]. The system processes all clips from real normal
sound and synthetic anomaly datasets and computes anomaly scores
for each clip.

3.2.2. AUC calculation and relative evaluation: The AUC score
for each machine type is calculated as:

AUCm =
1

N−
mN+

m

N−
m∑

i=1

N+
m∑

j=1

H(A(x+
j )−A(x−

i )), (1)

where m represents the machine type index, H(x) returns 1 if x > 0

and 0 otherwise, {x−
i }

N−
m

i=1 are normal test clips, and {x+
j }

N+
m

j=1 are
anomalous test clips for machine type m. N−

m and N+
m indicate the

number of normal and anomalous test clips, respectively.

By comparing AUC scores across machine types, users can identify
the system’s relative strengths and weaknesses based on detection
performance rankings.

4. EXPERIMENTATION

The experiments aim to validate two key objectives. The first
objective is to confirm the correlation between synthetic and real
anomaly detection performance rankings across different machine
types, demonstrating that synthetic anomaly generation using our
proposed approach enables users to identify the system’s relative
strengths and weaknesses. The second objective is to validate the
effectiveness of LLM-based approaches in generating contextually
appropriate synthetic anomalies compared to manual and random
methods, through an ablation study. This section provides details on
the dataset, anomaly detection system, results, and an ablation study.

4.1. Dataset preparation

Table 2 summarizes the datasets used in this study. We prepared three
distinct datasets to support our evaluation: normal sounds, synthetic
anomalous sounds, and real anomalous sounds. Each dataset was
tailored to the five machine types under study.

Table 2 summarizes the datasets used in this study. We prepared
three distinct datasets tailored to five machine types: bearings,
gearboxes, fans, valves, and slide rails.

• Normal Sounds: We collected 900 normal sound recordings per
machine type (bearings, gearboxes, fans, valves, and slide rails),
each 10 seconds long, sampled at 16 kHz. These were sourced
from industrial environments and public datasets like MIMII-DG
[21] ensuring a comprehensive representation of typical operating
conditions.

• Synthetic Anomalous Sounds: For each machine type, we
generated 50 synthetic anomalies by applying sound effects to
normal sounds. The language model (GPT-4) selected effects
(e.g., squeaking, rattling) based on captions describing operating
conditions (e.g., ”Bearing operating at 24 krpm”).

• Real Anomalous Sounds: We acquired 50 real anomalous
recordings per machine type. These anomalies represent actual
faults, such as mechanical wear or misalignment, and vary in
severity.
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Table 2: Dataset Summary

Category Samples per Duration Sample Rate
Machine

Normal Sounds 900 10 s 16 kHz
Synthetic Anomalies 50 10 s 16 kHz
Real Anomalies 50 10 s 16 kHz

Table 3: Detection Performance on Synthetic vs. Real Anomalies

Machine
Type

Synthetic Real

AUC Rank AUC RankMSE MAHALA MSE MAHALA

Bearing 0.85 0.82 3 0.57 0.61 3
Gearbox 0.88 0.86 2 0.62 0.67 2
Fan 0.92 0.95 1 0.90 0.93 1
Slide rail 0.80 0.79 4 0.55 0.57 4
Valve 0.78 0.72 5 0.53 0.52 5

4.2. Anomaly detection system design
We employed an unsupervised anomaly detection system based on an
autoencoder, trained exclusively on normal sounds to detect deviations
indicative of anomalies.

Autoencoder Architecture:
• Input Layer: Log-mel spectrograms with 128 mel-bins, extracted

from 64-ms frame windows with 50% hop size.
• Encoder: Three layers (128, 64, 32 filters, kernel size 3), each

followed by ReLU activation and max-pooling (2x2).
• Decoder: Mirrored layers with upsampling, reconstructing the

input spectrogram.
Training Details: The autoencoder was trained for 100 epochs with

a batch size of 32, using the Adam optimizer (learning rate 0.001) and
mean squared error (MSE) loss. A single model was trained across
all machine types to generalize normal patterns, reflecting real-world
scenarios with diverse equipment.

4.3. Results
Table 3 summarizes the detection performance for synthetic and
real anomalies using AUC scores, derived from two distinct metrics:
Mean Squared Error (MSE) and Mahalanobis distance (MAHALA).
Employing both scoring methods provides a more robust validation
of the relative evaluation on synthetic data. Synthetic anomalies
consistently achieved higher AUC scores compared to real anomalies,
indicating they are easier to detect. Notably, the ranking of AUC
scores, and thus the relative anomaly detection difficulty, is consistent
across machine types for both synthetic and real data. These results
demonstrate that synthetic anomaly generation using our proposed
approach effectively enables users to evaluate the system’s relative
strengths and weaknesses.

Differences in AUC scores reflect the unique operational behaviors
and fault characteristics of each machine type. For example, lower
AUC scores for valves and slide rails suggest that anomalies in these
machines may be subtler or involve features that are harder for the
anomaly detection system to capture.

4.4. Ablation study
To validate the reliability of the LLM-based approach, we compared
three configurations: (1) our approach with GPT-4o-based anomaly
function calling (with values reproduced from Table 3), (2) a keyword-
based manual mapping of anomalies created through human labeling
based on common knowledge (e.g., adding a ”squeaking” anomaly if
the caption includes ”bearing”), and (3) random selection of possible
anomalies without contextual understanding.

Table 4: Ablation Study: Common Knowledge Impact on MSE-AUC

Machine
Type

GPT-4o Manual-mapping Random
(w/ Knowledge) (w/o Knowledge)

AUC rank AUC rank AUC rank

Bearing 0.85 3 0.70 3 0.81 5
Gearbox 0.88 2 0.72 2 0.85 3
Fan 0.92 1 0.78 1 0.82 4
Slide rail 0.80 4 0.67 4 0.86 2
Valve 0.78 5 0.65 5 0.89 1

Table 4 presents the results of the ablation study. The AUC-
score rankings across machine types produced using GPT-4o and
the keyword-based manual mapping approach formed by human
labels were both closely aligned with those of real anomalies. In
contrast, random anomaly selection showed no correlation with the
AUC-score rankings of real anomalies, highlighting the importance of
contextual understanding in anomaly generation. These results confirm
that the ability of LLMs to interpret machine-specific characteristics
and fault descriptions, leveraging common knowledge embedded
within them, enables the creation of realistic and relevant anomalies.
Furthermore, the observation that sound effects impact machines
differently emphasizes the need to tailor the selection process to
each machine type. The consistent performance of LLM-based
anomaly generation demonstrates its potential as a scalable and
efficient alternative to human labeling, capable of supporting diverse
machine types and anomaly scenarios. Improving prompt design and
incorporating domain-specific constraints could further enhance the
realism of generated anomalies, thereby increasing the approach’s
utility for UASD evaluation.

5. CONCLUSION

This paper addressed the challenge of evaluating UASD systems in
the absence of sufficient and diverse real anomaly data. To tackle
this, we proposed two key contributions: (1) the introduction of
relative evaluation, which verifies detection performance rankings
across machine types. Unlike absolute evaluation, which is sensitive
to anomaly severity, relative evaluation identifies where the system
performs better or worse. (2) a novel synthesis approach using LLMs
with function-calling capabilities. Our method leverages the world
knowledge of LLMs to interpret textual descriptions of machine
conditions and automatically apply audio transformations, generating
diverse and plausible synthetic anomalies for evaluation, without
requiring prior anomalous examples.

Experiments showed that AUC-score rankings are consistent across
machine types as well as different anomaly detection systems for
both synthetic and real data. Also, rankings produced using GPT-
4o and keyword-based manual mapping closely aligned with those
of real anomalies, while random anomaly selection showed no
correlation, highlighting the importance of contextual understanding
in anomaly generation. These findings validate the ability of LLMs
to generate realistic and relevant anomalies by interpreting machine-
specific characteristics and fault descriptions. Our approach offers
a reliable and scalable tool for benchmarking UASD performance
and understanding relative detection difficulty across machine types,
especially in scenarios lacking sufficient real anomaly data.
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