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Abstract—Real-time acoustic sensing involves significant challenges in
capturing, processing, and transmitting audio. Integrating AI models on
resource-constrained devices further complicates development. This paper
presents an end-to-end solution addressing these challenges: SENS, the
Smart Environmental Noise System, is a low-cost sensor designed for real-
time acoustic monitoring. Built on a Raspberry Pi platform, SENS captures
sound continuously and processes it locally using custom-developed
software based on small and efficient artificial intelligence algorithms.
With a current focus on urban environments, SENS calculates acoustic
parameters, including sound pressure level (SPL), and makes predictions
of the perceptual sound attributes of pleasantness and eventfulness (ISO
12913), along with detecting the presence of specific sound sources
such as vehicles, birds, and human activity. To safeguard privacy, all
processing occurs directly on the device in real-time ensuring that no
audio recordings are permanently stored or transferred. Additionally, the
system transmits the analysis results through the wireless network to a
remote server. Demonstrating its practical applicability, a network of five
SENS devices has been deployed in an urban area for over three months,
validating SENS as a powerful tool for analyzing and understanding
soundscapes, recognizing patterns, and detecting acoustic events. The
proposed flexible and reproducible technology allows reconfiguration for
different applications and represents an innovative step in real-time and
Al-based noise monitoring.

Index Terms—Environmental noise monitoring, machine learning,
Internet of Things (IoT), urban soundscapes, smart city

1. INTRODUCTION

Sound monitoring has traditionally relied on high-precision instru-
ments such as sonometers, but these are limited by their high
cost, lack of remote communication capabilities (requiring manual
deployment and retrieval), and low spatial or temporal resolution.
The growing adoption of Internet of Things (IoT) technologies has
dramatically transformed this paradigm. Recent developments in low-
power embedded systems and wireless communication have enabled
distributed sensing via low-cost acoustic sensor networks. Examples
like AudioMoth [1] have made long-term acoustic data collection
feasible, but they often still rely on offline analysis.

The parallel emergence of artificial intelligence (AI) across nu-
merous fields opens new opportunities for real-time and autonomous
sound analysis. Approaches like Bonet-Sola et al. [2] integrate noise
level data from public wireless sensor networks with short audio
clips recorded on smartphones to estimate subjective acoustic comfort.
However, their system relies on centralized processing and offline Al
models. Similarly, the CENSE network [3], [4], uses MEMS-based
sensors to transmit low-resolution spectral data, ensuring privacy while
relying on centralized servers for analysis. Another example of this
approach is the LIFEWARD project [5] for neonatal ICUs, which
computes third-octave spectrograms on the edge to avoid storing
intelligible audio, with cloud-based Al completing the analysis. In
contrast, other solutions involve Al-powered sensors that can perform
on-device sound event detection, noise classification, or perceptual
indexing. An example of this is a system deployed around the
VELTINS Arena in Germany [6], which runs lightweight convolutional
neural networks (CNNs) on Raspberry Pi devices to classify sound
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events locally, reducing both data transmission and privacy risks. This
shift enables real-time, autonomous, and privacy-preserving insights
but introduces challenges related to computational efficiency.

In this work, we present a methodology for deploying Al-based
sound analysis algorithms in real-time acoustic sensors through
a use case: SENS (Smart Environmental Noise System), a low-
cost acoustic sensor system designed to run lightweight Al models
locally for continuous sound analysis. Built on Raspberry Pi, and
with a current focus on urban environments, it estimates both
physical (e.g., sound pressure level) and perceptual attributes (e.g.,
pleasantness, eventfulness), as well as the sound sources present
in the soundscape, while preserving privacy by avoiding permanent
storage or transmission of audio. Results are transmitted through the
network to a remote server, and the system is modular to support
flexible model updates towards other applications. SENS technology
is validated through a real-world urban deployment, demonstrating
its potential for scalable, real-time acoustic monitoring.

2. SYSTEM OVERVIEW

The fully integrated proposed technology involves both hardware
and software components. However, the software does not require
dedicated hardware and, depending on the specific application, can run
on a standard laptop or any device with an audio input. Additionally,
if transmitting data to a remote server is unnecessary, the modular
design of the software allows it to operate entirely offline.

Each SENS sensor constitutes a low-cost solution built around a
single Raspberry Pi. The device captures sound through a connected
microphone and transmits results via a mobile network hat with a
SIM card. Sensors can be accessed remotely through a virtual private
network (VPN), allowing over-the-air software updates and problem
resolution. Besides, a hardware watchdog allows for autonomous
system reboots if certain conditions are not met (e.g., if there are
connectivity issues). For the use case presented in this paper (see
Section 6), the sensors were connected to a continuous power supply
allowing uninterrupted operation, though solutions that make use of
batteries were also developed. The Github repository of the project’
contains guidelines for building custom SENS hardware devices.

The software is developed end-to-end with a modular design that
allows flexibility: three independent but related processes run in
parallel — sound capture, processing, and transmission of results to a
remote server. The code is implemented in Python and is available in
the sens-sensor GitHub repository'. The modular software structure
in each SENS device is further explained in the following sections.

3. AUDIO ACQUISITION

The sound capture process is straightforward. Audio is continuously
recorded and, when the audio buffer reaches a defined duration (3
seconds in the SENS implementation), it is saved as a pickle file in a
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specified folder, with a filename that includes the date and time for
reference. The equivalent continuous sound levels, Leq and Laeg, are
computed for each segment and saved in a file with the same naming
convention in the same directory. While incoming audio frames are
being saved to disk, a dedicated thread continuously monitors the
saved audio files and deletes those older than a defined retention
period (30 seconds in SENS). This approach improves data privacy by
ensuring that the sensor does not permanently store audio data, while
also improving the device’s storage efficiency. Microphone calibration
is essential, as it directly affects the calculation of Leq and Laeg, and,
as shown in an earlier study [7], it can influence model accuracy.

4. AUDIO PROCESSING

The processing module is a crucial part of the acoustic monitoring
solution, as its development requires addressing several key challenges.
To safeguard data privacy, all audio processing is performed locally
and no audio is permanently stored or transmitted. Running machine
learning models in real-time on a low-cost device with limited
computational resources demands the development of lightweight
models. Additionally, to achieve adaptability to different monitoring
use cases, independent and separate models are trained for each task,
resulting in a flexible modular architecture. The following subsections
detail the research and training of the lightweight models, followed
by their implementation within the software architecture.

4.1. Model training

The use case for which SENS has been developed is focused on the
monitoring of urban spaces. Therefore, we developed sound analysis
algorithms that predict perceptual soundscape attributes, pleasantness
and eventfulness; and estimate the saliency of common sound sources
present in the acoustic environment: birds, construction works, dogs,
human activity, sirens, music and vehicles. For this purpose, we used
existing datasets with open licenses. The ARAUS dataset [8] is used for
training pleasantness and eventfulness models. It consists of 30s-length
augmented, but realistic, soundscape audios, each labeled with values
of pleasantness[-1, 1] and eventfulness[-1, 1], obtained following the
soundscape study methodology suggested in ISO-12913 [9]-[11]. For
the estimation of sound sources, we used several publicly available
datasets. The Urban Sound Monitoring (USM) dataset [12] was used
for birds, construction works, dogs, human activity, sirens, and music.
This dataset consists of 5-second polyphonic stereo soundscapes
composed of sounds from the FSD50k dataset [13]. Before training,
we adapted the dataset by removing irrelevant sound sources, such
as gunshot, and mapping more specific classes to general ones—for
example, cheering, scream, and speech were all mapped to human.
For each sound source, we built an independent model using a one-
vs-all classification approach, allowing the sensor to be customized
for different applications.

The approach to build the vehicles sound source model involved the
careful combination of two datasets. A set of audios from the IDMT
Traffic dataset [14] was selected, each consisting of 2-second long
stereo audio recordings of vehicle sounds (bus, car, motorcycle, and
truck). The balanced selection of IDMT audios was combined as an
additional sound class within the UrbanSound8k (US8k) dataset [15].
This dataset originally includes sound excerpts (<= 4s) of urban
sounds from 10 classes, including noisy sounds like air conditioner,
drilling and engine idling, that were cut to 2 seconds long. Again,
the vehicles model is trained following a one-vs-all approach.

Despite the various datasets used for each parameter, the remaining
training process was consistent across all. The algorithms take as input
sound representations generated using Laion-AI’'s CLAP (Contrastive
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Fig. 1: When SENS boots up, all machine learning models (CLAP and
individual, both perceptual and source detection, models) load before
starting normal operation. The graph shows the device’s memory usage
for different configurations with original CLAP or with simplified
CLAP model (which only includes the audio encoder), and the use,
or not, of PCA for reducing embeddings’ dimensionality.

Language-Audio Pretraining) 630k-fusion-best model [16]. Previous
research has demonstrated that this representation performs well in
similar classification tasks [7], [17]. The CLAP model produces a
512-dimensional embedding vector, denoted as:

E={Ey,Ei,...,Es11}, EecR 1)

Due to the SENS device’s limited computational capability, using
the original CLAP model along with its raw embeddings caused the
memory load to reach its limit, frequently resulting in system freezes.
CLAP models function by learning a joint embedding space for both
audio and textual descriptions. The original LAION-AI's CLAP model
consists of two branches: one for converting text to an embedding
space and another for converting audio into the same embedding
space. To optimize our use case, since bi-directional matching was not
required, we removed the text encoder. By doing so, we significantly
reduced the model’s memory consumption, making it more feasible
for real-time processing on the Raspberry Pi without compromising
accuracy.

To further optimize memory usage, we used Principal Component
Analysis (PCA) to reduce the dimensionality of the embedding space.
A PCA transformation was derived from an analysis of over 25,000
audio samples from the ARAUS dataset. The results indicated that 50
principal components were sufficient to explain 95.46% of the data
variability, with a negligible effect on the prediction accuracy. The
reduced embedding vector is given by:

E' ={E),Ey,...,Ey}, E R )

Figure 1 illustrates the sensor’s boot-up under four different
configurations, reflecting the impact that cleaning the CLAP model
and applying PCA have on the boot-up time and memory load.

Using our reduced embedding space, a variety of simple classifiers
were evaluated for the different properties that SENS estimates,
with final selections including Random Forest Regressor, Linear
Support Vector Classification, and Logistic Regression with LBFGS
optimization. Pleasantness and eventfulness were treated as regression
problems, with outputs ranging [-1,1] where —1 corresponds to
unpleasant and uneventful, and 1 represents pleasant and eventful,
respectively. On the other hand, the sound sources approach followed a
one-vs-all classification. Their output ranges within [0,1] representing
the model’s estimated likelihood that the input belongs to the positive
class. The resulting models achieve Mean Absolute Errors (MAE) of
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Table 1: Summary of datasets and regressors/classifiers used for
training models to predict various parameters, with corresponding
validation metrics. Algorithm acronyms: Random Forest Regressor
(RFR), Support Vector Classification (SVC), Logistic Regression (LR).

Parameter Dataset Algorithm Metrics (val)
Pleasantness ARAUS RFR 0.22 MAE
Eventfulness 0.20 MAE
Birds 97% precision
Construction 81% precision
Li V isi

Dogs USM inear SVC 92% prec?s%on
Human 83% precision
Sirens 88% precision
Music LR - LBFGS  80% precision
Vehicles IDMT-Traffic, US8k Linear SVC 100% precision

0.22 and 0.20 on the validation sets for pleasantness and eventfulness,
respectively, and the sound sources classification models achieve
precision scores (i.e., the proportion of correctly classified positive
samples) that exceed 80% across all categories on the validation set
(Table 1). The code used for training the models is available in the
project’s Github repository.

4.2. Model deployment

The implementation of the trained Al models is relatively straightfor-
ward. A dedicated thread continuously monitors the folder where
audio files are saved by the capturing module, waiting for new
incoming data. As soon as a new file appears, the audio data is
read to generate a reduced embedding vector E’. This is passed to
the set of Al models, each of which outputs a prediction value. Due
to the fact that pleasantness and eventfulness constitute integrated
perceptions of the soundscape rather than instantaneous measurements,
the processing module also aggregates the 10 most recent audio frames
(corresponding to 30 seconds of audio data in the SENS use case).
Thus, another reduced embedding vector is generated and passed
to the pleasantness and eventfulness models, obtaining predictions
of these parameters over a longer period. Finally, integrating the
previously saved sound levels, Leq and Laeq, the module generates an
output dictionary with all the compiled results. This is stored in a
JSON file within a designated folder.

5. DATA TRANSMISSION

For data transmission, each SENS device in the use case network
operates remotely and sends the analysis results to a remote server
for storage and display on a web platform. This requires appropriate
hardware and poses challenges, particularly in terms of internet data
consumption. While HTTPS is widely used because it ensures secure
data transfer, it can add significant overhead due to large headers
(5-10KB). For example, each JSON file generated by the processing
module for a 3-second audio chunk is about 650 bytes. Sending
each result individually at a rate of 20 messages per minute would
result in over 8GB of monthly data usage per sensor. To mitigate this,
multiple JSON files are batched together into a single HTTPS request,
significantly reducing data consumption to 2-3GB per month.

The data transmission module in the proposed solution consists of
a script which continuously monitors the folder where analysis results
are stored and sends them to the remote server once a number of
files are accumulated (10 in our implementation). Their contents are
combined into a single payload and transmitted to a remote server via
the mobile network. If the network connection is unavailable, audio
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acquisition and processing continue locally, and transmission resumes
automatically once the connection is restored. Upon successful receipt,
the transmitted JSON files are deleted locally. The custom server stores
all incoming data in a database and offers a visualization tool that
enables users to monitor active sensors, check real-time status metrics
like memory and CPU usage, and visualize processed data with
interactive graphs. A detailed description of this server framework is
beyond the scope of this paper.

6. REAL-WORLD DEPLOYMENT

A network of five SENS devices has been deployed in the real-world
as part of Smart Iruiia Lab [18], a smart cities program carried out in
the city of Pamplona/Irufia. With over three months of deployment,
SENS technology has proven to be a reliable tool for noise monitoring.

Fig. 2: SENS device deployed in the city of Pamplona/Irufia as part
of the Smart Iruiia Lab program.

In order to extract meaningful information from the raw monitored
data, it is necessary to make it interpretable and practically useful by
applying methodological choices (such as setting thresholds based on
empirical testing to define when a sound source is considered active)
and to aggregate data by statistical mean, the percentage of time above
a threshold or the number of detected events. For example, Figure 3
presents an example of SENS monitoring results: the aggregated data
by hour for the week of May 12-18 for one of the monitored sites
in Pamplona/Irufa. In these plots, the 360 degrees represent the 24
hours of the day, while each concentric circle corresponds to a day of
the week — with Monday at the center and Sunday on the outermost
ring. The selected location is a residential neighborhood very close
to the city center, known for its vibrant street life and frequent visits
from young people due to nearby nightclubs. It is generally perceived
as quite noisy because of constant traffic throughout the week.

Subplot (a) shows the LAeq. This confirms the high noise levels
in the area, with Lge, values ranging from 68 to 70 dB every day.
To better understand the soundscape, it is useful to examine the
perceptual attributes alongside the detected sound sources. However,
first, it should be noted that due to the criteria of the city council,
any activity at night (from 23:00 to 07:00) is inversely interpreted
for pleasantness: the values for pleasantness during these hours are
adjusted to reflect greater unpleasantness when activity is high, using
the inverse of the eventfulness values. Looking at graph (b), we see
that the day and evening periods tend to be neither distinctly pleasant
nor unpleasant, likely because of the constant presence of traffic, as
illustrated in graph (d). Nights in the second half of the week appear
more unpleasant, which corresponds with higher activity levels (graph
(c)) during the early morning hours from Thursday to Sunday. This
pattern is explained by graph (e), which shows an increase in human
presence at the same periods, indicating nightlife activity associated
with the surrounding clubs and bars. Another notable aspect is the
weekend activity peaks around 12:00-15:00 and 17:00-20:00. These
high levels are also linked to human presence, suggesting that the
area is a popular gathering spot during these times. The low detection
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Fig. 3: Circular graphs of hourly data from May 12-18 for one site monitored in Pamplona/Iruiia.

rates for birds (perceived 20-30% of the time) indicate that the area
is highly urbanised, offering limited refuge for wildlife.

Altogether, this data illustrates how SENS enables us to understand
the acoustic environment without needing to be physically present. By
combining continuous measurement and intelligent data aggregation,
we gain valuable insights into daily and weekly sound patterns. If
noise issues arise, these insights provide robust evidence to identify
the most effective measures to improve the urban soundscape.

7. CONCLUSION AND FUTURE WORK

The emergence of Al opens new opportunities for real-time sound
analysis. The generally high cost of noise monitoring devices on-the-
market raises the need to develop solutions based on small low-cost
devices. Nevertheless, deploying Al-based sound analysis algorithms
on real-time acoustic sensors presents numerous challenges, including
the computational constraints linked with the need to protect data
privacy. This paper has introduced SENS as a practical use case that
addresses these difficulties through a low-cost, flexible, and privacy-
preserving solution. By performing all audio processing locally on the
device, SENS reduces the risk of compromising personal privacy. To
achieve this, significant effort was made to reduce the computational
load of the trained models through careful pruning and the use
of Principal Component Analysis (PCA) for input dimensionality
reduction. Further, the general software architecture is modular,
with separate components for audio capture, signal processing, and
transmission of analysis results to a remote server when required.
Moreover, the methodology proposes the development of independent
models for each acoustic parameter of interest, enhancing the system’s
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adaptability and scalability. Internet data consumption is further
optimized through batching and packaging multiple analysis results
before transmission. To demonstrate its real-world viability, a network
of SENS devices has been deployed in an urban environment. This
long-term deployment has shown that the system is robust, reliable,
and capable of generating meaningful insights into the acoustic
environment.

Future work will focus on further optimizing and expanding the
methodology by exploring the minimum viable sampling frequency
needed for accurate predictions to help reduce processing load even
further or using more lightweight protocols like MQTT for data
transmission. Additionally, the modular design of SENS makes it
well-suited for other applications beyond urban noise monitoring.
Future applications could include traffic monitoring (e.g., counting
vehicles or distinguishing between light and heavy traffic), public
safety (e.g., detecting distress calls on the streets), or any other scenario
where sound can serve as a valuable real-time input of information.
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