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Abstract—This paper presents the Low-Complexity Acoustic Scene Classi-
fication with Device Information Task of the DCASE 2025 Challenge, along
with its baseline system. Continuing the focus on low-complexity models,
data efficiency, and device mismatch from previous editions (2022–2024),
this year’s task introduces a key change: recording device information is
now provided at inference time. This enables the development of device-
specific models that leverage device characteristics—reflecting real-world
deployment scenarios in which a model is designed with awareness of the
underlying hardware. The training set matches the 25% subset used in
the corresponding DCASE 2024 challenge, with no restrictions on external
data use, highlighting transfer learning as a central topic. The baseline
achieves 50.72% accuracy with a device-agnostic model, improving to
51.89% when incorporating device-specific fine-tuning. The task attracted
31 submissions from 12 teams, with 11 teams outperforming the baseline.
The top-performing submission achieved an accuracy gain of more than
8 percentage points over the baseline on the evaluation set.

Index Terms—DCASE Challenge, Acoustic Scene Classification, multiple
devices, device information, data-efficiency, low-complexity, transfer
learning

1. INTRODUCTION

Acoustic Scene Classification (ASC) aims to identify the type of
environment in which an audio recording was made, based on a short
excerpt [1]. Environments are defined as a set of real-world locations,
such as Metro station, Urban park, or Public square. The ASC task
has a long-standing presence in the DCASE Challenge, evolving
through various refinements over the years. Recent editions have
emphasized challenges relevant to real-world deployment, including
low-complexity constraints [2]–[5], recording device mismatch [2],
[5], [6], and data efficiency [5]. For example, the 2024 edition required
systems to be lightweight enough to operate on embedded devices, to
achieve high performance with limited training data, and to generalize
across a variety of potentially unknown recording devices. The 2025
edition1 introduces several modifications compared to the 2024 edition.
The most significant change in the 2025 edition is the availability of
the recording device ID at inference time. This enables participants to
tailor their models to device-specific characteristics, for instance, by
fine-tuning the model for the known hardware. This design reflects
realistic deployment scenarios where the target device is known in
advance and recordings from it may be available to improve prediction
accuracy.

Figure 1 illustrates the task setup and baseline training procedure.
Training is performed in two stages: a general model is first trained
on the full available dataset (25% subset from the 2024 edition),
followed by adaptation into device-specific models using recordings
from known devices. At inference, device-specific models are used for
known devices, while the general model handles unknown ones. All

1Task Description Page: https://dcase.community/challenge2025/task-low-
complexity-acoustic-scene-classification-with-device-information

Fig. 1: Overview of Low-Complexity Acoustic Scene Classification with Device
Information. At inference time, models must operate under low-complexity
constraints and handle both known (seen during training) and unknown (unseen
during training) recording devices, with the device ID provided. The baseline
follows a two-stage training process: first, learning a general model, then
adapting it to device-specific characteristics to enhance performance on known
devices.

models must comply with the low-complexity constraints, ensuring
suitability for embedded devices (ED).

The limited size of the training set reflects real-world scenarios with
scarce labeled data, highlighting transfer learning as a key strategy. In
contrast to 2024, the 2025 task lifts restrictions on external resources,
allowing participants to incorporate additional acoustic scene datasets
to improve performance.

The remainder of the paper is organized as follows: Section 2 briefly
reviews prior approaches to device generalization, low-complexity
constraints, and transfer learning in earlier challenge editions. Section 3
details the task setup, and Section 4 presents the baseline system.
Results are discussed in Section 5, and conclusions are drawn in
Section 6.
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2. PREVIOUS EDITIONS

In past editions, several strategies were proposed to improve gen-
eralization across different—and potentially unknown—recording
devices. The most common in 2023 and 2024 were augmentation-based
methods, such as Freq-MixStyle [7], [8] and device impulse response
augmentation [9]. Others aimed to suppress device information via
domain adaptation [10], [11] or normalization [12], while a third line
of work adjusted the sampling distribution to balance devices [13].

Over the years, various complexity constraints have been introduced,
with the two most recent editions limiting model size to 128 kB and
computational cost to 30 million multiply-accumulate operations (30
MMACs), targeting Cortex-M4-class devices. In response, techniques
such as Knowledge Distillation [8], Pruning [14], [15], and Sparsi-
fication [16] were explored, alongside the design of efficient CNN
architectures [15], [17]–[20].

To tackle data scarcity, the 2024 edition saw widespread use of
transfer learning from the large-scale general-purpose audio dataset
AudioSet [21]. Participants leveraged it in three main ways: (1) fine-
tuning a large pre-trained model on ASC and distilling it into a low-
complexity student [15], [20], [22]; (2) pre-training a low-complexity
model directly on AudioSet [23]; or (3) extracting task-relevant clips
from AudioSet for training [24].

3. TASK SETUP

As discussed in the previous section, device mismatch, low-complexity
constraints, and transfer learning have been extensively studied in the
context of the ASC task. However, this year’s setup introduces key
variations to the handling of device mismatch and transfer learning.
Regarding device mismatch, the recording device ID is now provided
at inference time. Some device IDs may already have appeared in
the training data, others may be novel. This will allow participants
to develop specialized models for devices known from the training
set. For transfer learning, external datasets are no longer limited
to general-purpose collections like AudioSet [21]. However, related
acoustic scene datasets are now permitted. Given these changes, the
challenge aims to address the following set of research questions:

• Can device type information be exploited to improve performance
compared to previous editions, where it was not available at
inference time?

• Which machine learning techniques are most effective for creating
specialized models for different recording devices?

• Can additional acoustic scene datasets—possibly featuring dif-
ferent scenes, locations, or devices—help improve performance
on the TAU dataset [2], [6]?

3.1. Dataset

The task again builds on top of the TAU Urban Acoustic Scenes
2022 Mobile dataset [2], [6], which was also used in the 2022, 2023,
and 2024 editions of the challenge [4], [5]. The dataset provides
one-second audio snippets sampled at 44.1 kHz in single-channel,
24-bit format and consists of recordings from ten distinct acoustic
scenes.

Audio was captured in multiple European cities using four devices
in parallel: a high-quality binaural recorder (primary device A) and
three consumer devices (B, C, D). Additionally, ten simulated devices
(S1–S10) were created by applying device-specific impulse responses
to recordings from device A. For further details on the dataset creation
and device distribution, we refer to [2]. This dataset description is
based on [5]. The dataset is divided into a development set and an
evaluation set, following a predefined split.

Development Set: The development set contains 64 hours of audio
recorded with three real devices (A, B, C) and six simulated devices
(S1–S6). It is further divided into:

• Development-train: This corresponds to the 25% subset used
in last year’s data-efficient evaluation setup [5]. It includes
recordings from six devices: A, B, C, and S1–S3.

• Development-test: In addition to the devices in development-train,
this split includes the remaining simulated devices S4–S6, which
are unseen during training and serve to evaluate generalization
to unknown devices.

Only the development-train split (25% subset) and announced
external resources may be used for training. The development-test
split must be used only for evaluation. City and device information
are provided for all recordings in the development set.

Evaluation Set: The evaluation set includes five unknown devices
(D and S7–S10), as well as two cities that are not present in the
development set, in addition to recordings from known cities and
devices. It is used for final system evaluation and is published without
scene labels. Device IDs are provided at inference time, while city
information is withheld. Known devices (A, B, C, S1–S3) are labeled
explicitly, whereas unknown devices (D, S7–S10) are marked as
unknown. The ratio of known to unknown devices is kept consistent
between the development-test and evaluation sets.

3.2. Device-Specific Modeling: Problem Setting
In this section, we briefly formalize the problem setting arising from
the availability of device information. We assume the training data
is drawn from K distinct domains (i.e., devices) D1, D2, . . . , DK ,
each associated with its own data distribution pDk (X). The amount
of training data per domain varies and is often limited. The domain
ID is provided with each training example.

At test time, the system is evaluated on samples originating from a
mix of known domains (seen during training) and unknown domains
(unseen during training). For each test sample, the corresponding
source domain (i.e., device ID) is provided. This additional information
allows for models that specialize in known domains by leveraging
domain-specific characteristics, while still requiring a general model
to handle unknown domains.

A straightforward strategy to address this setting is to first train
a general model across all domains and then adapt it to individual
domains using the corresponding in-domain training data. This two-
step approach is also implemented in the baseline system, as described
in Section 4. Key innovations may lie in the strategy for specializing
the general model to the known domains, which may contain only a
small number of labeled data points.

3.3. Evaluation and Submission
Submissions are ranked based on class-wise macro-averaged accuracy
computed on the evaluation set. As a secondary, operating point-
independent metric, multi-class cross-entropy is reported. Each team
may submit up to four sets of predictions from different systems.
This year, participants must also submit inference code to promote
open research and allow additional complexity evaluations by the
organizers.

3.4. System Complexity Requirements
The system complexity constraints follow the 2024 edition [5] and
apply to each individual model, including both the general model
and any device-specific variants. Both model size and computational
cost are restricted. Specifically, model parameters must fit within
128 kB of memory, with no fixed numerical precision requirement.
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Table 1: Device-wise and overall accuracies of the baseline system on the development-test split.

Model A B C S1 S2 S3 S4 S5 S6 Macro Avg. Accuracy

General Model 62.80 52.87 54.23 48.52 47.29 52.86 48.14 47.23 42.60 50.72± 0.47
Device-specific Models 63.98 55.85 59.09 48.68 48.74 52.72 48.14 47.23 42.60 51.89 ± 0.05

Participants are free to trade off the number of parameters against
numerical precision; for instance, the limit corresponds to 128K
parameters with 8-bit quantization or 32K parameters with 32-bit
precision. Computational complexity is capped at 30 MMACs for
processing a one-second audio segment. These constraints are designed
to reflect the capabilities of resource-constrained devices such as
the Cortex-M4 series (e.g., STM32L496@80 MHz or Arduino Nano
33@64 MHz).

4. BASELINE SYSTEM

Following the 2024 edition [5], the baseline system builds on a
simplified variant of the top-performing submission from the 2023
edition [25]. It employs a receptive-field-regularized, factorized CNN
architecture, referred to as CP-Mobile. Audio recordings are first
resampled to 32 kHz, then converted into mel spectrograms using
a 4096-point FFT with a window size of 96 ms and a hop size
of approximately 16 ms, followed by a mel scaling with 256 mel
filterbanks.

As illustrated in Figure 1, the system is trained in two stages. In
the first stage, a general model is trained on data from all devices
for 150 epochs using the AdamW optimizer and a batch size of
256. To address device mismatch, Freq-MixStyle [7], [8] is applied
during training. In the second stage, for each device in the training
set, a device-specific model is created by end-to-end fine-tuning the
general model on data from that specific device for 50 epochs. During
inference, device-specific models are applied to known devices, while
the general model handles unknown ones.

The baseline system requires 29.4 MMACs to process a one-
second audio clip. The model uses 61,148 parameters in 16-bit (fp16)
precision, resulting in a total memory footprint of 122.3 kB for the
parameters.

Table 1 presents the device-wise and overall accuracies of the
baseline system on the development-test split. After Stage 1, the
general model achieves an overall accuracy of 50.72%. Following
Stage 2, where device-specific models are trained, the overall accuracy
improves to 51.89%. Device-specific fine-tuning increases the accuracy
for all known devices except for S3, with performance gains varying
notably across devices. The accuracy on unknown devices remains
unchanged between the two rows of the table, as the general model
is used for inference on unknown devices. The source code and a
detailed description of the baseline system are available online2.

5. CHALLENGE RESULTS

The task received 31 submissions from 12 teams, with 11 out of
12 teams outperforming the baseline system. For both the baseline
and most submitted systems, performance on the development-test
split aligned well with that on the evaluation set. Table 2 presents
the best-performing system from each team that outperformed the
baseline and summarizes their architectural choices, strategies for
handling complexity, use of external data, and device adaptation
methods. The following subsections discuss each of these aspects in

2Source Code: https://github.com/CPJKU/dcase2025 task1 baseline

detail. Additional results and detailed system descriptions are available
on the official challenge website3.

5.1. Architectures
Due to the low-complexity constraints, efficient neural network design
remained a central focus. In line with last year’s trends [5], most teams
adopted factorized convolutional architectures. Five of the twelve
teams—including the top-ranked submission—built their systems on
the CP-Mobile architecture [25]. However, several top-performing
teams proposed novel architectural variants.

Team Tan SNTLNTU [26] introduced CNN-GRU, which combines
pointwise and 1D depthwise convolutions over the frequency and
time dimensions, integrates Squeeze-and-Excitation layers [27], and
applies a GRU along the frequency axis. Team Luo CQUPT [28]
presented DynaCP, a CP-Mobile modification that processes pooling
and strided convolutions in parallel and dynamically combines their
outputs. Teams Chang HYU [29] and Ramezanee SUT [30] built
upon reparameterizable convolution blocks [31], which use multiple
branches during training that can be merged into a single, efficient
equivalent at inference time. Additionally, Chang HYU [29] employed
Channel-Time-Frequency Attention (CTFA) [32], a lightweight at-
tention mechanism that allows the model to focus on informative
input regions, while Ramezanee SUT [30] proposed learnable pooling
layers. As input to the models, all teams used log-mel energies, with
the exception of two teams that used the spectrogram instead.

5.2. System Complexity
As in previous editions [4], [5], Knowledge Distillation (KD) [33]
remained the most widely used model compression technique, em-
ployed by 10 out of 12 teams. Compared to previous editions, several
interesting variations to the KD process have been explored, such as
a feature-level distillation loss [34], device-aware feature alignment
loss to train a device-expert teacher [35], and self-distillation [36].

Compared to 2024 [5], where pruning was used only by the
top-ranked team [15], this year pruning gained traction, with 3
of the top 6 teams adopting it. Notably, the second-ranked team,
Tan SNTLNTU [26], applied pruning exclusively, without using KD.
All top-5 teams used 16-bit precision, while none opted for 8-bit
quantization—likely due to the ease of reducing to 16-bit with minimal
or no accuracy loss, whereas maintaining performance with 8-bit
quantization remains more challenging.

5.3. External Data Usage
External data was primarily used in two ways. First, most teams em-
ployed teacher models for KD that were pre-trained on AudioSet [21].
PaSST [37] remained a popular choice, though two teams—including
the top-ranked one—used BEATs [38], while the third-ranked team,
Luo CQUPT [28], used AudioSet-pretrained MobileNets [39] and
Dynamic MobileNets [40].

Second, several teams applied Device Impulse Response (DIR)
augmentation [9] using impulse responses from MicIRP4, increasing
the diversity of recording conditions in the training data.

3Results: https://dcase.community/challenge2025/task-low-complexity-
acoustic-scene-classification-with-device-information-results

4https://micirp.blogspot.com/
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Table 2: Best-performing system per team (only including systems that outperform the baseline) and the official DCASE2025 baseline. Score indicates the
accuracy on the evaluation set, Size refers to the memory required to store model parameters, and MAC denotes the number of multiply-accumulate operations.
External indicates whether external data was used, and Device Adaptation describes the method used to adapt the model to specific devices based on provided
device IDs. KD, IR, and FT stand for Knowledge Distillation, Impulse Response augmentation, and Fine-Tuning, respectively.

Team Score Size MAC Architecture Complexity External Device Adaptation

Karasin JKU 61.5 122kB 29M CP-Mobile fp16,KD IR,CochlScene,BEATs Full device-spec. FT
Tan SNTLNTU 59.9 116kB 10M CNN-GRU fp16, prune IR Full FT
Luo CQUPT 59.6 123kB 28M DynaCP fp16, KD EfficientAT Full FT
Zhang AITHU-SJTU 59.3 126kB 29M SSCP-Mobile fp16,KD,prune PaSST –
Chang HYU 59.0 125kB 29M Rep-CTFA fp16,KD IR,PaSST Head-only FT
Li NTU 58.9 122kB 17M CP-Mobile KD,prune IR,PaSST –
Ramezanee SUT 57.9 125kB 28M DSFlexiNet KD IR Full FT
Jeong SEOULTECH 57.9 122kB 26M CP-Mobile fp16,KD PaSST Full FT
Chen GXU 56.6 122kB 29M CP-Mobile fp16,KD PaSST –
Krishna SRIB 56.1 122kB 27M CP-Mobile fp16 – Full FT
Zhou XJTLU 55.5 126kB 29M TF-SepNet int8,KD IR,AudioSet,BEATs Full FT

DCASE25 baseline 53.2 122kB 29M CP-Mobile fp16 – Full FT

Among all participating teams, only the top-ranked team,
Karasin JKU [41], took advantage of the new rule allowing external
ASC datasets by leveraging CochlScene [42]. CochlScene contains
76,115 ten-second audio clips recorded across 13 distinct acoustic
scenes. The dataset was collected via crowdsourcing, primarily from
contributors in Korea. Several scene classes overlap partially with
those in the TAU Urban Acoustic Scenes 2022 Mobile dataset [2],
[6] (e.g., Bus and Park), though others are unique to CochlScene
(e.g., Restroom and Elevator) or TAU (e.g., Airport and Travelling
by Tram).

Team Karasin JKU [41] explored pre-training both the teacher and
student models on CochlScene. Notably, this strategy led to substantial
performance improvements for convolutional architectures such as
CP-Mobile [25] and CP-ResNet [43], with gains of +3.36 and +6.05
percentage points on the TAU development-test split, respectively. In
contrast, transformer-based models like PaSST [37] and BEATs [38]
saw only marginal or no improvements.

5.4. Device Adaptation

To exploit the given device information, most teams opted for the
baseline strategy of fine-tuning the general model on device-specific
data to obtain specialized models. More advanced methods were
explored by only a few participants.

Team Han CSU [44] addressed device variability by incorporating
device embeddings into the model’s internal representations, effectively
conditioning the network on the identity of the recording device.

Team Chang HYU [29] adopted a modular approach by training
lightweight, device-specific classification heads while keeping the
shared backbone frozen. This design preserves a common, general-
purpose acoustic feature extractor across all devices, while allowing
for device-tailored classification at the output stage. Importantly, this
method keeps the overall system compact, as the additional device-
specific components introduce only minimal overhead.

The top-ranked team, Karasin JKU [41], further exploited device in-
formation by customizing training configurations—such as Knowledge
Distillation hyperparameters—for each device-specific fine-tuning run.
In particular, they observed that the optimal loss weighting factor in
Knowledge Distillation, which balances the supervised loss and the
distillation loss, varies across devices and benefits from device-specific
tuning.

6. CONCLUSION

This paper introduced the setup and baseline system for Task 1 of
the DCASE 2025 Challenge, which continues to address three core

challenges of acoustic scene classification: low-complexity constraints,
device mismatch, and limited training data. A key novelty this year
is the availability of device information at inference time, enabling
device-specific adaptation and yielding consistent improvements in
the baseline system.

While the three research questions outlined in Section 3 remain only
partially explored, the top-ranked submission provided valuable initial
answers. They showed that fine-tuning routines tailored to specific
devices improve performance, and that leveraging external acoustic
scene classification datasets such as CochlScene can substantially
boost accuracy on the TAU dataset. These strategies delivered an
accuracy gain of more than 1.5 percentage points over all other
submissions, highlighting promising directions for future work.

Beyond transfer learning and device-aware modeling, participants
also advanced research on efficient architectures, Knowledge Distilla-
tion, and pruning. Several teams experimented with different teacher
models for Knowledge Distillation, while others introduced archi-
tectural components for low-complexity models such as lightweight
attention mechanisms, reparameterizable convolutions, and learnable
pooling layers.

Overall, the 2025 edition of Task 1 advanced established research on
low-complexity modeling while providing initial insights into device-
aware adaptation and the use of external acoustic scene datasets,
laying the groundwork for further exploration in these directions.
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