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Abstract—Distributed Fiber-Optic Sensing (DFOS) is a promising
technique for large-scale acoustic monitoring. However, its wide variation
in installation environments and sensor characteristics causes spatial
heterogeneity. This heterogeneity makes it difficult to collect representative
training data. It also degrades the generalization ability of learning-
based models, such as fine-tuning methods, under a limited amount of
training data. To address this, we formulate Sound Event Classification
(SEC) as “‘data assimilation” in an embedding space. Instead of training
models, we infer sound event classes by combining pretrained audio
embeddings with simulated DFOS signals. Simulated DFOS signals are
generated by applying various frequency responses and noise patterns
to microphone data, which allows for diverse prior modeling of DFOS
conditions. Our method achieves out-of-domain (OOD) robust classification
without requiring model training. The proposed method achieved accuracy
improvements of 6.42, 14.11, and 3.47 percentage points compared with
conventional zero-shot and two types of fine-tune methods, respectively.
By employing the simulator in the framework of data assimilation, the
proposed method also enables precise estimation of physical parameters
from observed DFOS signals.

Index Terms—sound event classification, distributed fiber-optic sensing,
data assimilation

1. INTRODUCTION

Distributed fiber-optic sensing (DFOS), also known as coherent optical
time-domain reflectometry (C-OTDR) or ¢-OTDR [1], [2], is an
emerging sensing technique that enables the detection of sound and
vibration signals using standard optical fibers. A key advantage of
DFOS is its ability to monitor large-scale environments with fine
spatial resolution. This results in densely sampled multichannel data
over long distances. Such large-scale and high-resolution sensing
capabilities have led to a wide range of applications, including whale
call detection in the ocean [3], traffic monitoring [4], seismic activity
observation [5], sound event recognition [6], long-range monitoring
over distances exceeding 100 km [7], [8], and utility pole localization
in urban areas [9]. These examples demonstrate the versatility of
DFOS as a distributed acoustic sensing platform and its potential for
diverse sound analysis tasks.

Sound Event Classification (SEC) [10], [11] is a task of recognizing
sound event classes, e.g., “dog,” “car,” and “people speaking” from
audio. In sound event classification, most studies have explored deep-
neural-network (DNN)-based classification with microphone [10], [12],
[13]. With large-scale monitoring enabled by DFOS, applications for
sound event classification are expected to become even more active.

The domain gap between microphone and DFOS signals is a
major challenge in implementing DFOS-driven SEC [6]. While
transfer learning or fine-tuning microphone-pretrained models on
DFOS data can improve performance, these methods are inherently
limited by the large diversity within the DFOS domain itself. DFOS
systems vary widely in both their installation environments, such as
underwater, underground, and overhead locations, and in their sensor
characteristics, such as frequency response and optical noise sensitivity.
The combination of environmental diversity and variability in sensor
properties creates a large number of possible sensing conditions, many
of which are not covered during training. As a result, even when a
model is adapted to a specific DFOS setup, it may not generalize
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Fig. 1: Concept of proposed SEC with data assimilation

to other scenarios. Since any learning-based method optimizes its
parameters based on the training distribution, it tends to perform poorly
when applied to different inference conditions. This makes it especially
difficult to ensure robust generalization in practice, particularly when
collecting labeled DFOS data for every condition is unrealistic.

To address the limitations of training-based adaptation under domain
mismatch, we reformulate SEC as “data assimilation” in an embedding
space, as shown in figure 1. Instead of updating model parameters, our
method estimates the most plausible class by combining pretrained
audio representations with simulated or observed DFOS signals. We
simulate DFOS responses across diverse scenarios to account for
spatial heterogeneity and map them to the same embedding space
using a pretrained audio encoder. At inference time, we identify the
optimal class by considering posteriors of observed and simulated
DFOS signals in the shared embedding space, without retraining or
fine-tuning. This approach enables domain-robust classification, even
under severe data scarcity and heterogeneous sensing conditions.

2. PRELIMINARIES
2.1. Principle of DFOS

In DFOS, the phase of the backscattered light generated at every
location along the fiber cable is observed:

A® = [ADy,...,AdD,, ..., Adc] € R*T 1)
where A®. = [A¢er,..., Apet,. .., A¢er] " indicates a wave-
form signal at location c¢. C' and T" denote the number of the observed
locations, i.e., channels, along the fiber and the total duration. Given
a local acoustic pressure €, ; at position x along the fiber cable and
time ¢, A¢.,: is approximated as follows:

L2
Ades / e rda @

—L/2

low-pass filter

L € R is known as gauge length, which is a hyperparameter of DFOS
systems. The point is that A¢. ¢ is proportional to the summation of
the local acoustic pressure at time ¢ and within position ¢ to ¢ + L.
In other words, Eq. 2 is regarded as a directional moving average
filter [14] which is one of the low-pass filters.
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Fig. 2: Overview of proposed SEC with data assimilation

Given a frequency response and noise, the DFOS waveform A®,
at channel c is also expressed as:

Ad, = AD, * H. + ne, 3)

where * denotes convolution, and H. and n. represent the frequency
response and additive noise at channel c, respectively. These channel-
dependent characteristics arise from the effect of Eq. 2 and diverse
installation environments such as seabeds, underground, and aerial
deployments. Moreover, n. has an effect on optical noise, which
follows a Gaussian distribution. Due to the large number of channels
C, there exist many combinations of H. and n.. It is impractical
to collect all these variations for statistical modeling. This spatial
heterogeneity leads to a significant domain gap between training and
testing. As a result, model adaptation, such as finetuning, becomes
difficult, particularly when the amount of training data is limited.

2.2. Data assimilation

Data assimilation is a technique for improving predictions, including
physical parameters, by combining simulation with new observations.
It has been applied in fields such as weather forecasting [15],
[16] and traffic monitoring [4], where simulation-based predictions
are adjusted using observations. By leveraging simulation-based
priors, data assimilation offers robustness even under out-of-domain
conditions, where real observations deviate from training or modeling
assumptions. Data assimilation is especially useful when the available
data are limited, noisy, or differ from the conditions assumed in the
model.

In data assimilation, the errors of simulations and observations are
minimized to obtain estimations from a simulator and its physical
parameters. Let z, € R™ be the background (prior) state estimate,
and z, € R™ be the observation vector. The observation operator
H : R™ — R™ maps the state space to the observation space. Let
B € R™ "™ be the background error covariance matrix and R €
R™*™ be the observation error covariance matrix. The widely used
3D-Var cost function [15], [17], [18], which is the core expression of
data assimilation, is defined as:

J(z) = % (z2—2)" B (z— 2)

simulation error

(H(z) —2o)" R™" (H(2) — 20) - 4)

N =

Jr

observation error

The optimal analysis state z, which is the physics parameters, is
obtained by minimizing the cost function:

Z < arg mzin J(z) . )

3. PROPOSED METHOD: DATA ASSIMILATION-BASED
INFERENCE FOR DFOS

We treat SEC as a data assimilation problem to address the spatial
heterogeneity in the DFOS-based SEC with a limited amount of real
DFOS training data. Instead of training a model using DFOS data,
we estimate the sound event class by comparing pretrained audio
embeddings with observed or simulated DFOS signals. This approach
allows out-of-domain (OOD) robust classification without retraining
and estimates physical parameters using a simulator as a white-box
approach.

3.1. Formulation of data Assimilation in embedding space

We formulate data assimilation in an embedding space where both
simulation and observed signals are mapped through a pretrained
model f. By sharing embedding space for both the simulation and
observed signals, we can assume that the observation operator ‘H
is the identity function. Furthermore, assuming decorrelation of the
embedding vectors, we approximate the error covariances B and R
with identity matrices. Under these assumptions, the cost function Eq.
4 of the data assimilation simplifies to:

1 1
J(2) = 5llz—mll + 5 llz — 2|3 - (6)

In our method, we employ k nearest neighbor (k\NN) model in an
embedding space to obtain the optimal state of z.

3.2. Simulated DFOS in embedding space

To implement data assimilation of SEC under the concept of Eq.
6, we generate a simulation dataset Dsimpros, which is a set of
key-value pairs with physics parameters z, by applying various DFOS
transfer functions, i.e., various low-pass filters [14] and noise, to
microphone-domain audio x;.

(IC7 Vv Z) = {(fmic (mz('Sim))7 Yi, Z(bl)) | (xgsim) y Yiy Zz(,l)) € DsimDFOS}7
)

where mfim) denotes the simulated DFOS signal of class v;. fmic :
RT — RP denote a pretrained audio encoder that maps a 7T-
dimensional waveform to a D-dimensional feature vector. For the
simulation of DFOS signals, we consider the cutoff frequency r of
low-pass filters and signal-to-noise ratio (SNR) I of Gaussian noise
as in Egs. 2 and 3: zgz = [ri, ;).

3.3. Posterior estimation utilizing data assimilation

In inference stages, given a query, i.e., an audio embedding
fmic(z**Y) of a tested DFOS waveform z(***%), the kNN-based
model retrieves k£ nearest neighbor key-value pairs of the simulation
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Sound event classes
Fig. 4: Similarity in frequency response between DFOS & microphone

set Dsimpros. Given the set of k£ nearest neighbor key-value pairs
N, the simulation probability is

Z Ty—o, exp(—d(ki, fmic(x(teSt)))) )

(ki,v;)EN
®)

where 1,—,, denotes an indicator function that takes one when i-th
value v; is equal to an estimated event label y; otherwise zero. d(-, -)
indicates a distance function, which is squared L? distance in our
work.

In parallel, we obtain the classifier-based prediction as observation
probability using only microphone-domain models:

Pobs (y]x) = softmax (fclf(fmic(l'(tESt)))) ,

1
Psim (y|7) = il

®

where for : RP® — RP is a pretrained classifier that maps the
embedding to E-dimensional logits over event classes. softmax(-)
indicates the softmax function over sound event classes, and then the
subscript y selects the probability for class y.

Finally, as a solution of Eq. 6, we interpolate the probability
psim (y|x) with the output of the observation probability pobs(y|x) to
obtain the final prediction:

p(ylz) = apobs(y|r) + (1 — a)psim (y|2), (10

where o € [0, 1] balances the obserbation- and simulation-based priors.
This formulation enables OOD robust inference under spatially diverse
DFOS conditions without requiring model adaptation or retraining.

3.4. Estimation of physical parameters via data assimilation

The physical parameters z = [r, [], which are the lowcut frequency
of the low-pass filters and SNR [ of gaussian noise, are also estimated
based on data assimilation using k nearest neighbor set A of Eq. 8:

(©)

l<—L (zy

, (11

1 NG
T ™ Z prOJr(zg)),
zl(f)EN

where proj,.(-) and proj,(-) represent an operator of extracting an
element r and [ of vector, respectively.

4. EXPERIMENTS
4.1. Experimental conditions

Recording: To validate the proposed method, we first conduct a
recording of DFOS data. As shown in Fig. 3, the optical fiber is
embedded into a mat. The figure’s left and right sides depict the real
picture and its illustration, respectively. The size of the mat is 1.2
m X 1.2 m. Sound source signals were played using a speaker and
then omnidirectionally propagated to the optical fiber of the mat. The
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Fig. 3: Installation of optical fiber

straight-line distance between the edge of the mat and the speaker
is about 2.8 m. We then obtained 50 channels from the DFOS data
of the mat. For the sound sources, we used the ESC-50 dataset [10],
which is comprised of 2,000 audio clips. The sampling frequency
of DFOS is 20 kHz. Gauge length L is set to 4 m. Figure 4 shows
the similarity in the frequency domain between original dry sources
(ESC-50) and recorded DFOS data. Cosine similarity was used for
the similarity.
Simulation procedure of DFOS: DFOS exhibits lower sensitivity
at higher frequencies [14], [19] and considerable variability across
different sensing locations. Based on those works, we simulated DFOS
data from the ESC-50 dataset [10] with low-pass filters and Gaussian
noise to reproduce Eq. 3. For the low-pass filters, we used 4th-order
Butterworth low-pass filters with cutoff frequencies r {1, 2, 3, 4, 5,
6, 7} kHz. Gaussian noise is then added to the low-pass waveform of
ESC-50 with SNR [ {-5, -10, -15} dB. We finally generated 42,000
simulated DFOS waveforms from the ESC-50 dataset. The generated
data was used for Dsimpros and in a manner of cross-validation.
Evaluation setting: We conducted a five-fold cross-validation follow-
ing [10] with the real DFOS dataset. As shown in figure 4, DFOS
data has the spatial heterogeneity. As fmic(x), we used hierarchical
token semantic audio Transformer (HTS-AT) [20] from Contrastive
language-audio pretraining [21], referred to as “MS-CLAP.” For MS-
CLAP, the sound events of ESC-50 are classified by prompts “this is
the sound of [class label],” in accordance with [22] using generative
pretrained Transformer 2 (GPT2) [23] as fus(z). For kNN, k& was
set to 50 tuned using the folds of the training. For comparison, we
used the following methods.

o Zero-shot: zero-shot classification based on MS-CLAP was used.

« Fine-tune: linear probe [24] was used, referred to as “fine-tune.”

In the linear probe, HTS-AT with fully connected layers was
trained using Adam optimizer [25].

4.2. Experimental results
4.2.1. Spatial heterogeneity: We explore the classification perfor-
mance under the spatial heterogeneity in DFOS. For clarity, we set
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Table 1: Accuracy [%] of channels ¢ = 25 — 50 for condition of spatial heterogeneity

DFOS channels of observed data used for finetuning pretrained model

Method Types of data for training a Out-of-domain (0-20) In-domain (20-50)
Observed Simulated 0-5 5-10  10-15 15-20 Avr. 20-25 25-30 30-35 35-40 4045 45-50 Avr.
Zero-shot No training 1.0 1833 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33
Fine-tune v - 3.11 9.71 4.85 2490 10.64 5830 49.94 63.18 64.10  59.80 56.59  58.65
v - 21.28 21.28 21.28 21.28 21.28 21.28 21.28 21.28 21.28 21.28 21.28  21.28
Proposed No training 0.0 2475 2475 2475 2475 2475 2475 24.75 24.75 24.75 24.75 2475 2475
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Fig. 5: Impact of real DFOS samples Dpros and o

a = 0.0 in Eq. 10 of the proposed method to verify the effectiveness
of the simulation set. As shown in figure 4, DFOS data has a large
diversity in the frequency response of DFOS compared with that of the
microphone. This spatial heterogeneity is caused by a directional filter
and optical noise of Eqgs. 2 and 3. As can be seen in the figure, the
20th channel and after have high similarities between DFOS and the
microphone; otherwise, there are low similarities. In this experiment,
we divide the DFOS channels into two sections, before and after
the 20th, to verify their performance under the condition of spatial
heterogeneity.

Table 1 shows the accuracy of classifying events where channels
¢ = 25 — 50 were used for the inference. For the fine-tuning method,
we used two types of data: observed and simulated data. The observed
data means the real DFOS data captured by the fiber mat in Fig. 3. The
result indicates that the proposed method outperforms the conventional
methods in terms of average accuracy under ¢ = 0 —20; OOD section.
The proposed method improved the classification performance by
6.42, 14.11, and 3.47 percentage points in terms of average accuracy
compared with the zero-shot and fine-tune methods with the observed
or simulated DFOS data.

The proposed method achieves significantly better performance than
the conventional methods for each channel of ¢ = 0-15. In particular,
the proposed method with Dsimpros improved the accuracy by 21.64
percentage points compared with the fine-tuning methods. On the
other hand, the performance of the conventional fine-tuning method
gets drastically worse. This is because the lower-SNR DFOS data
cause the fine-tuning method to catastrophically forget the acoustic
features of the pretrained model.

For ¢ = 20-50, the conventional fine-tuning method with the
observed DFOS data outperformed the other methods, including the
proposed methods. Since there is a small gap between the tested and
trained channels compared with those of ¢ = 0-20, the fine-tuning
method with the observed DFOS data works well.

4.2.2. Impact of number of real samples and o in data assimilation:
In this experiment, we relaxed the constraint by using actual DFOS
data for the proposed data assimilation SEC. Specifically, we add a
real DFOS dataset Dpros, which is used for the fine-tune methods,
into the simulated DFOS dataset Dgimpros. The real DFOS dataset
Dpros was constructed using the same procedure as DsimDFOS.-

Fig. 6: Similarities with tested real DFOS data

Figure 5 shows the all-channel-averaged accuracy with changing
Dpros and a. The result shows that the accuracy of the proposed
method with & = 0.2-1.0 is significantly lower than that of o = 0.0.
This indicates that the large-scale models trained by the microphone
are helpful for encoding audio not observed by the microphone, even
though there is a large gap between DFOS and the microphone.
When o = 0.0, we found that increasing the size of Dpros leads to
improved performance, achieving high accuracy even with a small
number of samples.

4.2.3. Estimation of physical parameters: Figure 6 shows the
performance of estimating the physical parameters z with Eq. 11.
In the figure, the green line depicts the average of the cosine
similarities in the embedding space of MS-CLAP between tested
DFOS signals and reproduced DFOS signals. The reproduced DFOS
signals were generated from the original microphone signal of the
ESC-50 dataset with the estimated physical parameters z = [r,[]. The
orange dashed line represents the average cosine similarity in the
MS-CLAP embedding space between the tested DFOS signals and
the original microphone signals from the ESC-50 dataset. The blue
dotted line shows the average similarity between the tested DFOS
signals and the simulated DFOS signals. The result shows that the
similarities between the tested DFOS signals and the reproduced DFOS
signals are higher than those of the other methods. In other words, the
proposed data-assimilation-based SEC precisely estimates the physical
parameters z = [r,[]. The result indicates that the proposed method
estimates the optimal physical parameters by interpolating the prior
physical parameters z; of the simulation.

5. CONCLUSION

We addressed the challenge of the spatial heterogeneity in the DFOS-
based SEC under a limited amount of real DFOS training data. Our
method formulates inference as data assimilation in the embedding
space, combining pretrained audio features with simulated DFOS
signals, and avoids model retraining. The proposed method achieved
accuracy improvements of 6.42, 14.11, and 3.47 percentage points
compared with zero-shot and two fine-tune methods. The proposed
data-assimilation-based SEC also precisely estimates the physical
parameters of a tested DFOS signal compared to the simulated DFOS
signals.
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