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Abstract— Efficient detection of lithium battery thermal runaway is a
critical factor in promoting the large-scale application of lithium batteries
in energy storage and electric transportation. Traditional methods rely
heavily on contact-based techniques such as temperature, current, voltage,
impedance, or structural deformation monitoring, which have limitations
in terms of cost, real-time performance, and scalability. In contrast,
acoustic detection, with its non-contact nature, low cost, and suitability for
large-scale monitoring, is emerging as a promising alternative. While
previous studies have demonstrated the effectiveness of machine learning-
based acoustic methods for thermal runaway detection, there is still a lack
of an open acoustic dataset covering the entire process of lithium battery
thermal runaway. To address this, this paper introduces the first lithium
battery acoustic dataset containing both normal and thermal runaway
events, annotated with abnormal events. We further evaluate several
baseline models and state-of-the-art acoustic event detection models using
this dataset. Experimental results show that this dataset holds strong
potential for thermal runaway anomaly detection and provides a valuable
data foundation and benchmark for future research.

Index Terms—Thermal Runaway, Acoustic Anomaly Detection,
Lithium Battery Safety, Audio Dataset

1. INTRODUCTION

With the development of renewable energy sources such as solar and
wind power [1-2], large-scale energy storage stations and grid
facilities have advanced significantly in recent years, leading to the
construction of large stations equipped with a vast number of energy
storage batteries [3]. Due to their long cycle life, high output voltage,
high energy density, and low self-discharge rate [4-8], lithium-ion
batteries have gradually become the most promising option among all
energy storage battery technologies. Unfortunately, in large-scale
energy storage stations, tens of thousands of closely packed battery
cells are often deployed, and each individual cell has the potential to
undergo thermal runaway due to heat accumulation and material
characteristics, which may lead to cascading thermal events and even
fire hazards [9]. In recent years, numerous cases of thermal runaway
have occurred in both the energy storage and electric vehicle sectors,
posing significant challenges to the further development of lithium-ion
batteries. Thermal runaway has become the most critical safety issue
in the energy storage domain [10-11], and how to detect and intervene
in the early stages has become a shared focus of both academia and
industry.

Overcharging, overdischarging, and mechanical damage can all
trigger the risk of thermal runaway in lithium-ion batteries [12—13].
Fig. 1(a)(b)(c) illustrates the heat generated by mild overcharge and
overdischarge conditions [14], while Fig. 1(d)(e)(f) depicts several
stages of thermal runaway induced by excessive overcharge. In stage
(d), the initial phase, a large amount of heat is generated inside the cell,
and the electrolyte begins to produce bubbles, leading to internal
pressure buildup. In stage (e), the onset phase, the pressure reaches the
threshold of the safety valve, causing it to open and release a
significant amount of gas, accompanied by a distinct venting sound.
Finally, in stage (f), thermal runaway escalates and propagates
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violently, during which the electrolyte is expelled and flames may
occur and spread [12].!
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Fig. 1: Mechanism of thermal runaway initiation and propagation [14].(a) and
(c): Mild overcharge and overdischarge conditions in individual cells;(b):
Module inconsistency;(d)—(f): Representative stages of thermal runaway
progression.

Various feasible methods have been proposed for monitoring
thermal runaway in lithium batteries, which can be broadly
categorized into approaches based on changes in temperature, pressure,
and electrical characteristics [15—18]. Temperature-based monitoring
typically involves placing thermocouple sensors on the battery surface
to track temperature variations, thereby enabling prediction and
detection of thermal runaway events [19]. While effective, this
approach requires extensive wiring and suffers from significant
latency. Pressure-based methods rely on installing pressure sensors
between battery cells to detect swelling, thus providing early warnings
of abnormal behavior [20]; however, this method also demands
complex wiring and suffers from limited detection accuracy.
Monitoring based on electrical characteristics involves using battery
management systems (BMS) to measure parameters such as
impedance, current, and voltage to assess the battery’s health status
[15]. Nonetheless, such methods may lack direct correlation with
thermal runaway events and are often costly.

As previously mentioned, the opening of the safety valve during a
thermal runaway event generates a distinct venting sound.
Consequently, acoustic-based monitoring methods have attracted
growing attention. In the study by Su [21], a venting sound detection
method for individual lithium cells was proposed, combining
XGBoost and wavelet transform to validate the existence of
characteristic acoustic signals during thermal runaway and the
feasibility of monitoring such events via sound. Similarly, in the work
by Lyu [12], four microphones were deployed inside a battery storage
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cabin, and a combination of wavelet transform and cross-correlation
algorithms was used to detect and locate the safety valve venting
sound. These studies demonstrate that acoustic sensing offers an
effective approach for detecting thermal runaway in lithium batteries
[12].

Although acoustic methods have proven effective for identifying
thermal runaway, growing attention has been paid to predicting
battery states using machine learning based on acoustic signals. While
several datasets exist for machine learning tasks related to battery
impedance and capacity [22], there is still a lack of publicly available
acoustic datasets specifically focused on abnormal sounds during
thermal runaway. Such a dataset is essential for better understanding
the acoustic evolution during thermal runaway and for enabling
prediction and diagnosis using sound-based methods.

In this work, we address this gap by collecting thermal runaway
sound data from lithium-ion batteries using a microphone array and
annotating abnormal events throughout the process. We construct a
lithium battery thermal runaway sound dataset and validate its
effectiveness through a binary classification task using a CNN-based
model. Furthermore, to better reflect real-world scenarios where
abnormal data is scarce, we also explore an unsupervised anomaly
detection approach based on acoustic signals.

Specifically, our contributions are as follows:

1. We present the first acoustic dataset for lithium-ion batteries that
includes both normal and thermal runaway states.

2. We provide detailed annotations of abnormal events within the
dataset.

3. We evaluate various baseline models and mainstream acoustic
event detection methods, offering a valuable benchmark and data
foundation for future research.

2. DATASET CONSTRUCTION

2.1. Data Acquisition System Design

We employed a four-microphone array to collect acoustic data.
Specifically, our data acquisition system consists of the microphone
array and a central processing unit. The microphones used are ICS-
43434 digital MEMS microphones, and a DSP chip serves as the
processing core for signal acquisition and transmission. The
configuration of the microphone array and the data acquisition system
is shown in Fig. 2.

Due to varying scales of battery modules in our thermal runaway
experiments, the microphone array needed to maintain a certain
distance from the center of the runaway cell. Therefore, the shape of
the array was not fixed but adjusted according to the size of the battery
module. For single-cell thermal runaway experiments, the
microphones were placed at the four corners of a rectangular battery
module. For experiments involving a full row of cells, where reactions
are more intense, the array was mounted on a rectangular metal frame
approximately meter away from the battgry pack.
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Fig. 2: Microphone array configuration and data acquisition system. (a)
microphone array and data acquisition setup; (b) close-up view of the data
processing circuit board.

2.2. Thermal Runaway Data Collection

Here, we used overcharging to trigger thermal runaway in the battery
cells. The cell model used was 314-0.5C (Narada, China), and the
charging method applied was 157 A, 0.5C direct current. Data
acquisition—including sound, temperature, and other physical
parameters—began at the start of charging and ended when water
cooling was activated. In total, we collected three sets of thermal
runaway acoustic signals, with corresponding cell configurations and
microphone array layouts summarized in Table 1. The actual
experimental site setups are shown in Fig. 3.

Table 1: Battery configurations and microphone array layouts in thermal
runaway experiments.

Thermal Battery Triggered Cell Microphone
Runaway ID Configuration Configuration Array Layout
at Test Site
Placed at four
1 Full Row Single Cell corners of the
full cell row
Placed on
rectangular iron
2 Full Row Full Cell Row frame
surrounding the
cells
Placed at four
Entire Batte . corners of the
3 Pack Y Single Cell entire battery

pack

Microphone array

(a) (b) ()
Fig. 3: On-site thermal runaway cell and microphone array configuration. (a)
single-cell thermal runaway triggering experiment on a single-row cell array;
(b) whole-row cell triggering experiment on a single-row cell array; (c) single-
cell triggering experiment on the entire battery module.

We collected three complete sets of thermal runaway sound data
using a four-channel microphone array, with a sampling rate of 16,000
Hz. Each recording segment is 10 seconds long. Specifically, we
obtained 100x10s, 185%10s, and 186x10 s of thermal runaway audio
samples, and recorded corresponding timestamps for synchronization
with video footage and subsequent annotation. The recordings from
each channel of the microphone array were treated as separate audio
files for data processing.

Additionally, we collected two sets of normal charging sound data,
comprising 1000x10s and 41 x10 s segments, to verify that batteries
produce almost no audible noise during normal charging. Due to
variations in field conditions, normal charging sounds were not
included in the training dataset for the subsequent experiments.

2.3. Dataset Construction

Since the acoustic signals during thermal runaway are primarily
caused by the activation of the safety valve and the subsequent venting
process, we define the safety valve activation and the following sound
as anomalous events associated with thermal runaway. We name it
LiB-TRAD, which is, to the best of our knowledge, the first sound
dataset specifically dedicated to thermal runaway in lithium-ion
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batteries. The annotated format of our thermal runaway dataset is
shown in Fig. 4.

Thermal runaway 3 normal fle: 168 files abnormal ile: 428 files Normal Charge 2 normal file: 164 files
/| Thermal runaway 2 normal fle: 348 fles abnormal fle: 392 fles Normal Charge 1 normal file: 4000 files
Thermal runaway 1 normal file: 152 files abnormal file: 672 files
Training data Test data E, S
F;j ﬁ 4000 background normal charge files
80% normal files 20% normal fles

100% abnormal files

Fig. 4: Composition of the thermal runaway dataset.

We extracted mel-spectrograms from both normal and abnormal
signals for comparison, as shown in Fig. 5. For illustrative purposes,
the spectrograms shown here are derived from a single representative
channel of the microphone array. It can be observed that the normal
signals contain a large amount of low-frequency components, which
are attributed to the noise generated by fans and operating machinery.
In contrast, the abnormal signals exhibit higher-frequency and more
energy-concentrated components. This is because the sound source of
the abnormal venting signal from the safety valve is closer to the
microphone array, and both the opening of the valve and the
subsequent venting process produce significant high-frequency
components.
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performance in distinguishing between abnormal and normal sounds,
thereby validating the effectiveness of our data collection and labeling
methodology. The training loss curve is shown in Fig. 7.
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Fig. 6: Schematic diagram of the designed CNN-based binary classification
network.
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Fig. 7: Loss curves. (a) Training loss curve of Thermal Runaway Experiment 1.
(b) Training loss curve of Thermal Runaway Experiment 2. (c) Training loss
curve of Thermal Runaway Experiment 3.
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The AUC values of our model on the test sets from different
thermal runaway experiments are reported in Table 2.

Table 2: Binary classification test results of the CNN model on different
thermal runaway experiments in the LiB-TRAD dataset.

Thermal Runaway ID Test set AUC
| i 1 0.9971
I —— 2 0.9876
Time (s) Time (s) 3 0.9893

(a) (b)
Fig. 5: Comparison of mel-spectrograms between normal and abnormal signals.
(a) Mel-spectrogram of a normal signal. (b) Mel-spectrogram of an abnormal
signal.

3. DATASET VALIDATION

To demonstrate the effectiveness of the collected data and our
abnormal sound labeling method, we first formulate the abnormal
sound detection task as a binary classification problem, i.e., a
supervised classification task. By analyzing the results on the
validation set, we can evaluate the validity of our labeling approach.

We designed a CNN-based network to perform this task, with the
network architecture shown in Fig. 6. Specifically, each audio
segment is read at a sampling rate of 16 kHz, and a 64-dimensional
Mel-spectrogram is extracted (with a window size of 1024 and hop
length of 512). The Mel-spectrogram is then converted into a log-mel
power spectrogram, which serves as the input to the model.

The CNN model consists of three convolutional blocks, each
containing a convolutional layer, Batch Normalization, and a ReLU
activation function. Downsampling is performed using MaxPooling
layers. Finally, an Adaptive Average Pooling layer followed by a fully
connected layer outputs the prediction probability, representing the
confidence that the current input is an abnormal sound.

During training, normal samples are labeled as 0 and abnormal
samples as 1. The model is optimized using a binary cross-entropy
loss function with the Adam optimizer and a learning rate of 1e-3. The
dataset is randomly split into 80% training and 20% validation sets. At
the end of each epoch, we compute the Area Under the Curve (AUC)
metric on the validation set. A higher AUC indicates better
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The results on the test set indicate that our abnormal sound labeling
is highly accurate. However, in real-world production environments, it
is often difficult to obtain abnormal sound data. In such cases,
abnormal sound detection must be conducted in an unsupervised
manner [23], which is similar to Task 2 of DCASE 2025 [24].
Therefore, in the following section, we adopt an unsupervised training
approach, where the model is trained using only normal sound data,
and abnormal sounds are introduced only during testing.

4. UNSUPERVISED ABNORMAL SOUND DETECTION

The task of unsupervised abnormal sound detection for machine
condition monitoring has attracted considerable attention [25].
Abnormal sound detection refers to identifying whether the sound
emitted by a target machine is normal or abnormal. In this work, we
evaluate several baseline and pre-trained models that have
demonstrated strong performance in previous DCASE tasks, including
the autoencoder (AE) model [26], the BEATs model [27], the EATs
model [28], and the Dasheng model [29]. Additionally, we propose an
improved AE model as the baseline specifically tailored for the dataset
presented in this paper.

In this study, we further designed and implemented an improved
AE model, as illustrated in the flowchart in Fig. 8, for unsupervised
detection of abnormal sound data. The model evaluates anomaly
scores based on the Mahalanobis distance. The proposed processing
pipeline consists of three key stages: data preprocessing, model
training, and anomaly evaluation.
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Fig. 8: Flowchart of the autoencoder model with integrated self-attention
mechanism.

4.1. Data Preprocessing

Our training set consists of 80% of the normal audio data, while the
test set includes the remaining 20% of the normal audio along with
100% of the abnormal audio, enabling an unsupervised detection task.

We use audio data in .wav format sampled at 16 kHz (SR=16000),
organized into two folders: normal/ for recordings during regular
operation and abnormal/ for recordings during thermal runaway events.
To extract time-frequency features from the audio, we use Librosa to
compute 64-dimensional Log-Mel spectrograms (with n_mels=64).

The extracted features form a 2D matrix of shape [T, 64], where T
denotes the number of time frames. For unified modeling, each [1, 64]
frame is treated as an individual input sample during training.
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as the loss function to optimize the model's reconstruction ability,
expressed as:

©)

To better characterize the difference between abnormal and normal
samples in the latent space during inference, the model constructs a
multivariate Gaussian distribution based on the mean () and
covariance matrix (X) of all z values from the training set. The
Mahalanobis distance is then used as the final anomaly scoring metric:

O=JC=-) -) 4
This distance measures how far the latent representation of the
current sample deviates from the distribution of normal training data.

A higher score indicates a higher likelihood of being an anomaly.

5. EXPERIMENTAL RESULTS

We evaluated the anomaly detection performance of each model on
the test set using the AUC (Area Under ROC Curve) metric to
measure recognition accuracy. The results are shown in the table
below:

Table 3: Performance comparison of different models.

4.2. Model Training

We employ a symmetrical two-layer fully connected architecture and
introduces an attention mechanism to enhance the model’s ability to

focus on key features. The overall structure is as follows:

Encoder:

Linear(64 — 128), Activation: ReLU.

Linear(128 — 64), Output: encoded latent vector .

Thermal Runaway ID AUC hmean Average
1 2 3 Inference
Time/ms

AE 0.4953 0.5236 0.4864 0.5012 0.12
Beats 0.5861 0.4253 0.5742 0.5173 3.52
Eats 0.6324 0.5236 0.5637 0.5697 1.84
Dasheng 0.7125 0.5324 0.6152 0.6112 0.95
Proposed  0.6892 0.6125 0.5936 0.6291 0.17

Self-Attention Mechanism:
We introduce a self-attention module on the latent vector ,
formulated as follows:

€Y

@

This module enhances the model's ability to focus on time-
frequency components with significant abnormal characteristics,
thereby improving the robustness and sensitivity of anomaly detection.

Decoder:
Linear(64 — 128), Activation: ReLU
Linear(128 — 64), Output: reconstructed features

The model uses MSELoss as the reconstruction loss function and is
optimized with the Adam optimizer. The learning rate is set to le-3,
and the model is trained for a total of 200 epochs, with the data
shuffled randomly in each epoch. The training batch size is 128,
meaning that 128 frames are used for each model update.

4.3. Anomaly Evaluation

After training, during the inference phase, the model takes a test frame
as input, extracts the latent representation z through the encoder and
attention module, and reconstructs the output  using the decoder.
During training, the reconstruction error (mean squared error) is used
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The experimental results show that various models trained on this
dataset exhibit different levels of performance in the thermal runaway
sound anomaly detection task, which validates the effectiveness of the
constructed dataset in evaluating model recognition capabilities in
complex battery safety scenarios. Among them, the proposed
autoencoder achieved stable and excellent results in all three
experiments, with a harmonic mean AUC (hmean) of 0.6291, the
highest among all models. This reflects strong overall detection ability
and good robustness. Additionally, with an average inference time of
0.17 ms, it strikes a balance between performance and efficiency,
demonstrating high practical deployment value.

6. CONCLUSION AND FUTURE WORK

This study presents the first publicly available multi-channel acoustic
dataset covering the entire thermal runaway process of lithium-ion
batteries, comprehensively recording crucial acoustic changes from
normal operation to thermal runaway onset. The LiB-TRAD dataset
was collected in real experimental scenarios with precise anomaly
labeling and phase segmentation, providing a standardized benchmark
for training and evaluating anomaly detection algorithms.

We systematically evaluated various typical unsupervised anomaly
detection models, including AE, BEATs, EATs, and Dasheng, and
proposed an improved autoencoder model as the baseline for our
dataset. Evaluation results demonstrate that our dataset effectively
distinguishes the stability and generalization capabilities of different
models across various experimental scenarios. The proposed improved
autoencoder achieved the most balanced performance across three
thermal runaway experiments (hmean reaching 0.6291), not only
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validating the dataset's applicability for acoustic anomaly detection
tasks but also establishing an effective benchmark for future research.

Future work will focus on finer-grained sound event recognition,
particularly the acoustic signature modeling of safety valves during
early release processes to identify potential warning signals. We also
plan to continuously expand the dataset scale, enrich experimental
conditions and sensor configurations to enhance model robustness and
practical deployment capabilities, ultimately promoting the real-world
application of acoustic sensing technology in lithium battery safety
monitoring.
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