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ABSTRACT

Spatial Semantic Segmentation of Sound Scenes (S5) aims to en-
hance technologies for sound event detection and separation from
multi-channel input signals that mix multiple sound events with spa-
tial information. This is a fundamental basis of immersive commu-
nication. The ultimate goal is to separate sound event signals with
6 Degrees of Freedom (6DoF) information into dry sound object
signals and metadata about the object type (sound event class) and
representing spatial information, including direction. However, be-
cause several existing challenge tasks already provide some of the
subset functions, this task for this year focuses on detecting and sep-
arating sound events from multi-channel spatial input signals. This
paper outlines the S5 task setting of the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) 2025 Challenge Task
4 and the DCASE2025 Task 4 Dataset, newly recorded and curated
for this task. We also discuss the performance and characteristics of
the S5 systems submitted to DCASE 2025 Challenge Task 4 based
on experimental results.

Index Terms— Sound event detection and separation, Seman-
tic segmentation of sound scenes, Spatial signal

1. INTRODUCTION

This paper summarizes a newly introduced task for the Detection
and Classification of Acoustic Scenes and Events (DCASE) 2025
challenge, named Task 4: Spatial Semantic Segmentation of Sound
Scenes (S5) [1], and discusses the experimental results of submitted
systems for this challenge [2} 3} 411516, 7,8} 9].

As illustrated in Fig.[I] S5 consists of detecting and extracting
sound events from multi-channel spatial input signals. The input
signal contains multiple simultaneous sounds as well as background
noise. Each output signal should contain one isolated sound event
with a predicted label for the event class.

One promising application of S5 is XR services that capture a
user’s surrounding acoustic scene and transmit it to remote partic-
ipants. To deliver a believable experience, the mixture must first
be decomposed into individual sound objects. Each object is paired
with its class label and 6DoF (three-dimensional position and ro-
tation) spatial metadata. By using this, the rendering engine can
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then update direction and distance as the listener moves or edits the
scene in real time. S5 technology can also be applicable for home-
assisted living through sound monitoring of the room environment.
As a first step for these applications, the present S5 task asks sys-
tems to detect the constituent sound events and separate their dry
signals from multi-channel spatial recordings.

The S5 task relates to earlier DCASE challenges. DCASE 2021
Task 4 (Sound Event Detection and Separation in Domestic Envi-
ronments) used single-channel recordings. Separation was optional
and did not affect the score; it was only considered as a poten-
tial way to improve sound event detection when overlapping sound
events are present [10L[11]]. S5 instead supplies multi-channel input,
allowing systems to exploit spatial cues, and it directly scores the
quality of the separated sources. DCASE 2024 Task 3 (Audio and
Audiovisual Sound Event Localization and Detection with Source
Distance Estimation; SELD) targets direction-of-arrival (DoA) and
distance metadata [[12]. Although S5 does not require explicit es-
timation of geometric metadata like SELD, spatial information re-
mains an important key.

2. TASK SETTING OF S5

2.1. Formulation and notation

The S5 task, originally proposed in our prior work [13], aims to
detect and separate the sounds of each sound event from a mixture
observed by a multi-channel microphone array at various locations
in a real environment. This section introduces the notation and task
settings.

Let Y = [y, ... g7 € RM*T pe the multi-channel
time-domain mixture signal of length 7", recorded with an array of
M microphones, where {-} T is the matrix transposition. We denote
C ={c1, ..., ck } the set of source labels in the mixture, where the
source count K can vary from 1 to Kmax. The m-th channel of Y’
can be modeled as

K J

y(m) _ Zhim) % 8o, + Zhg_m) * Sc; -+ n(m)
k=1

(€]

J=1 optional

where S¢,, Sc; € RT are the single-channel dry source signal cor-
responding to the labels of the target event ¢, and interference event
¢;, respectively. h{™, h;m> € R¥ are the m-th channel of the
length-H room impulse response (RIR) at the spatial position of
S, and s¢;. n(™ ¢ R is the m-th channel of the multi-channel
noise signal. In the S5 task, the desired outputs are the estimates
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Figure 1: Overview of spatial semantic segmentation of sound scenes.
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2.2. Evaluation method, metric

As evaluation metrics for the S5 task, we used class-aware signal-
to-distortion ratio improvement (CA-SDRi) proposed for the S5
task [[13]]. The metric is defined as

1

lcuC|

AN

CA-SDRi (S XeNe) y<mref>) -

>

cecul

where |C'U ¢ | is the length of the set union. The metric component
P: is calculated as

SDRi(3¢, sz, y™), ifceCnC

PN ifceCreg C (3)
PP ifc¢ CreeC

P,

cecuC —

where the SDRi is calculated as

SDRi(8¢, sz, ™) = SDR(3¢, s:) — SDR(y ™) s2), (4)

).

The key concept of CA-SDRi is that estimated and reference
sources are aligned based on their labels. The waveform met-
ric, SDRi, is calculated only when the label is correctly predicted,
i.e., in the first case of (3). For incorrect label predictions, including
false negatives (FN) and false positives (FP), which correspond to
the second and third cases in , the penalty values P& and PLF
are accumulated. In this study’s evaluation, both PEY and PEF were
set to 0, indicating that incorrect predictions do not contribute to the
metric. For the reference channel m..r, we use the omnidirectional
channel i.e., myf = 0.

The CA-SDRIi described above sets the dry source signal sy, as
the target signal. However, direct comparison with the dry source
can be challenging. It requires sample-accurate compensation for
the distance-dependent delays between each source and micro-
phone. Such precise alignment lies outside S5’s main focus on
detection and separation for now. To relax this requirement, we
replace each dry source with the signal obtained by convolving it
with the direct-path component of the impulse response, forming

[Elll

ls — 8|

SDR(8, s) = 101log, ( (5)

sgd) =h

(Myer,d)
k k

* Scp - 6)
Here, hi,m“‘r 9 is the direct path component of the impulse response
at the reference microphone my.s. CA-SDRI, in this study, is com-
puted by using si? as reference. Note that, although our notation
differs, the metric is identical to the one adopted in the previous

study [13].
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Finally, the ranking score is the average CA-SDRi across all
clips. In addition to the primary ranking score function CA-SDRi,
we will also provide PESQ [14] and STOI [15] for speech, and
PEAQ [16]] scores for signals other than speech as informative met-
rics representing perceptual quality.

3. DCASE2025 TASK4 DATASET

3.1. General overview

For the S5 task, we designed and recorded a new dataset named
DCASE2025 Task4 Dataset [17,[18]. Because of the challenges in
evaluating S5 for real recordings, we opted for a simulated dataset,
making considerations to make it as realistic as possible. The re-
sources needed to build such a dataset consist of the following.

e Isolated target sound events s, : isolated recordings of di-
verse sound event classes. In light of Eq. (I, these signals are
preferably captured in anechoic conditions.

Room-impulse responses (RIRs) h,gm): multichannel RIRs

measured in various rooms.

Environmental noise n(™: environmental noise recorded
with the same multichannel microphone array used for the
RIRs in indoor and outdoor environments.

In addition to stationary, direction-independent environmental
noise, it is often useful to include sporadic sound events that do
not belong to the target classes. We refer to these as interference
sounds and handle them as follows:

o Interference sounds: Recording of sound events of classes not
included in the isolated target sound events mentioned above.
When forming mixtures with Eq.[T] the interference signals are
processed similarly to the target sound events.

The DCASE2025 Task4 Dataset consists of new recordings
and curated data from publicly available datasets [19) 120, 21].
Eighteen classes listed in Table. [T are selected for the target sound
events. Among the materials that make up the DCASE2025 Task4
Dataset, our newly recorded material and curated materials from
FOA-MEIR [21] are released on Zenodo [17, [18]. The remain-
ing materials are obtained and filtered from their respective public
datasets [19 22| 20] via a download script that we provide on
GitHub [23|]. The training and evaluation mixtures y(m) were
synthesized from the above materials using a modified version of
a spatial-audio simulator named SpatialScaper [24]. All mixtures
were synthesized at 32kHz/16bit with a 10 second length.

3.2. Development dataset

The development dataset of the DCASE2025 Task4 Dataset [[17]
was constructed from various datasets, including both existing and
newly recorded data specifically for this task. The isolated target
sound events for the development set consist of our newly recorded
data and curated samples from FSD50K [19] and EARS [22]. RIR
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Table 1: The amount of recorded samples of isolated target sound events used to synthesize the DCASE 2025 Task 4 dataset. The numbers in parentheses
indicate the number of samples curated from publicly available datasets [[19] 122} [20], not newly recorded.

Alarm Cupboard Foot  Hair Mechanical Musical  Percus Vacuum Bicycle
Clock Blender Buzzer Clapping Cough OpenClose Dishes Doorbell Steps Dryer Fans  Keyboard  sion Pour  Speech  Typing Cleaner Bell
Dey duration[s] | 699 1337 350 1022 1501 1434 1174 526 2143 988 1912 2959 5321 601 4047 3304 1414 548
SV # of samples |72 (42) 95(52) 73 (21)376(312)288 (211) 262 (184) 269 (208) 68 (63) 336(298)29(25) 82(59) 434(397) 1881 (1796)71 (37) 1203 (1195)308 (228) 53 (46) 110 (54)
Eya duration[s] | 157 260 164 147 59 108 120 147 243 78 202 250 69 163 109 258 156 179
V& gofsamples | 12 19 20 23 24 21 16 19 19 2 21 13 24 28 35 3 21
dataset was constructed by merging newly recorded RIRs for this ch3
task with curated material from the publicly released FOA-MEIR Omni-directional ST
. . . ch2 cha
dataset [21]]. Newly recorded RIRs were captured at six micro- microphone Q
phone positions—two positions in each of three rooms. At each \ et T TN /
.. .. . g 1 S
position we captured 108 RIRs, giving 648 responses in total. The ) 3 ' b

three rooms represent different acoustic conditions: a small con-
ference room, a music-listening room, and a room with reflective
walls. All background noise were curated from the publicly avail-
able FOA-MEIR dataset [21]. All interference was curated by re-
moving items related to our target 18 classes from the background
set in the dataset for Semantic Hearing [20]. The procedures for the
new recordings and the curated material drawn from public datasets
are detailed in Sec.[3.4]

The development dataset was further divided into three subsets:
training, validation, and test. Mixtures for the test subset were pre-
synthesized, while for the training and validation subsets, partic-
ipants may generate mixtures using the provided data. Each clip
contains between one and three target sound events, with at most
three target sound events active simultaneously. The SNR for each
target sound event ranges from 5 to 20 dB, with respect to the back-
ground environmental noise. Each mixture also includes one or two
interfering sound events, with SNRs ranging from 0 to 15 dB.

3.3. Evaluation dataset

To ensure fairness in the challenge, isolated sources of the target
sound events, RIRs, interference sounds, and environmental noise
were all newly recorded for the evaluation data. In other words, the
evaluation data does not include any publicly available data.

The main subset (files 0000—1619) contains mixtures with 1, 2
or 3 target sound events; 0, 1 or 2 interference events; and RIRs
recorded at six microphone positions. The six positions are dis-
tributed across three rooms, with two positions recorded in each
room: a small conference room, a large conference room and a
room with reflective walls. These rooms are not included in the
development set. These factors yield 3 x 3 x 6 = 54 acoustic set-
tings, and 30 mixtures were synthesized for each setting. The SNR
settings for mixing are the same as for the development set.

Files 1620-2033 constitute the ‘partially known conditions’
subset. Mixtures in this subset were synthesized so that one ele-
ment—RIRs, target sound event, background noise, or interference
sound—was drawn from the training partition of the development
set. This design enables a factor-specific evaluation of how well the
systems generalize beyond their training conditions. The following
subsets exceed the scope of this year’s S5 task. Files 2034-2141
contain no target events, while files 2142-2249 include multiple
same-class target events arriving from different directions. Files
2250-2289 are recordings made in real indoor and outdoor envi-
ronments; consequently, oracle target sources are unavailable in
this split.

3.4. Recording details

Isolated target sound events were recorded in an anechoic chamber.
Fig. 2] shows the configuration of microphones for this recording.

172

sound event ~30cm

N I

i N\ 450, 45°
, N2 \
~30cm

\\ ' N s \
i N . \
A [ ——

% ~30cm %

\Shotgun microphones

,
’ \

ch2-4

(a) side view of microphone configuration (b) top view of microphone configuration

Figure 2: The Configuration of microphones used to record isolated sound
events in an anechoic chamber
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Figure 3: This plot shows performance of the submitted systems and the
baseline (ResUNetK) on the evaluation set. Only the systems with the best
CA-SDRIi performance among those submitted by each team are selected.

The recording was made using three cardioid microphones to cap-
ture the sound events from the left, front, and right, and one om-
nidirectional microphone to capture the sound from above. The 4-
channel configuration was not intended to be used as a microphone
array, but simply to increase the variety of data for the target sound
event by recording from different directions. During mixture syn-
thesis for S5, one of these four channels is chosen at random and
used as the monaural target sound event.

All RIRs were captured with the same first-order Ambisonics
microphone (Sennheiser AMBEO VR Mic) and are provided in B-
format (AmbiX). In both the development set and evaluation set,
108 RIRs were measured at each microphone location. These are
composed of the relative positions of the following speakers and
microphones: (i) the azimuth was swept in 20° steps to cover the
full 360°; (ii) the elevation was set to —20°, 0°, or 20°; and (iii)
the source distance was chosen from the range 0.75-1.50 m.

4. CHALLENGE RESULTS

4.1. Overview of submitted system’s performance

We received 24 submissions from 8§ teams. Figure@shows the best-
performing system from each team in terms of CA-SDRi (ranking
score). As Fig. E| (top) shows, seven of the eight teams surpassed
our baseline, some of them by a large margin of more than 4 dB,
indicating that significant progress toward solving S5 task has been
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Figure 4: Class-wise box-plot for CA-SDRi score of submitted systems.
The leftmost pair shows average score for development set (Dev (test)) and
evaluation set (Eval) scores. To its right, eighteen plots present CA-SDRi
for each target sound event class in evaluation set.
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Figure 5: Box plot of CA-SDRi for each team’s best system under four
partially known conditions. ‘Known IR’: evaluation RIRs seen in training;
‘Known Target’: target sound event samples seen; ‘Known Noise’: back-
ground noise seen; ‘Known Interference’: interference samples seen. The
blue star indicates the performance of the top-ranked system [2].

achieved.

As described in Section[2.2] CA-SDRi combines label-prediction
accuracy and source-separation quality. To examine these factors
separately, we also report label-prediction accuracy (Fig.[3] middle)
and SDRi computed only on clips where every sound event was
correctly labeled (Fig. 3] bottom). The gains achieved by most
systems primarily stem from improved separation. Notably, the
top-ranked system places second in label-prediction accuracy but
achieves the highest CA-SDRIi due to its superior separation per-
formance. This indicate that further improvement may be achieved
by combining the separation and label prediction approaches of the
two best teams.

Figure 4] compares CA-SDRi on the development-set test split
and the evaluation set for best systems per team highlighted in
Fig. E} Across the board, CA-SDRi drops on the evaluation set,
suggesting overfitting. In the class-wise CA-SDRIi in the evaluation
set, particularly poor performance was observed for “Blender” and
“VaccumCleaner,” and these confusing classes may be lowering the
overall performance.

4.2. Characteristic of submitted systems

This section outlines the characteristics of the submitted systems.
The teams coupled source separation and its label prediction in sev-
eral ways. Sequential pipelining, where tagging precedes separa-
tion, similar to the Baseline system [13], is employed in systems
[4] and [7]. Systems [3] and [9] conditioned the separator with
tag information through Feature-wise Linear Modulation (FiLM).
An iterative sequential strategy—tagging, separation, and refined
tagging—was adopted by [2], [S]], and [8]. Systems [2] and [6]
performed joint estimation of sound-event labels and separated sig-
nals. The system [6] stands out in that it employs a hybrid approach
that combines a separation technique based on multichannel sig-
nal processing (multichannel Wiener Filter; MWF) and data-driven
modeling based on DNN.
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Table 2: PESQ, STOI, and PEAQ for the top-three submitted systems abd
the baseline sysmte (ResUNetK). PESQ and STOI are evaluated for clips in
which speech classes are detected. PEAQ is evaluated for the rest. Errors
are indicated by standard deviation.

# of detected PESQ? STOIT PEAQT
System speech (1-4.5) -1 (-4-0)
Baseline [13] ‘ 246/251 2.39+0.63 0.84+0.11 ‘ —3.60 £0.43
Rank 1 [2] 241/251 2.88+0.58 0.914+0.08 | —3.43+0.48
Rank 2 [3] 249/251 2.97+0.60 0.90+0.07 | —3.39+0.51
Rank 3 [4] 246/251 2.77+0.58 0.90+0.10 | —3.43+£0.50

4.3. Performance under partially known conditions

As described in Sec. [3] the evaluation set of the DCASE 2025 Task
4 Dataset contains RIR, target sound event, background noise,
and interference sound that do not appear in the development set.
This section examines how CA-SDRi changes when exactly one
of these four components is made known, that is, drawn from the
training data. Comparing these conditions reveals which unknown
factors limit system performance. Figure[5]shows CA-SDRi for the
original evaluation set and for the four partially known conditions.
The highest median scores occur when either the RIR or the target
sound event are known, indicating that unfamiliar acoustic envi-
ronments and unseen target sound events are the primary sources of
degradation. In contrast, making the background noise or the in-
terference sound known yields little change relative to the original
evaluation set.

4.4. Quality of separated sound events

Table [2] summarizes the perceptual quality of the separated sig-
nals for the three top-ranked systems and the baseline. PESQ and
STOI were computed on clips containing speech, while PEAQ was
computed on the remaining non-speech clips. The top submissions
[21131 /4] outperform the baseline on every metric. For speech, PESQ
scores near 3 (“fair/toll”’) and STOI values around 0.90 indicate nat-
ural and intelligible quality, though additional refinement is needed
for high-fidelity applications. For non-speech content, all systems
obtain comparatively low PEAQ scores, revealing that perceptual
fidelity for other sound events still requires improvement.

5. CONCLUSTION AND FUTURE VIEWS

This paper introduced the Spatial Semantic Segmentation of Sound
Scenes (S5) task of DCASE 2025 Challenge Task 4, which targets
joint detection and separation of spatial sound events from multi-
channel mixtures. For this task, we released the DCASE2025 Task
4 Dataset [17, [18], which comprises isolated target events, multi-
channel RIRs, environmental noise, and interference sounds. We
evaluated 24 systems submitted for this challenge by eight teams
and analyzed their performances and characteristics. The collec-
tive results confirmed that many approaches already surpass the
naive baseline, indicating steady progress in both tagging and sep-
aration modules. Future work should address generalization to un-
seen acoustic environments and novel sound events. A further chal-
lenge is separating and labeling multiple instances of the same class
within a single clip. This scenario is common in practice but lies
outside the current task, and all submissions performed poorly on
it. Finally, the current systems evaluated on RIR-based simulation;
extending evaluation to real recordings is essential to validate ro-
bustness in real-world deployments ﬂ

'Samples of real-recording inference in the top3 system is shown on the
challenge results page.
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