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Abstract—Audio Question Answering (AQA) challenges a system to
integrate acoustic perception with natural–language reasoning, yet how
much each modality actually matters remains unclear. We propose a
controlled modality–weight study on the DCASE 2025 Task5 benchmark
to quantify this balance. Building on a dual-tower BEATS+BERT
architecture, we introduce a scalar fusion hyper-parameter that linearly
mixes audio and text embeddings. We evaluate model performance across
six distinct question types and use statistical analysis to characterize
how accuracy shifts as modality weights change. Our results reveal
a clear asymmetry: while text alone supports strong performance on
many questions, audio contributes significantly only to tasks that require
perceptual grounding. Some tasks benefit most from a balanced fusion
of both modalities, whereas for others, increased audio weight can even
reduce accuracy. This protocol yields a practical guidance of which
question categories depend primarily on audio, on text, or on a certain
balanced fusion, providing guidance for future AQA model design.

Index Terms—Audio Question Answering, modality weighting, Acoustic
Reasoning, DCASE 2025

1. INTRODUCTION

Multimodal learning—integrating information across text, vision,
audio and other sensory streams—has become a central theme
in contemporary AI research. Groundbreaking systems such as
CLIP (image–text) [1], Flamingo (vision–language) [2], and Pengi
(audio–language) [3] demonstrate how cross-modal pre-training can
unlock zero-shot reasoning capabilities that are unattainable with
unimodal models. Audio Question Answering (AQA) emerges as a
genuinely multimodal task. It requires models to not only listen to the
waveform and classify sounds but also reason about them in natural
language, offering a rich playground to probe cross-modal alignment,
fusion strategies and modality biases [4], [5]. The DCASE 2025
Challenge Task 5 amplifies this by introducing a multi-domain AQA
benchmark consisting of three subsets – Bioacoustics QA, Temporal
Soundscapes QA, and Complex QA(MMAU) – each designed to
evaluate distinct reasoning skills grounded in acoustic perception [4].

Early work in audio QA was limited to narrow domains or synthetic
data [6]. Datasets like CLEAR [7] and DAQA [8] programmatically
generated QA pairs for musical notes or generic sound events, while
Clotho-AQA [6] was the first crowdsourced AQA dataset built on
general environmental sound clips. With the advent of large audio-
language models (LALMs) [9]–[11], AQA has gained broader traction.
Recent foundation models combine powerful audio encoders and
text decoders – e.g., Pengi [3] and Qwen2-Audio [12] integrate a
pretrained audio front-end with a language model to handle audio-
based queries. These models leverage massive training sets (including
synthetic data like OpenAQA-5M [13]), and achieve impressive
general audio understanding. Pretrained audio transformers such as
BEATs (Bidirectional Encoder from Audio Transformers) [14] have
set state-of-the-art results on AudioSet [15], providing rich acoustic
representations, while text models like BERT remain strong backbones

for language understanding [16]. This progress has led to notable
performance gains on benchmarks and new multi-task evaluations (e.g.
MMAU for audio reasoning). However, most prior works focus on
pushing overall accuracy, with less emphasis on how each modality
(audio vs. text) contributes to answering different question types.

In multimodal QA it is well-known that models can exploit dataset
biases by over-relying on one modality. For instance, a question-only
model can answer some Visual QA questions correctly without even
“looking” at the image [17]–[20]. A similar concern arises in AQA:
certain questions might be answerable through textual cues or common
knowledge while others truly require listening to the audio. Which
question types rely more on the audio content, and which can be
answered mainly via text? And if our model is simply reading or
listening. Answering this is crucial for understanding the modality
grounding of AQA tasks and guiding the design of a more robust
Audio Question Answering model.

In this work, we systematically investigate the modality grounding
of Audio Question Answering (AQA) by analyzing how different
question types depend on audio, text, or a combination of both.
To address this research gap, we design a controlled experimental
framework in which a fusion coefficient governs the relative influence
of audio and text inputs for each question. We evaluate model accuracy
across six distinct AQA question types, ranging from sound counting
and temporal detection to knowledge recall and contextual reasoning.
Using both accuracy trends and one-way ANOVA statistical tests,
we provide a nuanced picture of how modality balance impacts
performance. The results not only highlight where current models
excel or fall short, but also expose which question types are genuinely
grounded in the audio, and those vulnerable to textual bias.

2. METHOD

In this section, we introduce our approach to analyzing the sensitivity
of modality in Audio Question Answering (AQA) performance. We
present EchoTwin-QA [21], a dual-tower AQA model designed to
systematically control and observe the influence of audio and textual
modalities. EchoTwin-QA integrates a state-of-the-art BEATs audio
encoder as its audio tower and a BERT model as its text tower. To
precisely investigate cross-modal interactions, we incorporate a scalar
fusion parameter λ that linearly mixes the audio and textual feature
embeddings prior to answer classification, allowing us to sweep across
a spectrum of modality balances. Performance is then evaluated across
eleven λ values for each question type, and one-way ANOVA tests
are applied to determine whether changes in the balance of modality
lead to statistically significant differences in accuracy.
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Fig. 1: Dual-tower architecture: a BEATs audio encoder and a BERT text
encoder produce modality-specific embeddings, concatenated and fed to a
lightweight MLP classifier with a scalar fusion parameter.

2.1. Model Architecture
Our system EchoTwin–QA follows a dual–tower paradigm as shown
in Fig.1 in which an audio tower (BEATs) and a text tower (BERT)
are fused by a single scalar, λ∈ [0, 1], that controls the relative weight
of each modality.
A waveform x ∈ RN is fed to BEATs, yielding a sequence of hidden
states A =

[
a1, . . . ,aTa

]
∈ RTa×da . We mean–pool these states to

obtain a fixed-length embedding

ha =
1

Ta

Ta∑
t=1

at ∈ Rda . (1)

The question concatenated with its answer choices is tokenised
and processed by BERT, producing hidden states H =

[
h1, . . . ,hT

]
.

The standard [CLS] vector serves as the text embedding

ht = hCLS ∈ Rdt . (2)

A single scalar λ modulates the contribution of each tower:

h̃a = λ ha, (3)

h̃t = (1− λ) ht. (4)

The weighted embeddings are concatenated

z =
[
h̃a ∥ h̃t

]
∈ R da+dt , (5)

and passed to a lightweight two–layer multilayer perceptron

u = ReLU
(
W1z+ b1

)
, (6)

ŷ = softmax
(
W2u+ b2

)
∈ RK , (7)

where K is the number of answer choices.
We train with label–smoothed cross–entropy:

L = (1− ε) LCE(ŷ,y
)
+ ε

1

K
. (8)

Only the parameters of the two-layer MLP (and optionally the top L
layers of BEATs) are trainable; both encoders are otherwise frozen.

2.2. Statistical Analysis

For each fusion coefficient λ we record, for every QA pair i, a binary
correctness flag

c
(λ)
i =

1, if the predicted answer matches ground truth,

0, otherwise.
(9)

Flags are stratified according to the organiser-supplied question types
(|Q| = 11). For a fixed type q ∈ Q we obtain G = 11 groups

Gq(λ) =
{
c
(λ)
i

∣∣ qi = q
}
, λ ∈ {0.0, 0.1, . . . , 1.0},

each containing Nλ Bernoulli observations. We test the null hypothesis
H0 : E

[
Gq(λ)

]
are equal for all λ by a fixed-effect one-way

ANOVA [22]. Let c̄λ denote the group mean for a given λ and
c̄ the global mean for type q. The F -statistic is

Fq =

1
G−1

∑
λ

Nλ (c̄λ − c̄)2

1
Nq−G

∑
λ

∑
c∈Gq(λ)

(c− c̄λ)
2
, (10)

where Nq =
∑

λ Nλ.
We report the pair

(
Fq, pq

)
for every question type and declare

the effect of λ significant when pq < 0.05.
We measured the top 1 accuracy Acc(λ, s) of EchoTwin–QA on

the official development set while linearly mixing the two modality
embeddings via weighted concatenation. Fig. 2 plots the mean
accuracy

Ācc(λ) = 1
|S|

∑
s∈S

Acc(λ, s) (11)

F-statistic measures how much the means vary between λ groups
relative to the variance within groups; a larger F indicates stronger
dependence on λ.
p-value is the probability of observing such an F under the null
hypothesis that accuracy is constant across λ. A small p (< 0.05)
means λ has a significant effect.

3. EXPERIMENTS

3.1. Dataset

All experiments are conducted exclusively on the official DCASE
2025 Task 5 AQA corpus [4]. The training portion comprises 0.7 k
Bioacoustics QA, 1.0 k Temporal Soundscapes QA and 6.4 k Complex
QA (MMAU) items, while the development set provides 0.2 k, 0.6 k and
1.6 k items, respectively. No external audio or text resources are used.
The official development split contains 11 annotated question types,
but we discarded some type with too few instances. To obtain reliable
modality–sensitivity curves we restrict our study to the six most
populous and conceptually distinct categories listed in Section 3.2:
Sound Counting, Remember, Both, Sound Detection, Apply Frequency,
and Understand Acoustics. Their sample sizes on the development
set accounted for over 97 % of the available validation data.
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Fig. 2: Accuracy variation across question types as a function of the audio feature weight λ. Each subplot corresponds to a specific question category:
Understand Acoustics, Remember, Sound Counting, Both, Apply Frequency, and Sound Detection. The plots demonstrate how model accuracy varies as λ
increases from 0 (purely text-based reasoning) to 1 (purely audio-based reasoning).

3.2. Question type

Sound Counting Asks how many distinct sound events or types
are present or how many times a specific sound (e.g., crash, phone,
scream) occurs in an audio clip (e.g. “How many different sounds are
present in the audio clip?”, “How many times does the crash sound/
female scream occur?”)
Remember (Knowledge Recall) A factual statement about the animal
species that produced the recording—e.g., a unique trait, behavior,
historical fact, or conservation concern—chosen from several candidate
statements. (e.g., “Which of the following is a defining characteristic
of the species that produced the sound?”, “What unique behavior
distinguishes the species?”)
Both (Contextual Reasoning) They ask about contextual or situational
information inferred from the audio, including time, place, emotional
tone, environmental setting, and background interactions. (e.g., “What
time of day is the audio likely set?”, “What might indicate that the
speaker is not alone?”)
Sound Detection (Temporal Reasoning) A temporal detail about
specific sound events: start time, end time, duration, order, or which
sound occurs immediately before/after another. (e.g., “What is the
start time of the drawer sound?”, “Which sound occurs immediately
after the cough sound?”)
Apply Frequency (Spectral Reasoning) Asks for a comparison of
pitch or frequency range between multiple sound events, often in
a specified order relative to silences. (e.g.,“Which sound is most
dominant at higher frequencies?”)
Understand Acoustics (Feature-Based Reasoning) The choice of the
text description that best matches the overall acoustic characteristics
or main feature/pattern of the recording. (e.g. “Which of the following
best describes the main feature of the recording?”, “What acoustic
characteristics describe the signal?”)

3.3. Training Configuration

We fine-tune the model once and then freeze all weights thereafter for
the λ-sweep evaluation, with Optimiser: AdamW (ηtext = 1× 10−5,
ηaudio = 1× 10−6, weight-decay = 0), a batch size of 32; gradient
clip: ∥g∥2 ≤ 1.0; AMP enabled. For Loss we use label-smoothed
cross-entropy (ε = 0.05). After fine-tuning, we only vary the scalar
fusion coefficient λ ∈ {0.0, 0.1, . . . , 1.0} while keeping all network
weights fixed.

Table 1: Accuracy (%) under audio only (λ=1.0), text only (λ=0.0) and
the best-performing audio + text mixed for each question type.

Question type Audio only Question only Audio+Question

Apply Frequency 16.7 36.7 40.0
Both 18.2 63.4 63.5
Remember 26.2 56.9 60.0
Sound Counting 25.9 30.4 35.7
Sound Detection 27.7 30.8 30.8
Understand Acoustics 17.4 78.3 82.6

Table 2: One-way ANOVA results for the six question types.

Question type F p

Apply Frequency 0.56 8.49× 10−1

Both 136.80 2.27 × 10-277

Remember 2.36 9.42 × 10-3

Sound Counting 0.37 9.58× 10−1

Sound Detection 0.28 9.87× 10−1

Understand Acoustics 4.57 6.02 × 10-6

4. RESULTS AND ANALYSIS
4.1. Modality Ablation in AQA
As we can observe in Table 1, the model performs poorly when
relying solely on audio input. In contrast, when provided only with the
textual question, the model achieves relatively high accuracy on several
question types, especially for Sound Detection and Both, sometimes
approaching or even surpassing performance with modality fusion.
This asymmetry in ablation performance highlights a key limitation:
while the task is designed to encourage multimodal reasoning, many
instances can be answered using text alone, the soundscape is often
ambiguous without the semantic guidance.

4.2. Impact of Modality Across Question Types
Sound Counting questions, which involve identifying discrete acoustic
events or enumerating occurrences of specific sounds, show a
clear dependence on audio information. Their accuracy improved
monotonically as audio weight increased—from under 30% to 35.7%.
The upward slope is visually apparent in Fig. 2. This pattern intuitively
aligns with the fundamental nature of these questions, which inherently
require detailed acoustic perception rather than textual reasoning, yet
the between λ variance is still dwarfed by the within-λ noise. To
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perform better, a model must leverage explicit acoustic cues rather
than text-based or common-knowledge shortcuts.

Understand Acoustics and Remember types show a similar de-
pendence, but with a distinct delayed response to increased audio
weighting. This indicates their substantial reliance on fine-grained
acoustic detail. The between-level variance is almost five times the
within-level variance, so the jump could be explained, suggesting a
threshold phenomenon: the option texts already contain descriptors,
which loosely match many recordings. Only when audio dominates
can the model compute fine-grained spectral summaries, and factual
recall in bioacoustics similarly requires identifying species-specific
acoustic signatures. Thus, despite the possible availability of textual
cues, these question types ultimately require a robust grounding in
acoustic features.

Apply Frequency questions show a different and illuminating trend:
accuracy peaks significantly at a low audio weight and decreases as λ
increases. The rapid drop-off implies that frequency-based comparative
judgments can be partially resolved via semantic or pragmatic cues
embedded within the textual question and answer choices. It suggests
that these tasks do not demand detailed acoustic resolution as much
as contextual reasoning about the frequency order and association
with different sounds. A high weighting on acoustic details might
obscure semantic subtleties vital for these spectral reasoning tasks.

Both achieve maximum accuracy at a moderately light audio weight
(λ = 0.3). Then follows a slight decline, strongly indicates that
contextual reasoning tasks benefit most from balanced multimodal
integration, slightly favoring textual modalities. The ANOVA test
corroborates this behavior, indicating that over 90% of the performance
variance is attributable to the choice of modality weight. These
questions inherently depend on interpreting contextual scenarios—such
as time, emotional tone, or background interactions—often inferred
through textual knowledge or semantic framing rather than precise
acoustic features alone. Hence, multimodal systems should prioritize
a balanced and nuanced fusion strategy for optimal performance on
these questions.

Sound Detection category demonstrates an intriguing and counter-
intuitive trend, achieving its highest accuracy without audio feature.
Accuracy notably decreases as audio contribution increases. This
result reveals that temporal reasoning, as framed by the dataset, might
heavily rely on textual patterns or conventional temporal relationships
implicitly embedded in the questions themselves. The deterioration
with increased audio input indicates a possible misalignment between
the provided acoustic evidence and the inferred temporal logic from
the textual query. we argue that current models lack the appropriate
inductive biases or representational mechanisms to extract and align
temporal acoustic patterns in a way that meaningfully supports
semantic inference.

4.3. Discussions
From section 4.1 we found a fundamental limitation: the audio
branch in current AQA models remains underutilized and often poorly
integrated. Instead of serving as a robust perceptual complement to
language, audio provides at most a subtle and inconsistent benefit.

In Section 4.2 we find that questions that require more audio are
those whose answers depend on direct, perceptual properties of the
sound. For instance, Sound Counting tasks demand temporal parsing
and event segmentation that are simply not recoverable from the
question text or choices. The model must “listen” for actual events.

Conversely, question types that are answerable through text alone
typically ask for information that is either (1) explicitly provided
in the question and choices, or (2) easily inferred through world

knowledge or dataset regularities. They often leak clues via textual
templates—like unique timestamps or the phrasing of alternatives
(“highest frequency”, “starts first”)—which the model can learn to
exploit without referencing the audio at all. Our ANOVA tests confirm
that, for these categories, changing the audio–text balance has no
systematic effect: performance is governed by the text modality, and
extra audio either adds noise or actively impedes accuracy.

The most intriguing are those tasks that require a nuanced
combination of both modalities. Contextual Reasoning (Both) and
Understand Acoustics show peak performance at intermediate λ values,
with ANOVA statistics confirming overwhelming sensitivity to the
modality balance. These tasks demand both situational inference
(text: e.g., “Is it day or night?” / “Is someone alone?”) and perceptual
validation (audio: background noises, emotional tone, spectral features).
Only when models can integrate and align semantic cues with acoustic
evidence do they achieve optimal grounding and robust performance.
The most valuable are those requiring authentic cross-modal grounding,
pushing models to “listen, read and understand” rather than to do
text-only reading-comprehension guesswork of likely answers.

4.4. Limitation and Future Work
Our analysis is currently limited to the EchoTwin-QA model and
official DCASE 2025 Task 5 Dataset, and results may not generalize
to other AQA benchmarks with different domain coverage or question
design. The total number of questions for each type is unbalanced,
which may reduce statistical power and obscure subtle modality effects.

A comprehensive study should be conducted to better understand
which question types most effectively test the range of abilities
required for robust audio-language grounding. This includes inves-
tigating the cognitive demands, linguistic features, and perceptual
complexity associated with each type. Moreover, a rigorous taxonomy
of question types should be established. Categories might be based on
the modality reliance, the reasoning skill required , or the nature of the
answer. Such a framework would not only improve the interpretability
and fairness of model evaluation, but also guide dataset design to
ensure coverage of all critical skills.

The mere existence of strong, type-specific modality biases suggests
that a single static fusion weight is sub-optimal. The evidence argues
for dynamic fusion—either a learned gating scalar conditioned on the
question embedding or a transformer that modulates cross-attention
weights per token. An alternative is a Mixture-of-Experts architecture
where separate audio-heavy and text-heavy experts compete, and a
router network selects the appropriate one per question.

5. CONCLUSION
This work set out to uncover how different AQA question types depend
on audio versus question, motivated by concerns over modality bias
known in multimodal QA. Through experiments varying the balance
between audio and text, we found that despite the multimodal nature
of AQA, current models rely more on textual information. Audio input,
while essential for certain perceptual tasks such, provides only limited
and often inconsistent improvements—and can even impede accuracy
for text-dominated question types. The effectiveness of audio remains
constrained by poor integration and the dominance of language priors.
Our findings emphasize the value of adaptive modality fusion and more
precise question-type taxonomies to unlock the full potential of AQA
systems. To advance AQA, future work should focus on developing
adaptive fusion strategies and establishing robust, modality-aware
question taxonomies, ensuring models are grounded in both sound
and language.
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