
Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

A Lightweight Temporal Attention Module for Frequency Dynamic Sound
Event Detection

Yuliang Zhang, Defeng (David) Huang, Roberto Togneri,

School of Electrical, Electronic and Computer Engineering, The University of Western Australia
yuliang.zhang@research.uwa.edu.au, {david.huang, roberto.togneri}@uwa.edu.au

Abstract—Recent advances in Sound Event Detection (SED) have
leveraged frequency-dynamic convolution to address the shift-variant
nature of audio representations in the frequency domain. However, most
existing methods overlook the temporal importance of individual frames
during early feature extraction, which is critical for accurate event
boundary detection. In this paper, we propose a lightweight temporal
attention module integrated into convolutional SED architectures. The
module computes temporal weights by compressing the frequency axis and
applying per-frame attention using one of three strategies: MLP (frame-
wise), Conv1D (local context), and MultiHead Attention (global context).
These weights are injected either before or after the convolutional operation
to enhance time-sensitive representations. Through comprehensive ablation
experiments on the DCASE2021 Task4 dataset, we show that introducing
temporal attention, with only about a 1% increase in parameters,
consistently improves model performance. Specifically, averaged over
10 independent runs, the proposed temporal attention module increases
PSDS1 from 0.4241 to 0.4383 on FDY-CRNN, from 0.4327 to 0.4395
on DFD-CRNN, and from 0.4376 to 0.4452 on MDFD-CRNN. These
improvements demonstrate that even lightweight attention mechanisms
targeting temporal saliency can significantly enhance the event boundary
modeling capabilities of frequency-dynamic SED systems.

Index Terms—Sound event detection, frequency dynamic convolution,
temporal dynamic attention.

1. INTRODUCTION

Sound Event Detection (SED) involves identifying and temporally
localizing acoustic events within audio recordings, serving as a
critical component for various applications such as audio surveillance,
urban sound monitoring, and multimedia indexing [1]–[6]. Deep
neural networks, particularly convolutional recurrent neural networks
(CRNNs), have emerged as the predominant approach in the SED
domain due to their powerful capability to simultaneously capture
spatial (frequency) patterns and temporal (time) dependencies from
audio spectrogram representations [7] [8]. Despite these advances,
accurately identifying the temporal boundaries of audio events
continues to be challenging, posing significant limitations to event
localization precision and overall detection performance.

Recent research in this area has largely focused on enhancing
the frequency-adaptive properties of convolutional neural networks,
specifically addressing the shift-variant nature of audio signals along
the frequency domain. For example, Frequency Dynamic Convo-
lution (FDY-CRNN) dynamically generates convolutional kernels
customized for different frequency bands, substantially improving
feature extraction and event classification accuracy [9]. Extensions of
this approach, such as Dilated Frequency Dynamic Convolution (DFD-
CRNN) [10] and Multi-Dilated Frequency Dynamic Convolution
(MDFD-CRNN) [11], have introduced convolution kernels with
varying dilation rates. These methods effectively expand receptive
fields and enhance spectral coverage, thereby further increasing
robustness. However, a significant limitation remains: these frequency-
focused techniques implicitly assume uniform temporal importance
across all frames, neglecting the distinct temporal significance of
individual frames, especially those crucial to precise event boundary
detection.

Fig. 1: The proposed architecture of frequency dynamic convolution with
temporal attention branch integrated before convolution.

While [9] explored a Temporal Dynamic Convolution (TDY) variant,
they found it offered little standalone benefit, attributing this to
the bi-directional GRU layer in CRNN already modeling sequential
dependencies. Their focus was limited to either frequency or temporal
attention. We believe that simultaneously addressing both in early
convolutional feature extraction will significantly boost Sound Event
Detection (SED) performance.

To overcome this limitation, this paper introduces an explicit,
lightweight temporal attention module designed to be seamlessly
integrated into existing frequency dynamic convolution frameworks,
as illustrated in Fig. 1. The proposed module explicitly emphasizes
informative temporal segments by first compressing the frequency
dimension through pooling operations, followed by applying a
temporal attention mechanism that assigns distinct attention weights
to individual time frames. To comprehensively explore the temporal
context, we evaluate three attention strategies: a Multi-Layer Per-
ceptron (MLP) focusing on frame-level weighting without context,
a one-dimensional convolutional network (Conv1D) capturing local
temporal relationships, and Multi-Head Attention mechanisms that
model global temporal dependencies. Importantly, our architectural
design clearly separates the temporal attention branch from the
frequency dynamic convolution branch, effectively mitigating potential
interference between frequency-adaptive and temporal weighting
operations.

Comprehensive experiments conducted on the DCASE2021 Task4
dataset validate the effectiveness and generalizability of our proposed
approach. Averaged over ten independent experimental runs, the
integration of the proposed temporal attention module consistently
results in substantial performance improvements across multiple
frequency dynamic convolution architectures with a minimum in-
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crease in parameters. Specifically, we observe absolute PSDS1 score
improvements from 0.4241 to 0.4383 for FDY-CRNN, from 0.4327 to
0.4395 for DFD-CRNN, and from 0.4376 to 0.4452 for MDFD-CRNN.
These significant enhancements confirm that explicitly incorporating
temporal saliency into frequency-dynamic convolutional architectures
markedly improves the precision of sound event boundary localization
without introducing substantial computational complexity.

2. METHODS

Our proposed framework integrates an explicit temporal attention
mechanism into frequency dynamic convolution (FDY-Conv) architec-
tures, enhancing temporal feature extraction while retaining frequency-
adaptive capabilities. The overall approach consists of two main
components: (1) Integration with frequency dynamic convolution, and
(2) computation of temporal attention weights.

2.1. Integration with Frequency Dynamic Convolution
We explore two different integration strategies for incorporating
temporal attention: before and after the frequency dynamic convolution
layer. These are shown in Fig. 2 and can be described as follows:

Before Frequency-Dynamic Convolution: In this strategy, tempo-
ral attention weights are applied directly to the input features prior
to frequency-dynamic convolution. Given the input feature tensor
X ∈ RB×Cin×T×F , the attention weight tensor A ∈ RB×Cin×T×1

is computed and then element-wise multiplied with the input in a
residual manner:

X ′ = X ⊙ (1 +A), (1)

where B, Cin, T , and F represent the batch size, input channels,
time dimension, and frequency dimension, respectively. The symbol
⊙ signifies element-wise multiplication, with broadcasting applied
along the frequency dimension. This approach aims to enhance the
temporal saliency of input features before subsequent frequency-
specific convolution operations.

After Frequency Dynamic Convolution. In contrast, this strategy
applies temporal attention weights after frequency dynamic convo-
lution, emphasizing frames based on convolutional output features.
Specifically, given convolutional output features Y ∈ RB×Cout×T×F ,
attention weights A ∈ RB×Cout×T×1 are computed and applied:

Y ′ = Y ⊙ (1 +A), (2)

highlighting important temporal frames after frequency adaptation.
Here, Cout denotes the output channels of convolution.

2.2. Computation of Temporal Attention Weights
Our temporal attention module, illustrated in the lower (temporal)
branch of Fig. 1, processes information in two key stages: first,
frequency-axis pooling, and then temporal attention calculation.

Pooling over Frequency: To compress the frequency dimension,
we experiment with three simple pooling methods: mean pooling, max
pooling, and the combined (mean+max) pooling strategy. Formally,
given input features X ∈ RB×C×T×F , pooling across the frequency
dimension yields Z ∈ RB×C×T as:

Zmean =
1

F

F∑
f=1

X:,:,:,f , (3)

Zmax = max
f∈[1,F ]

X:,:,:,f , (4)

Zmean+max = Zmean + Zmax. (5)

Fig. 2: Two integration strategies for the temporal attention module: before
and after frequency dynamic convolution.

These pooling methods provide compact temporal representations
for subsequent attention calculations.

Temporal Attention Module: We evaluate three different attention
strategies: MLP, Conv1D, and Multi-Head Attention.

(1) MLP-based Attention: The simplest method applies a frame-
wise multilayer perceptron (MLP) independently on each temporal
frame:

A = σ(MLP(Z)), A ∈ RB×C×T , (6)

where σ(·) denotes the sigmoid activation, ensuring attention values
within (0,1). The MLP itself consists of two feed-forward layers
with a ReLU activation function positioned between them.

(2) Conv1D-based Attention: This strategy leverages 1D con-
volutions to capture local temporal contexts by convolving across
neighboring frames. Our current configuration for the Conv1D-based
attention module consists of a sequence of operations: an initial 1D
convolution layer Conv1Din , followed by Batch Normalization (BN),
a ReLU activation function, and finally another 1D convolution layer
Conv1Dout.

The overall attention mechanism can be expressed as:

A = σ(Conv1Dout(ReLU(BN(Conv1Din(Z))))), A ∈ RB×C×T

(7)
This method effectively exploits local temporal continuity, thereby

emphasizing temporally coherent segments within the feature se-
quence.

(3) Multi-Head Attention: This global strategy employs self-
attention across all temporal frames, explicitly modeling global
temporal relationships. With positional encoding P , the attention
computation is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (8)

where Q,K, V are query, key, and value matrices obtained from linear
transformations of (Z +P ), and dk is the dimensionality of the keys.
The final attention weight A is derived by aggregating outputs across
multiple attention heads:

A = σ (Wo [head1; head2; ...; headh]) , (9)

where Wo is the final linear projection, and each head independently
computes self-attention as defined above. This method effectively
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captures global temporal dependencies and enhances model sensitivity
to event boundaries.

3. EXPERIMENTAL SETUPS
3.1. Implementation Details
The experiments are conducted on the Domestic Environment Sound
Event Detection (DESED) dataset [12]. This dataset comprises
synthetic strongly labeled data, real weakly labeled data, and real
unlabeled data. All audio recordings are 10 seconds long and sampled
at 16 kHz.

For audio feature extraction, log-mel spectrograms are generated.
This process involves a Short-Time Fourier Transform (STFT) with
an FFT size of 2048, a hop length of 256, and a Hamming window.
Subsequently, a mel filterbank with 128 mel bins is applied to the
STFT magnitude to produce the final spectrogram representation.

Data augmentation methods employed in this work include frame
shifting [12], mixup [13], time masking [14], and FilterAugment
[15]. We apply a 7-frame median filter as a post-processing step
to all classes. While class-specific filtering could optimize results
further, we use a fixed-length filter across all classes to ensure a fair,
post-processing-minimized comparison among models.

Our baseline model is the FDY-CRNN, which consists of seven
convolutional layers. The first layer utilizes conventional 2D convo-
lution, while the remaining six layers employ Frequency Dynamic
Convolution (FDY conv). Other training parameters align with those
of the original FDY-conv or its variants, with the key distinction
being the addition of our proposed explicit temporal attention branch.
Specifically, for the MLP-based and Conv1D-based temporal attention
variants, the hidden dimensionality of the first layer is set to 1

4
Cin. In

the Multi-Head Attention configuration, we use two heads with an
attention dimension of 32 and a dropout rate of 0.1.

Models are trained for up to 200 epochs with a batch size of 48.
Experiments for FDY-CRNN and DFD-CRNN are conducted on a
single NVIDIA P100 GPU, whereas MDFD-CRNN experiments are
trained on an NVIDIA V100 GPU.

3.2. Evaluation Metrics
To evaluate SED performance, the polyphonic sound detection score
(PSDS) was used [16]. For DCASE Challenges 2021-2023 Task 4, two
types of PSDS were utilized [17]. PSDS1 emphasizes the accuracy
of event boundaries, rewarding systems that produce precise onset
and offset timestamps. In contrast, PSDS2 is more tolerant to minor
temporal deviations and focuses on reducing cross-triggering errors.

In our experiments, the sum of PSDS1 and PSDS2 serves as the
primary optimization objective. To ensure statistical robustness, each
model configuration is trained independently ten times. We report
the average PSDS1 and PSDS2 scores, alongside the intersection-
based F1 score (IN-F1). Adhering to the mean teacher framework
established in the DCASE challenge baseline [18] [19], we employ a
teacher-student training strategy. All reported results are derived from
the teacher model’s predictions, providing a consistent and fair basis
for comparing different model architectures.

4. RESULTS AND DISCUSSION
4.1. Overall Results
To evaluate the effectiveness of the proposed temporal attention
module, comprehensive experiments were conducted on the DESED
dataset. The results obtained by integrating different temporal attention
strategies (MLP, Conv1D, Multi-Head Attention) and pooling methods
(mean, max, mean+max) are summarized in Table 1, using the FDY-
CRNN baseline model for comparison.

Table 1: Comparison of temporal attention integration strategies, attention
types, and pooling methods on FDY-CRNN.

Integration AttnType Pooling PSDS1 PSDS2 IN-F1

Baseline – – 0.4241 0.6516 0.7263

Before

Conv1D max 0.4213 0.6413 0.7346
Conv1D mean 0.4360 0.6635 0.7475
Conv1D mean+max 0.4286 0.6551 0.7397

MLP max 0.4303 0.6459 0.7356
MLP mean 0.4383 0.6604 0.7427
MLP mean+max 0.4321 0.6525 0.7433

MultiHead max 0.4276 0.6452 0.7376
MultiHead mean 0.4244 0.6408 0.7399
MultiHead mean+max 0.4258 0.6508 0.7372

After

Conv1D max 0.4129 0.6249 0.7197
Conv1D mean 0.4352 0.6493 0.7436
Conv1D mean+max 0.4189 0.6314 0.7252

MLP max 0.4245 0.6540 0.7388
MLP mean 0.4304 0.6569 0.7378
MLP mean+max 0.4267 0.6514 0.7346

MultiHead max 0.4285 0.6444 0.7310
MultiHead mean 0.4349 0.6533 0.7424
MultiHead mean+max 0.4366 0.6498 0.7376

Overall, the introduction of explicit temporal attention consistently
improves model performance relative to the baseline FDY-CRNN
model across various metrics when utilizing mean pooling strategies.
The best performing configuration integrates temporal attention before
frequency dynamic convolution, employing mean pooling combined
with either Conv1D or MLP-based attention. Specifically, the before-
Conv1D-mean and before-MLP-mean configurations achieve the
highest PSDS1 and PSDS2 scores. We attribute this superiority to
their balanced ability to capture local temporal contexts (Conv1D)
and individual frame-level temporal emphasis (MLP). Additionally,
mean pooling appears most effective, likely due to its stable and
representative summarization of spectral information across frequency
bins.

4.2. Ablation Study

To further investigate the contribution of each design choice, we
perform detailed ablation analyses:

Integration Strategies: As evidenced in Table 1, the placement
of the temporal attention module significantly impacts performance.
Specifically, integrating temporal attention before FDY-Conv consis-
tently outperforms the after placement in both the Conv1D-based
and MLP-based attention variants. This observation suggests that
applying frame-level or local temporal attention directly to the input
features facilitates a more effective pre-selection of temporally salient
frames. This, in turn, guides the subsequent frequency-dynamic
convolution towards more relevant temporal segments. Conversely,
applying attention after FDY-Conv might inadvertently overemphasize
features already shaped by the convolution, potentially limiting the
model’s adaptive capacity.

A contrasting trend is observed for the Multi-Head Attention
variant, where the after configuration achieves higher PSDS scores
than its before counterpart. We hypothesize that performing global
self-attention directly on raw input features tends to homogenize the
time dimension, potentially smoothing out critical local energy peaks
that FDY-Conv relies on for adaptive frequency filtering. Deferring
this global re-weighting step until after convolution allows the model
to first distill discriminative local time-frequency structures. Only then
is their overall temporal prominence adjusted, effectively balancing
local selectivity with broader global context.

Pooling Methods: Among pooling methods, mean pooling con-
sistently achieves the best overall performance, surpassing both max
pooling and combined mean+max pooling. While max pooling can

157



Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

Fig. 3: Quantitative comparison of event-based F1 scores for each sound event
class w/ and w/o the temporal attention branch.

Fig. 4: Visualization of temporal attention variations for audio sample of
”alarm” and ”dog” event.

overly focus on peak activations, potentially introducing instability,
mean pooling provides a stable frequency representation beneficial for
robust temporal weighting. Interestingly, combining mean and max
pooling does not yield additional performance benefits, indicating that
the simplicity and robustness of mean pooling alone are sufficient.

Attention Types. Comparing attention mechanisms, Conv1D and
MLP consistently outperform Multi-Head Attention. This could be
explained by the simplicity and locality advantages of Conv1D and
MLP, which sufficiently capture essential temporal patterns without
overly complex global relationships. The Multi-Head Attention,
despite theoretically stronger global context modeling, might introduce
unnecessary complexity and potential overfitting given the dataset
size and task complexity.

In conclusion, our detailed experiments validate that a simple,
explicit temporal attention module effectively improves temporal
boundary localization in sound event detection, with the optimal
configuration involving integration before frequency convolution, mean
pooling, and either Conv1D or MLP-based attention modules.

4.3. Analysis and Discussion

To better understand the contribution of the proposed temporal
attention module, we conduct both quantitative and qualitative
analyses. Class-wise event-based F1 scores, shown in Fig. 3, reveal
that the temporal attention mechanism yields notable improvements
for transient and short-duration events such as alarm bell ringing,

Table 2: Impact of temporal attention module with different attention types
on various frequency dynamic convolution architectures.

Model AttnType Params PSDS1 PSDS2 IN-F1

FDY-CRNN – 11.061M 0.4241 0.6516 0.7263
MLP 11.172M 0.4383 0.6604 0.74277

DFD-CRNN – 11.061M 0.4327 0.6624 0.7314
Conv1D 11.281M 0.4395 0.6620 0.7432

MDFD-CRNN – 18.157M 0.4376 0.6504 0.7416
MLP 18.365M 0.4452 0.6613 0.7435

blender, cat, and dog. These types of events are typically characterized
by sharp onsets and brief durations, making precise temporal boundary
modeling essential. By dynamically adjusting the importance of
individual frames, our module appears to enhance the network’s
sensitivity to critical onset and offset regions, leading to more accurate
event localization.

In contrast, obvious performance degradation is observed
for long-duration and relatively stationary events such as elec-
tric shaver toothbrush and frying. These events tend to exhibit
stable and continuous spectral characteristics over time. In such
cases, uniform temporal weighting may already be sufficient, and
the introduction of temporal modulation might introduce unnecessary
variability, potentially disrupting stable temporal features.

We further examine the effectiveness of the proposed attention
mechanism. Visual inspection of the learned temporal attention weights
shows that our module consistently assigns higher importance to
frames near event onsets and/or offsets, especially for short-duration
events such as “alarm” and “dog”, as illustrated in Fig. 4. This
indicates that the model successfully learns boundary-aware temporal
cues, which helps enhance event localization accuracy.

4.4. Performance on FDY-Conv and Its Variants
Table 2 presents the optimal configurations for integrating our proposed
temporal attention module (”before” integration with mean pooling)
across different FDY-Conv variants. Clearly, the inclusion of explicit
temporal attention consistently enhances performance metrics (PSDS1,
PSDS2, and IN-F1) across all architectures. Specifically, FDY-CRNN
achieves an absolute PSDS1 improvement of 1.42%, DFD-CRNN of
0.68%, and MDFD-CRNN of 0.76%. These notable improvements
underscore the general applicability and effectiveness of temporal
attention in diverse frequency-dynamic convolution frameworks.

Furthermore, the additional parameter overhead introduced by our
attention module is minimal, ranging approximately from 1.00% (FDY-
CRNN) to 1.15% (DFD-CRNN) and 1.15% (MDFD-CRNN). This
modest increment demonstrates the computational efficiency of our
attention mechanism, validating its practical utility in enhancing model
performance without significantly increasing computational costs.

5. CONCLUSION
In this paper, we proposed a lightweight temporal attention module
integrated with frequency dynamic convolution (FDY-Conv) architec-
tures to improve sound event detection, especially for accurate event
boundary localization. Our module explicitly emphasizes temporally
salient frames through frequency-axis compression and frame-level
attention weighting using MLP, Conv1D, or Multi-Head Attention
mechanisms. Comprehensive evaluations on the DESED dataset
demonstrate consistent and significant performance improvements
across various FDY-Conv architectures (FDY-CRNN, DFD-CRNN, and
MDFD-CRNN), demonstrating both effectiveness and computational
efficiency.

158



Detection and Classification of Acoustic Scenes and Events 2025 30–31 October 2025, Barcelona, Spain

REFERENCES
[1] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti,

“Scream and gunshot detection and localization for audio-surveillance
systems,” in 2007 IEEE Conference on Advanced Video and Signal Based
Surveillance. IEEE, 2007, pp. 21–26.

[2] M. Crocco, M. Cristani, A. Trucco, and V. Murino, “Audio surveillance:
A systematic review,” ACM Computing Surveys (CSUR), vol. 48, no. 4,
pp. 1–46, 2016.

[3] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-
based surveillance system,” in 2005 IEEE International Conference on
Multimedia and Expo. IEEE, 2005, pp. 1306–1309.

[4] D. Stowell, M. D. Wood, H. Pamuła, Y. Stylianou, and H. Glotin,
“Automatic acoustic detection of birds through deep learning: the first bird
audio detection challenge,” Methods in Ecology and Evolution, vol. 10,
no. 3, pp. 368–380, 2019.

[5] J. Salamon, J. P. Bello, A. Farnsworth, M. Robbins, S. Keen, H. Klinck,
and S. Kelling, “Towards the automatic classification of avian flight calls
for bioacoustic monitoring,” PloS one, vol. 11, no. 11, p. e0166866,
2016.
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