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Abstract—Time-frequency bounding boxes of sound events in audio

spectrograms capture essential information across various domains.

Nevertheless, previous studies of sound event detection (SED) have focused

on detecting temporal boundaries. Although object detection models can

be adapted for time-frequency SED, they are intended for image data that

exhibit significantly different features compared to audio spectrograms.

To address this modality gap, this study employs an audio spectrogram

transformer (AST) as the backbone of a detection transformer (DETR).

A dataset of whistle sounds from defective wind turbine blades was used

for model training and evaluation. The proposed model outperformed a

faster region-based convolutional neural network with a residual network

backbone, which is an established object detection model. The integration

of deformable attention with a multiscale feature pyramid significantly

contributed to improving the performance. These results demonstrate the

effectiveness of deformable DETR models with an AST backbone for time-

frequency SED. Our findings will contribute to advancing time-frequency

SED, an area that remains underexplored.

Index Terms—Sound event detection, time-frequency bounding box,

audio spectrogram transformer

1. INTRODUCTION

Sound event detection (SED) aims to identify the time boundaries (i.e.,

onset and offset times) of specific sound events in audio recordings.

However, existing research has largely overlooked an important aspect:

the frequency ranges of these events. Time-frequency SED (i.e.,

detecting the time-frequency bounding boxes of sound events in

spectrograms) holds significant value across various domains. For

instance, in bioacoustics, a fully annotated bird song dataset includes

expert-annotated time-frequency bounding boxes [1], [2]. These boxes

serve as acoustic units; understanding how acoustic units are organized

into higher-level patterns poses a significant challenge [3]. Moreover,

in prognostics and health management, characteristic patterns of sound

events can reveal valuable information about machine status. In some

cases, temporal SED is insufficient as it discards critical information

encoded in the frequency domain. Therefore, accurate detection

of time-frequency bounding boxes can assist human investigators

and enable in-depth analysis using machine learning. Despite its

significance, the detection of time-frequency bounding boxes remains

largely unexplored.

Object detection models originally developed for images, such as

region-based convolutional neural networks (R-CNN) [4]–[6], the You

Only Look Once (YOLO) series, and detection transformers (DETR)

[7]–[11] can be repurposed for SED by considering audio spectrograms

as images, as observed in a few earlier studies. For instance, Faster

R-CNN and YOLO have been applied to detect bioacoustic events

[12]–[14] and whistle sounds generated by wind turbine blades [15].

Moreover, a one-dimensional variant of DETR was introduced for

detecting time boundaries of sound events [16], [17].

However, using object detection models for SED is challenging

due to distinct differences between audio and image modalities.

One major difference is the absence of color channels in spec-

trogram data, unlike image data. Previous studies converted audio

spectrograms into RGB images using fixed mappings or learnable

pointwise convolution layers, introducing unnecessary arbitrariness
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Fig. 1: Example of sound events in spectrogram

and complexity. Another significant issue arises from the feature

extraction networks (i.e., backbones). Most object detection models

employ pre-trained backbones from large-scale image datasets, such

as a residual network (ResNet) [18], which are ill-suited for audio

spectrograms because of their unique patterns. Unlike images, the

dimensions of spectrograms represent physical properties (time and

frequency). Consequently, standard image augmentation methods such

as flipping, rotation, scaling, shearing, and translation are not directly

applicable to spectrograms.

To bridge the modality gap, we employ audio spectrogram

transformers (AST) [19]–[25] as the backbone of our model. AST

models, tailored for audio spectrograms and based on the vision

transformer (ViT) architecture, are trained on large-scale audio datasets,

such as AudioSet [26]. Hence, they effectively replace conventional

backbone models designed for image processing in time-frequency

SED. Specifically, we examine a DETR with improved denoising

anchor boxes (DINO) [11] and a self-supervised AST model named

efficient audio transformer (EAT) [25] for detecting time-frequency

bounding boxes in audio spectrograms.

As an example of time-frequency SED, we focus on detecting

surface defects on wind turbine blades. Such defects, including cracks

and holes, generate sharp whistle-like aerodynamic noises, indicating

potential structural issues [15], [27]–[29]. Figure 1 illustrates an

example of the sound events to be detected in spectrograms. In-

depth information about defects, including their severities, could be

estimated from sound event characteristics, such as the duration,

frequency center, bandwidth, and peak shape in the spectrograms.

Hence, detecting the time-frequency bounding boxes of these whistle

sounds, as opposed to merely identifying their time boundaries, is

key. The audio signals generated by the wind turbine blades are

captured using microphones mounted at the base of the turbine towers.
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Fig. 2: Structure of proposed model. The left- and right-bottom boxes show the detailed structure of the audio spectrogram transformer (AST) and detection
transformer (DETR) models, respectively.

This damage detection method, based on acoustic signals, enables

cost-effective, non-destructive, and continuous monitoring of blade

conditions.

This study elucidates time-frequency SED, a relatively under-

explored area despite its significance. We demonstrate that using

an AST model as the backbone for DETR models enhances the

detection of sound events in audio spectrograms. The findings in this

study could advance time-frequency SED as a fundamental technique

across various domains, such as environmental sound recognition,

bioacoustics, prognostics, and health management.

2. MODEL

The proposed model integrates an AST backbone with a DETR model,

as illustrated in Fig. 2. The model receives a spectrogram as input

and outputs the positions and scores of the detected bounding boxes.

For the backbone, we employ EAT, a self-supervised AST model

[25]. The AST model partitions the input spectrogram into patches.

The encoder extracts the latent audio representations for each patch.

During self-supervised training, some patches are randomly masked,

and the decoder reconstructs the original spectrogram from the latent

representation. Only the pre-trained encoder is used as the backbone

of the proposed model without masking. Thus, the outputs of the

AST backbone are the latent representations yielded from the final

layer of the encoder.

These latent representations are transformed into a multiscale feature

pyramid before being input into the DETR model. This method builds

on a previous study that applied ViT for object detection [30]. One

limitation of ViT and AST is that they produce single-scale latent

representations, which hinders their application in this field. However,

the multiscale feature pyramid effectively addresses this limitation

without tailoring the backbone architecture a priori during pre-training.

We use DINO [11], an extension of DETR, for the detection model.

DETR is an end-to-end object detection model with an encoder-

decoder structure. The multiscale feature pyramid is fed to the DETR

encoder, projected to the same dimension, augmented with positional

embeddings, flattened, and concatenated across scales. The decoder,

using a fixed learnable object queries, attends to the encoder’s output.

Finally, a feed-forward network, called the detection head, predicts

each object query’s position and classification scores. The bounding

box positions are specified by the time center, duration, frequency

center, and bandwidth. Notably, a “no object” class is included in the

object classes. As we do not differentiate between sound event classes,

the detection head outputs whether each bounding box represents a

sound event. The overall model yields the bounding boxes and scores

for the detected sound events.

3. DATA

3.1. Recording

We collected recordings of sounds produced by land-based wind

turbines at two locations for 64 days over a year. A waterproof box

housing eight micro-electro-mechanical microphones was mounted

at the tower’s base. Audio signals of 180 to 900 s durations were

recorded intermittently at intervals of at least 15 min at a sampling

rate of 48 kHz and bit depth of 16. Consequently, 6,026 audio clips

totaling 1,147 h were recorded. After the recording, minimum variance

distortion-free response beamforming was applied to enhance the

sounds generated by the blades.

3.2. Data selection

All recordings were split into 15-second segments. Subsequently, 4,210

segments were selected to balance the following factors: recording

date, average spectral flatness over time, standard deviation of loudness

over time, and the score for the presence of whistle sounds. The scores

were estimated by an audio classification model trained using 240

randomly selected short segments, binary-labeled for the presence or

absence of whistle sounds. An attention-based convolutional recurrent

neural network [31] was then trained using this small dataset, achieving

an area under the precision–recall curve of 0.94 using 5-fold cross-

validation. This model was used only to select the data to be annotated.

3.3. Annotation

After data selection, nine reliable crowd workers annotated the

spectrograms with time-frequency bounding boxes of whistle sounds.

Each short segment was annotated by one worker under the supervision

of a single overseer. We compiled 1,843 audio clips, each lasting 15

s, containing 14,420 time-frequency bounding boxes. Notably, we did

not distinguish patterns of sound events because the class structure

of surface defects on wind turbine blades is unknown. Moreover, the

characteristics of whistle sounds are significantly affected by the defect

shapes and surrounding environments, including the blade rotation

speeds and wind speeds. Therefore, in contrast to conventional object

detection tasks, our dataset features only one target class.
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Fig. 3: Distribution of the number of sound events per audio clip
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Fig. 4: Distribution of center frequencies

3.4. Analysis

The distribution of the number of annotated bounding boxes per

audio clip is shown in Fig. 3. The mean and maximum number of

sound events per audio clip are 7.8 and 35, respectively. As described

in Section 4.1, we set the number of object queries to 100, which

is sufficient for detecting all sound events in a given audio clip in

unseen environments. The distribution of the frequency center of the

sound events is shown in Fig. 4, with occurrences between 2 and

20 kHz. Therefore, we maintained a sampling rate of 48 kHz in our

experiments to ensure that the observed sound events are not lost.

The distributions of the duration and bandwidth of the sound events

are shown in Fig. 5. As described in Section 4.1, we set the AST

patch size to 16 (measured in the number of time-frequency bins)

and window shift to 10 ms. Considering this setup, the bounding box

width (i.e., the duration of the sound events) is large, and the height

(i.e., bandwidth) is small. Hence, low resolution is sufficient in the

time direction, but high resolution is crucial in the frequency direction.

These characteristics necessitate a multiscale feature pyramid in the

model architecture.

4. EXPERIMENTS

We trained and evaluated the proposed DINO with EAT model on

wind turbine audio data. A Faster R-CNN [6] with a ResNet [18]

backbone served as the baseline. This architecture and its lightweight

variants have been applied in prior time-frequency SED studies [12]–

[15]. Moreover, an ablation study assessed the effects of dynamic
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Fig. 5: Distribution of bounding box sizes. Bandwidths are measured in terms
of the number of frequency bins.

Table 1: Results of time-frequency SED

Model Backbone AP50

Faster R-CNN ResNet 0.365
Faster R-CNN EAT 0.370
DINO ResNet 0.452
DINO EAT 0.494

anchor boxes [8], query denoising [9], multiscale feature pyramids

[30], and deformable attention [10], with the backbone fixed to EAT.

4.1. Setup

The audio data were split into 15-second segments, converted to log-

Mel spectrograms using the short-time Fourier transform with a 25 ms

window size and a 10 ms shift, resulting in 182 frequency bins. Unlike

in most previous studies on SED, the audio data maintained a 48 kHz

sampling rate, yielding spectrogram sizes of (T, F ) = (1498, 182).

For the baseline, we employed ResNet-50 with a depth of 50,

while the proposed model used an EAT model based on ViT-

B/16. A patch size of 16 × 16 is commonly used in ASTs. The

latent representation dimension was C = 768, resulting in a shape

of (C, ⌊T/16⌋, ⌊F/16⌋) = (768, 93, 11). We pre-trained the EAT

backbone on the public AudioSet [26] dataset at a 48 kHz sampling

rate, rather than using a public model pre-trained at 16 kHz. Moreover,

we substituted the one-dimensional sinusoidal positional encoding

with two-dimensional encoding. The durations of the audio clips

in AudioSet and the wind turbine audio dataset were 10 and 15 s,

respectively. The difference in duration was bridged by extending the

positional embedding along the time direction during fine-tuning, as

described in [23]. The 1/16 scale latent representations were converted

into a multiscale feature pyramid scaled to {1/32, 1/16, 1/8, 1/4},

following [30]. In DETR, the number and dimension of object queries

were set to 100 and 256, respectively, with other setups based on the

original work that proposed DINO [11].

The ResNet backbone, Faster R-CNN, and DETRs, except the

detection head, were initialized using pre-trained weights from the

common objects in context (COCO) dataset [32]. The backbone was

not frozen during training. The wind turbine audio data were randomly

divided into training, validation, and test sets at a ratio of 7:1:2. The

validation set was used to identify the best epoch. For evaluation,

we followed the standard evaluation method for the COCO dataset.

Specifically, the performance was measured using average precision

at an intersection of union (IoU) threshold of 50%, denoted as AP50.
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Table 2: Results of ablation study

Model DAB DN
MFP +

AP50Deformable

DETR 0.296
DAB-DETR ✓ 0.326
DN-DAB-DETR ✓ ✓ 0.354
Deformable DETR ✓ 0.405
DINO ✓ ✓ ✓ 0.494

DAB: Dynamic anchor box, DN: Query denoising, MFP: Multiscale feature
pyramid, Deformable: Deformable attention.

4.2. Results

In this section, we present the findings of our experiments. The

experimental results in Table 1 show that the proposed DINO with

EAT model outperformed the baseline models (Faster R-CNN with

ResNet). Moreover, the EAT backbone significantly improved the

performance of DINO, while the magnitude of improvement was

marginal for Faster R-CNN. This result indicates that using AST

as a backbone effectively adapts object detection models for audio

spectrograms.

The results of the ablation study are summarized in Table 2.

According to the experimental results, the deformable attention with

a multiscale feature pyramid significantly contributed to the improved

performance. Dynamic anchor boxes and query denoising further

improved the performance when used with deformable attention.

As described in Section 3.4, our data contained small bounding

boxes relative to the backbone’s latent representation resolution.

The multiscale feature pyramid mitigated this issue, consistent with

prior research [30]. Notably, deformable attention was proposed to

reduce complexity and improve learning convergence associated with

multiscale features [10]. Our results affirm that these methods are

effective not only for object detection in images but also for time-

frequency SED.

4.3. Error analysis

The distribution of the detected bounding box displacements from the

actual boxes is shown in Fig. 6. Predictions with scores over 0.5 were

counted without applying an IoU threshold. We observed relatively

large misplacements compared with typical object detection in images.

This result supports the observation that the boundaries of the sound

events are blurred and difficult to determine. Hence, setting the IoU

threshold to a small value is feasible.

Examples of sound events detected by the human annotators and the

proposed model are shown in Fig. 7. Two main errors are observed:

First, a single human-annotated box is detected as multiple boxes.

Second, multiple human-annotated boxes are detected as one. These

misdetections stem from difficulty distinguishing sound event units

within complex spectrogram patterns.

5. CONCLUSION

This study elucidates time-frequency SED, which has remained under-

explored despite its significance. We adopted object detection models

for time-frequency SED, employing an AST backbone to remove

the modality gap between image and audio. The experimental results

demonstrated that DINO with EAT outperforms the conventional

Faster R-CNN with ResNet baseline. The ablation study revealed that

the multiscale feature pyramid and deformable attention effectively

mitigate resolution issues and enhance performance. These findings

indicate the effectiveness of self-supervised ASTs as the backbone

of deformable DETRs for time-frequency SED, which can advance

research on time-frequency SED in various applications.

Time 
 center

Duration Frequency 
 center

Bandwidth
0

10

20

30

40

50

60

R
el

at
iv

e 
er

ro
r (

%
)

Fig. 6: Distribution of bounding box misalignment relative to the actual
duration and bandwidth
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Fig. 7: Examples of detection errors

This research can be extended considering the following aspects.

One primary challenge in time-frequency SED is data scarcity.

Research on semi-supervised learning to utilize unlabeled and weakly

labeled data is a promising direction, as demonstrated in prior studies

on object detection in images [33] and temporal SED [17]. Transfer

learning is another promising approach. For instance, knowledge

learned from the acoustic data of various species, such as birds, frogs,

insects, and marine mammals, can be transferred to prognostics and

vice versa. Fully annotated bioacoustic datasets, such as BirdCLEF [1]

and BirdSet [2], are available for this purpose. Moreover, developing

efficient methods for merging and splitting bounding boxes can aid

in addressing ambiguities in distinguishing sound event units.
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