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Abstract—This paper presents an edge-optimised approach for baleen
whale call detection, addressing both the detection requirements of
BioDCASE 2025 Task 2 and deployment constraints similar to Task 3.
Common machine learning models contain 4+ million training parameters
and use architectures unsuitable for real-time edge deployment. In
contrast, our model contains just 35,571 parameters (159KB) and operates
efficiently on a 64-bit ARM Cortex-AS3 with 512MB RAM. We applied
an edge-optimised feature extraction pipeline and a custom CNN model
architecture designed for real-time inference in offshore deployments.
Classifying on 11.8-second detection windows, our precision-focused
approach achieves 72% precision for blue whale ABZ calls and 80%
for fin whale burst pulse calls, though downsweep detection lags at 18%
precision. After applying a temporal head for call-specific identification as
per the BioDCASE challenge requirements, ABZ call precision drops to
65% and burst pulse calls to 4%, while downsweep calls improve to 29%.
Acknowledging the difficulties in call-specific identification, this work
highlights the feasibility and potential of edge-optimised architectures
for baleen whale detection in real-world monitoring scenarios where
computational resources and power consumption are severely constrained,
while addressing common challenges and next steps to improve the results.

Index Terms—Dbaleen call detection, signal processing, temporal atten-
tion, edge-computing

1. INTRODUCTION

Our marine environment face significant threats [1], [2], requiring
scalable bioacoustics monitoring solutions to assess biodiversity and
support conservation. Passive Acoustic Monitoring (PAM) offers a
promising non-invasive approach for underwater monitoring but tran-
sitioning deep learning (DL) based PAM from research prototypes to
operational systems remains challenging, often requiring performance
trade-offs through quantization or pruning [3]. Furthermore, current
DL approaches often report high accuracies based on biased evaluation
protocols that do not consistently account for temporal correlations in
acoustic data [4], [5]. By following the guidelines of the BioDCASE
2025 Challenge [6] for the ”Supervised Detection of Strongly-Labelled
Whale Calls” we aim to reduce this validation bias in real-world
deployments and encourage further development.

2. BACKGROUND

Although recent deep learning approaches have shown promising re-
sults for automated baleen whale call detection [7]—[11], and traditional
spectrogram-based detection methods can achieve low false alarm rates
[12], [13], these methods require significant computational resources
making them unsuitable for autonomous real-time deployment on
memory-constrained devices. Hybrid CNN-LSTM approaches for fin
whale detection show that temporal context modelling can improve
performance [14], but remain to be benchmarked on edge devices.
While specialised systems like DMON/LFDCS [15] have demonstrated
successful deployment on autonomous platforms for baleen whale
detection, this approach has key limitations - most notably reliance
on human expert analysts for final classification decisions and the
constraints of data transmission. In contrast compact CNNs can process
audio on-board for fully autonomous analysis, allowing for data
transmission of just several bytes containing detection information
like time, location, and species, rather than large volumes of pitch
track data requiring human review.

This work focuses on convolutional neural networks (CNNs) due
to their proven success in audio signal processing for animal sounds
on edge compute [16]-[18], effectiveness with limited compute and
minimal memory footprint [19], and widespread deployment in marine
bioacoustic tasks including cetacean detection [7], [9]-[11], [20]-[23].
While recurrent architectures (RNNs/CRNNs) have shown promise in
bioacoustics [23], they require more computational resources for
training and inference, with [23] observing that temporal CNNs
often match or exceed RNN performance while being faster to train.
Similarly, although transformer architectures show emerging potential
with [24], [25] demonstrating early bioacoustic applications, they
remained computationally prohibitive for edge deployment until very
recently [26], with advances like EasyViT [27] only now making
them feasible for resource-constrained devices.

For this initial edge-optimised implementation targeting immediate
deployment on devices like the Raspberry Pi Zero 2 W, CNNs
provide the optimal balance of proven performance, computational
efficiency, and implementation maturity, with exploration of emerging
architectures reserved for future iterations once the baseline system is
established. This report presents a development pathway for addressing
common challenges: an edge-optimised temporal attention network
designed specifically for deployment on tiny low-cost hardware
platforms. This network uses an attention mechanism to assign
importance to key features in an audio signal, helping the network
focus on relevant sounds for call-specific detection, while achieving a
balance between detection performance and computational efficiency
and laying out clear next steps for development.

3. METHODOLOGY
3.1. Dataset and Preprocessing

The BioDCASE benchmark builds on the baleen whale call dataset
containing 1,880 hours of recordings with expert annotations for
Antarctic blue whale ABZ calls (bmabz), fin whale burst pulses
(bp), and fin/blue whale downsweep calls (d) [28]. Following the
challenge protocol, we maintained strict temporal separation between
training and validation sets to prevent data leakage. Applying a sliding
windowing approach of 11.8s windows (theorising the necessity of
longer windows for transient whale sounds and burst calls) with
50% overlap, and undersampling of the heavily over-represented
background down to 60% in the training set, we obtained 473,620
training windows and 351,374 validation windows. The overall class
distribution is presented in Table 1. We designed the model as a
multi-class labelling problem with a confidence score for the presence
of each class per window.

Table 1: Class Distribution

Class Train Val
Background 362,944 312,730
Blue Whale ABZ (bmabz) 64,846 28,931
Fin Whale Pulse (bp) 26,677 6,301
Fin/Blue Downsweep (d) 31,615 5,581
Total 473,620 351,374
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Fig. 1: CNN Feature stack for blue and fin whale calls on a 48-second audio
snippet. Example shows a blue whale ABZ call [28]. In production these are
11.8-second windows.
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Fig. 2: Threshold analysis approach demonstrated in the blue whale ABZ
call class on the evaluation set. “Optimal F1” is maximised F1, the arrow
highlights our selected threshold of 0.6 for optimised precision.

Our preprocessing pipeline extracts three-channel acoustic features
(Fig. 1) optimised for low-frequency whale vocalisations (5-125Hz
range): log-power spectrograms with 250Hz sampling rate, first-
order derivatives, and computationally efficient wavelet coefficients
processing only approximation and first-level detail coefficients.
This adapted wavelet feature was inspired by works that previously
presented the effectiveness of wavelet features in identifying low
frequency whale calls [8], [29]. Channel-wise normalisation parameters
were computed from the training set to ensure consistent scaling across
diverse recording conditions. Table 2 details the complete processing
pipeline to transform the raw acoustic recordings into standardised
sensors suitable for deep learning inference on edge hardware.

3.2. Model Architecture

The proposed network employs a lightweight CNN backbone with six
convolutional layers, utilising separable convolutions to reduce com-
putational complexity. A detailed diagram of the network architecture
is available from https://doi.org/10.5281/zenodo.17122226.
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Fig. 3: Weighted F1-Macro learning curve on the classification head across
the detection of background noise, blue whale ABZ, fin whale pulse calls, and
fin/blue whale downsweep calls

Key architectural features include:

o A multi-class label classification head for per-window predictions

o Asymmetric max-pooling to reduce the frequency dimension
while preserving full temporal resolution for precise event
localisation

o Multi-scale temporal processing via parallel dilated convolutions
to capture patterns across different time scales

o A lightweight temporal attention mechanism to weigh and
aggregate features across 60 time steps

« Batch normalisation throughout for training stability

« Focal loss optimisation addressing severe class imbalance

o Cyclical learning rate scheduling for improved convergence

The model contains only 35,571 training parameters and is just
159KB in size, representing a 95-99% size reduction compared to
standard and edge-optimised CNNs [30], enabling deployment on
remote memory-constrained devices using Tensorflow Lite (TFLite).

3.3. Thresholding

Performance evaluation followed a precision-focused approach, recog-
nising that in ocean sustainability and conservation false positives often
incur higher costs than false negatives. We therefore implemented
class-specific detection thresholds optimised for precision on the
classification head. An example of this approach is presented in Fig.
2. Considering the multi-class problem, the background class is only
activated when no other classes reach the threshold.

3.4. Weighted monitoring metric

For the early stopping mechanism, we employed a weighted F1 macro
metric for a weighted precision-recall rating favouring precision at
70% over 30% (Fig. 3).
The weighted F1 score for each class ¢ is computed as shown in
D,
(wp 4 wy) - P . RO
wp - RO +w, - PO +¢’

Y = M
where P and R are the precision and recall for class ¢,
respectively, w,, is the precision weight, w, = 1 — w, is the recall
weight, and € = 1073 is a small constant to prevent division by zero.
The precision and recall are calculated using the standard definitions
in (2),
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Table 2: Feature Extraction Pipeline for Blue and Fin Whale Detection. F' = frequency bins (513), 7" = time frames per window (60), Output tensor dimensions:
(513 x 60 x 3) per analysis window. Processing optimised for 5-125Hz whale vocalisations on edge hardware with under 40k training parameters CNN models.

Processing Stage Parameter

Implementation Details

Output

Resampling
Bandpass Filter

Signal
Preprocessing

Target sampling rate: 250Hz using librosa resample
4th-order Butterworth filter, 5-125Hz cutoff frequencies

250Hz audio
Filtered signal

Window Function

2.0s Hann window (500 samples at 250Hz)

STFT frames

Spectrogram Hop Length 0.2s hop (50 samples, 90% overlap) Time resolution
Generation FFT Size 1024-point FFT providing 0.244Hz frequency resolution 513 freq bins
Power Conversion Log-power: Sqp = 10log;o(|]STFT|?) — max(Syp) dB spectrogram

Spectral Background Subtraction Time-averaged profile with 15-sample Gaussian smoothing Enhanced signal
Enhancement Contrast Enhancement 5-120Hz whale frequency band Band-enhanced
Normalisation Percentile Scaling Map 5th-95th percentile to [-20, +20] dB range Standardised

. Channel 1 Log-power spectrogram FxT
Multi-Channel Channel 2 Fir{sgt—Iz)rder frlc)aquenfy derivatives with safety checks EF X T;
Features Channel 3 Daubechies-4 wavelet (3 levels, approx + detail coeffs) (FxT)
Temporal Window Size 60 frames (11.8s at 0.2s hop) Feature windows
Windowing Overlap 30 frames (50% overlap between windows) Sliding windows

Final Standardisation ~ Channel-wise Norm
where TP®, FP® and FN® represent the true positives, false
positives, and false negatives for class 4, respectively. The final
monitoring metric is the macro-averaged weighted F1 score across
all classes as given in (3),

C
1 i
Fl,weightedf'macro - 5 Zz_:l F].(,'Zuﬂ (3)

where C is the total number of classes. In our experiments, we used
a precision weight of w, = 0.7 to emphasise precision over recall in
the early stopping criterion.

3.5. Post Processing of the Temporal Head

The temporal head processes attention weights generated by the
Temporal Attention Layer (see also the architecture diagram in
https://doi.org/10.5281/zenodo.17122226). This layer produces time-
step-specific attention scores across the 60 temporal frames (11.8-
second window), where each score indicates the model’s focus on
potential whale call events at that time point. These attention weights
form a temporal attention map that highlight regions of acoustic
significance, which we then process to extract precise call boundaries.
Class-specific processing parameters were derived from statistical
analysis of the training set (Table 3).

The temporal processing pipeline applies class-specific attention
weight smoothing using median filters (kernel sizes: bmabz=5, bp=1,
d=1), followed by adaptive thresholding based on attention statistics.
High-attention regions exceeding p+ ao (where o € [0.05,0.08,0.1]
for ‘bp‘, ‘d‘, ‘mbabz‘) are identified as potential call boundaries.
Duration constraints derived from 5th and 95th percentiles filter
detected events: bmabz (4.69-13.62s), bp (0.92-1.93s), and d (0.83-
4.40s).

Post-processing applies class-specific merging of nearby events
(max gaps: bmabz=8.0s, bp=1.0s, d=1.5s), overlap-based deduplication
(thresholds: 0.2-0.3), and confidence filtering to produce final temporal
boundaries. Events are ranked by a composite score combining
classification confidence (40%), peak attention (40%), and duration
bonus (20%) when resolving overlapping detections.

3.6. Computational Performance

Training was done on 4 NVIDIA A100 GPUs with distributed data-
parallel processing and XLA, completing in 10 hours for the 474K
training windows. Processing occurred with sharded TFRecord files
across 16 parallel workers. Implementation includes deterministic data
shuffling, fixed random seeds, and a batch size of 128.

Training-set calculated mean/std applied to all data splits

(FxTx3)

To evaluate the feasibility of real-time, on-device deployment, the
model’s computational performance was benchmarked on a resource-
constrained edge device: a Raspberry Pi Zero 2 W which features a
64-bit ARM Cortex-A53 CPU and 512 MB of RAM. The performance
was measured across five 60-second audio files with varied whale
call patterns, with multiple trials ensuring stable results. The system
demonstrates exceptional efficiency, achieving a mean real-time factor
(RTF) of 24.5x, indicating it can process audio over 24 times faster
than it is recorded. The complete end-to-end processing of a 60-second
audio clip takes, on average, just 2.45 seconds. The compressed TFLite
model has a minimal disk footprint of only 159KB. The inference
latency for a single 11.8-second analysis window is 187.42 + 1.07
ms. The temporal post-processing adds negligible overhead. The peak
memory footprint of the application during runtime was 213.1 MB,
well within the device’s operational limits. These results confirm the
model’s suitability for long-term, low-power, and real-time acoustic
monitoring applications. Key performance metrics are summarised in
Table 4.

4. RESULTS AND DISCUSSION

Bearing in mind the computational constraints and potential of the
edge-optimised architecture, we present both the per-window analysis
and the evaluation following the BioDCASE benchmark.

Detection Performance: Blue Whale and Fin Whale Calls - Optimised for Edge Computing Deployment

= precision

8% Precision: Percentage of predicted examples that are correct Recall

100 95% Recall: Percentage of actual calls successfully identified - F1 Score
93% F1 Score: Balanced measure combining precision and recall

Score (%)

40

Blue Whale ABZ Call

Background

Fin Whale Pulse Call Fin/Blue Whale Downsweep Call

Fig. 4: Performance metrics per class in the classification head.

Starting with per-window analysis from the classification head,
Fig. 4, we achieve a precision of 72% for the blue whale ABZ call
and 80% for the fin whale burst calls, but poor precision of 18%
on downsweep - reflective of previous reports on the challenges of
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Table 3: Training set duration statistics (seconds) for merged annotation classes used to derive class-specific temporal processing parameters.

Class Count | Mean Std | Median | Min Max P5 | P10 | P25 | P75 P90 P95 | IQR CvV
bmabz 9463 795 | 2776 736 | 129 | 36.62 | 469 | 523 | 6.14 | 9.09 | 11.60 | 13.62 | 2.95 | 0.35
bp 5308 1.39 | 0.31 1.38 | 0.46 2.82 | 092 | 1.01 | 1.20 | 1.60 1.82 1.93 | 040 | 022
d 2856 244 | 1.11 241 | 0.37 7.36 | 083 | 098 | 1.56 | 3.19 3.93 440 | 1.63 | 046

Table 4: Detailed performance breakdown of the whale call detection system
on Raspberry Pi Zero 2 W.

Component Metric Value
Size (MB) 0.15

Model Tnput shape | [1, 513, 60, 3]
Latency per window (ms) 187.42 £ 1.07

Inference 95th percentile (ms) 189.21
Real-time factor (RTF) 24.5x

Latency per window (ms) 0.79 = 0.17

Temporal Processing Overhead vs inference 0.4%
Peak memory (MB) 213.1

Resource Usage Peak CPU (%) 155.6

Table 5: Detection performance results as per the BioDCASE evaluation across
datasets for different classes (bmabz, bp, d).

Dataset Method TP FP FN Recall Precision
bmabz 676 | 446 1742 0.280 0.602
casey2017 bp 0 13 292 0.000 0.000
d 77 339 476 0.139 0.185
bmabz 473 154 | 3824 0.110 0.754
kerguelen2014 | bp 4 56 | 3742 0.001 0.067
d 70 138 709 0.090 0.337
bmabz 329 215 2419 0.120 0.605
kerguelen2015 bp 1 39 1269 0.001 0.025
d 126 181 1398 0.083 0.410
bmabz 1478 815 7985 0.156 0.645
Final Results bp 5 108 5303 0.001 0.044
d 273 658 2583 0.096 0.293

labelling and predicting this class [7]. Recall rates vary between 31%,
41% and 54% for downsweep, ABZ, and burst pulse calls respectively.

The results of ‘evaluation.py‘ provided by the BioDCASE bench-
mark are presented in Table 5. There is a noticeable drop in perfor-
mance, which was somewhat expected given the minimal temporal
head restriced to edge limitations. Nevertheless, 65% precision for
‘bmbabz is promising for a model with just 35K training parameters.
The temporal processing pipeline may benefit from further tuning to
enhance both precision and recall for this class.

The significant drop in precision for the burst pulse calls was
unanticipated given its high performance in the classification head.
It seems that the 11.8-second window approach is fundamentally
mismatched to the 1.39-second average calls. Despite custom class
tuning, the temporal attention mechanism lacks the resolution needed
for short events within the 11.8-second windows. Downsweep calls
being longer interestingly achieved higher precision than both temporal
burst pulse calls and the ‘d‘ classification head at 29%, but recall is
low.

Given the considerable characteristic differences between the
targeted events both in the time and frequency domain and the
extremely efficient processing pipeline, future endeavours might seek
to build custom per-class inference models with feature extraction
tailored specifically for each individual class. Three models could run
sequentially in real-time, and still run smoothly on tiny microcon-
trollers such as the one used in this experiment (Raspberry Pi Zero 2
W, 512MB RAM). Such class-specific pipelines could significantly
enhance temporal call-specific detection accuracy.

We aimed to develop a lightweight solution to detect whale presence
in real-time on edge. Considering PAM of baleen whales for real-
time applications such as adapting shipping routes based on mammal
presence, we argue that the windowing approach in the classification

head would be sufficient and perhaps preferable over individual call
detection when deployed on edge devices. The impact of inconsistent
labelling is reduced since the classification simply determines whether
a class is present or absent within a given window, which is sufficient
to support policy decisions. Additionally, once the data is retrieved,
high-performance computing (HPC) analysis can be performed on land
to refine the predictions. Statistical inference of call presence could
be adjusted for known precision and recall errors, though hydrophone
hardware and environmental differences must be taken into account. In
production, the classification head could serve as an initial detection
stage, while the temporal head attempts to locate exact call boundaries
when required.

While the margin of 24.5x exceeds the strict requirement of real-
time operation, this computational headroom ensures robust operation
when edge devices must simultaneously handle data processing and
transmission across potentially parallel models - realistic scenarios
for autonomous ocean monitoring. The presented architecture offers
scalability and flexibility in development paths: vertical scaling through
deeper networks and expanded channels could improve accuracy at
moderate computational costs, while horizontal scaling via class-
specific pipeline appears promising given the distinct characteristics
of each call type. Initial experiments with GRU layers showed potential
for improved temporal modelling but required custom TensorFlow
Lite operators for edge compression, this remains a route to explore.
Future work will explore lightweight vision transformers as they
mature for edge applications, layer normalisation and cosine learning
rate schedulers for training stability, and systematic benchmarking to
identify optimal accuracy-efficiency trade-offs.

It has to be noted that all validation datasets are recorded with the
”AAD-MAR” hydrophone. As there can be considerable differences
in acoustic data recorded with different hardware, performance on
hydrophones outside of this domain remains to be addressed. For
example, only 12% of the training data was recorded with "AAD-
MAR?”, whereas 77% of the training data was recorded with "AURAL”.
Given that the vast majority of training data comes from a single
hydrophone type, the model may perform better on hardware within
this domain (AURAL). Additionally, hydrophone calibration across
hardware and environments must be considered for production.

5. CONCLUSION

This work demonstrates the feasibility of edge-optimised deep learning
for baleen whale detection, achieving competitive performance on the
classification head with just 35K parameters. The proposed model is
suitable for edge compute and real-time detection. While temporal
localisation remains challenging, particularly for short burst pulse calls,
the classification head provides reliable presence detection suitable for
real-time conservation applications. Future work should explore class-
specific models, model scaling, and cross-hydrophone generalisation
to improve deployment robustness.
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