Task description
The goal of the acoustic scene classification task is to classify recordings into one of the ten predefined acoustic scene classes. This task continues the Acoustic Scene Classification tasks from previous editions of the DCASE Challenge, with a slight shift of focus. This year, the task concentrates on three challenging aspects: (1) a recording device mismatch, (2) low-complexity constraints, and (3) the limited availability of labeled data for training.
More detailed task description can be found in the task description page
Teams ranking
Submission information | Rank | Entry ranks per split (maximum among entries) |
Accuracies per split (maximum among entries) |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Official rank |
Rank score |
Split 5% |
Split 10% |
Split 25% |
Split 50% |
Split 100% |
Split 5% |
Split 10% |
Split 25% |
Split 50% |
Split 100% |
Auzanneau_CEA | Yolovote | Auzanneau2024 | 18 | 37.38 | 38 | 38 | 38 | 38 | 38 | 33.07 | 35.31 | 37.69 | 39.76 | 41.08 | |
BAI_JLESS | BAI_T1_S1 | Bai2024 | 14 | 52.39 | 31 | 28 | 23 | 27 | 29 | 44.75 | 49.31 | 54.85 | 55.77 | 57.29 | |
Cai_XJTLU | TFSN t=3 | Cai2024 | 4 | 56.35 | 9 | 9 | 5 | 8 | 1 | 48.91 | 53.16 | 58.09 | 59.47 | 62.12 | |
Chen_GXU | SENet | Chen2024 | 15 | 52.12 | 29 | 23 | 26 | 32 | 31 | 45.20 | 49.82 | 53.90 | 54.72 | 56.96 | |
Chen_SCUT | BC-PACN-64 | Chen2024a | 12 | 52.74 | 33 | 30 | 28 | 21 | 16 | 43.94 | 48.89 | 53.76 | 56.96 | 60.14 | |
Gao_UniSA | base_fl | Gao2024 | 11 | 52.82 | 27 | 25 | 31 | 22 | 24 | 45.91 | 49.45 | 53.27 | 56.74 | 58.73 | |
Han_SJTUTHU | Lin_c96c64 | Bing2024 | 1 | 58.46 | 1 | 1 | 1 | 2 | 2 | 54.35 | 56.69 | 59.09 | 60.38 | 61.82 | |
MALACH24_JKU | CR_P_B_CPM | David2024 | 2 | 57.19 | 4 | 4 | 6 | 4 | 7 | 51.95 | 54.46 | 58.01 | 60.05 | 61.51 | |
OO_NTUPRDCSG | MofleRes1 | Oo2024 | 7 | 54.83 | 14 | 18 | 16 | 14 | 17 | 48.52 | 51.43 | 55.87 | 58.42 | 59.91 | |
Park_KT | Quant | Park2024 | 6 | 55.40 | 11 | 12 | 12 | 17 | 15 | 48.86 | 52.44 | 57.30 | 58.09 | 60.32 | |
DCASE2024 baseline | Baseline | 17 | 50.73 | 32 | 36 | 37 | 34 | 33 | 44.00 | 46.95 | 51.47 | 54.40 | 56.84 | ||
Shao_NEPUMSE | NEPUMSE | Shao2024 | 3 | 57.15 | 6 | 7 | 4 | 1 | 3 | 51.38 | 53.75 | 58.31 | 60.61 | 61.71 | |
Surkov_ITMO | Large | Surkov2024 | 13 | 52.65 | 18 | 20 | 25 | 33 | 36 | 48.03 | 51.18 | 54.29 | 54.63 | 55.15 | |
Tan_CISS | NTUCISS_T1 | Tan2024 | 16 | 51.71 | 22 | 27 | 35 | 35 | 35 | 46.50 | 49.32 | 52.62 | 54.03 | 56.07 | |
Truchan_LUH | Recursiv | Truchan2024 | 9 | 53.52 | 25 | 24 | 21 | 18 | 20 | 46.02 | 49.64 | 55.15 | 57.43 | 59.39 | |
Werning_UPBNT | UPBNT | Werning2024 | 8 | 54.35 | 8 | 11 | 18 | 26 | 26 | 49.21 | 52.51 | 55.49 | 56.20 | 58.34 | |
Yan_NPU | Yan_NPU | Yan2024 | 10 | 52.94 | 21 | 29 | 33 | 25 | 23 | 47.51 | 49.07 | 52.97 | 56.36 | 58.79 | |
Yeo_NTU | KDEnsemble | Yeo2024 | 5 | 56.12 | 10 | 8 | 10 | 9 | 6 | 48.88 | 53.29 | 57.47 | 59.36 | 61.59 |
Systems ranking
Submission information | Overall rank | Ranks per split | Complexity ranks | Evaluation dataset / Accuracy with 95% confidence interval | Development dataset / Accuracy | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Rank | Rank score |
Split 5%/ Entry rank |
Split 10%/ Entry rank |
Split 25%/ Entry rank |
Split 50%/ Entry rank |
Split 100%/ Entry rank |
Memory rank |
MACs rank |
Split 5%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 10%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 25%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 50%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 100%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 5% (Development dataset) |
Split 10% (Development dataset) |
Split 25% (Development dataset) |
Split 50% (Development dataset) |
Split 100% (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 37.4 | 38 | 38 | 38 | 38 | 38 | 6 | 3 | 33.1 (32.8 - 33.3) | 35.3 (35.0 - 35.6) | 37.7 (37.4 - 38.0) | 39.8 (39.5 - 40.0) | 41.1 (40.8 - 41.4) | 31.4 | 34.4 | 38.4 | 39.0 | 41.3 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 32 | 52.0 | 31 | 35 | 24 | 27 | 30 | 16 | 12 | 44.7 (44.5 - 45.0) | 47.8 (47.5 - 48.1) | 54.5 (54.3 - 54.8) | 55.8 (55.5 - 56.1) | 57.1 (56.9 - 57.4) | 42.6 | 47.1 | 54.0 | 57.0 | 59.4 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 37 | 50.7 | 34 | 37 | 36 | 36 | 34 | 16 | 12 | 43.8 (43.6 - 44.1) | 46.9 (46.6 - 47.2) | 52.0 (51.8 - 52.3) | 53.9 (53.6 - 54.2) | 56.7 (56.5 - 57.0) | 42.9 | 46.9 | 51.7 | 56.2 | 59.3 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 30 | 52.1 | 35 | 28 | 23 | 31 | 29 | 16 | 12 | 43.7 (43.4 - 43.9) | 49.3 (49.0 - 49.6) | 54.9 (54.6 - 55.1) | 55.2 (54.9 - 55.4) | 57.3 (57.0 - 57.6) | 42.2 | 49.2 | 54.1 | 56.4 | 60.3 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 12 | 55.4 | 20 | 14 | 14 | 8 | 14 | 15 | 16 | 47.5 (47.3 - 47.8) | 52.4 (52.1 - 52.7) | 57.0 (56.8 - 57.3) | 59.5 (59.2 - 59.8) | 60.6 (60.3 - 60.9) | 47.4 | 52.1 | 57.5 | 61.1 | 62.4 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 10 | 56.0 | 9 | 15 | 5 | 12 | 1 | 15 | 16 | 48.9 (48.6 - 49.2) | 52.0 (51.8 - 52.3) | 58.1 (57.8 - 58.4) | 59.0 (58.8 - 59.3) | 62.1 (61.8 - 62.4) | 49.0 | 52.3 | 57.9 | 60.7 | 62.9 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 11 | 55.9 | 17 | 9 | 8 | 11 | 12 | 15 | 16 | 48.4 (48.1 - 48.6) | 53.2 (52.9 - 53.4) | 57.6 (57.3 - 57.8) | 59.2 (58.9 - 59.5) | 61.1 (60.8 - 61.4) | 47.9 | 52.3 | 57.5 | 60.1 | 62.8 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 29 | 52.1 | 29 | 23 | 26 | 32 | 31 | 19 | 15 | 45.2 (44.9 - 45.5) | 49.8 (49.5 - 50.1) | 53.9 (53.6 - 54.2) | 54.7 (54.4 - 55.0) | 57.0 (56.7 - 57.2) | 43.2 | 48.7 | 53.8 | 56.8 | 57.3 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 28 | 52.5 | 33 | 34 | 28 | 21 | 16 | 8 | 4 | 43.9 (43.7 - 44.2) | 47.8 (47.5 - 48.1) | 53.8 (53.5 - 54.0) | 57.0 (56.7 - 57.2) | 60.1 (59.9 - 60.4) | 47.1 | 52.4 | 58.0 | 60.9 | 63.7 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 35 | 51.7 | 37 | 32 | 32 | 28 | 28 | 10 | 2 | 43.1 (42.8 - 43.3) | 48.2 (48.0 - 48.5) | 53.3 (53.0 - 53.5) | 55.7 (55.4 - 56.0) | 58.1 (57.8 - 58.3) | 46.5 | 53.1 | 57.0 | 60.2 | 61.5 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 31 | 52.0 | 36 | 30 | 29 | 23 | 27 | 1 | 1 | 43.1 (42.9 - 43.4) | 48.9 (48.6 - 49.2) | 53.6 (53.4 - 53.9) | 56.5 (56.2 - 56.8) | 58.1 (57.8 - 58.4) | 46.4 | 52.6 | 57.4 | 59.8 | 62.0 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 25 | 52.8 | 27 | 25 | 31 | 22 | 24 | 11 | 17 | 45.9 (45.6 - 46.2) | 49.5 (49.2 - 49.7) | 53.3 (53.0 - 53.6) | 56.7 (56.5 - 57.0) | 58.7 (58.5 - 59.0) | 44.3 | 47.9 | 53.1 | 56.3 | 59.6 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 3 | 58.1 | 3 | 2 | 3 | 2 | 8 | 17 | 21 | 53.4 (53.1 - 53.7) | 56.4 (56.1 - 56.7) | 58.6 (58.4 - 58.9) | 60.4 (60.1 - 60.7) | 61.5 (61.2 - 61.7) | 52.2 | 55.8 | 58.9 | 61.4 | 62.2 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 1 | 58.2 | 1 | 3 | 2 | 3 | 2 | 14 | 13 | 54.3 (54.1 - 54.6) | 55.8 (55.5 - 56.1) | 58.9 (58.7 - 59.2) | 60.2 (60.0 - 60.5) | 61.8 (61.5 - 62.1) | 52.7 | 55.8 | 58.7 | 60.4 | 61.7 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 2 | 58.2 | 2 | 1 | 1 | 5 | 9 | 18 | 20 | 54.0 (53.7 - 54.2) | 56.7 (56.4 - 57.0) | 59.1 (58.8 - 59.4) | 60.0 (59.7 - 60.3) | 61.3 (61.1 - 61.6) | 53.0 | 56.9 | 59.1 | 61.0 | 61.3 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 5 | 57.0 | 5 | 4 | 6 | 7 | 7 | 11 | 15 | 51.6 (51.3 - 51.8) | 54.5 (54.2 - 54.7) | 58.0 (57.7 - 58.3) | 59.7 (59.4 - 60.0) | 61.5 (61.2 - 61.8) | 49.7 | 53.7 | 57.5 | 60.2 | 62.2 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 6 | 57.0 | 4 | 5 | 9 | 4 | 10 | 11 | 15 | 52.0 (51.7 - 52.2) | 54.0 (53.7 - 54.3) | 57.5 (57.3 - 57.8) | 60.0 (59.8 - 60.3) | 61.3 (61.0 - 61.5) | 50.5 | 53.1 | 56.8 | 59.2 | 60.6 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 7 | 56.5 | 7 | 6 | 11 | 13 | 13 | 11 | 15 | 51.2 (50.9 - 51.4) | 54.0 (53.7 - 54.3) | 57.3 (57.0 - 57.6) | 59.0 (58.7 - 59.3) | 60.9 (60.6 - 61.2) | 49.5 | 53.5 | 56.9 | 59.6 | 61.5 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 17 | 54.8 | 14 | 18 | 17 | 15 | 18 | 7 | 14 | 48.5 (48.2 - 48.8) | 51.4 (51.1 - 51.7) | 55.8 (55.5 - 56.1) | 58.4 (58.1 - 58.6) | 59.9 (59.6 - 60.1) | 47.6 | 51.3 | 56.7 | 60.0 | 62.2 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 15 | 54.8 | 16 | 19 | 16 | 14 | 17 | 7 | 14 | 48.4 (48.1 - 48.7) | 51.3 (51.1 - 51.6) | 55.9 (55.6 - 56.2) | 58.4 (58.1 - 58.7) | 59.9 (59.6 - 60.2) | 47.6 | 51.5 | 57.2 | 60.1 | 62.5 | |
Park_KT_task1_1 | Quant | Park2024 | 20 | 53.7 | 11 | 13 | 27 | 24 | 32 | 3 | 11 | 48.9 (48.6 - 49.1) | 52.4 (52.1 - 52.7) | 53.8 (53.5 - 54.1) | 56.4 (56.1 - 56.7) | 56.9 (56.6 - 57.2) | 49.7 | 52.4 | 55.8 | 57.6 | 58.8 | |
Park_KT_task1_2 | Small | Park2024 | 13 | 55.4 | 12 | 12 | 12 | 17 | 15 | 20 | 10 | 48.7 (48.4 - 48.9) | 52.4 (52.2 - 52.7) | 57.3 (57.0 - 57.6) | 58.1 (57.8 - 58.4) | 60.3 (60.0 - 60.6) | 49.7 | 53.2 | 58.4 | 59.4 | 61.9 | |
Park_KT_task1_3 | KD | Park2024 | 16 | 54.8 | 15 | 16 | 15 | 20 | 19 | 20 | 10 | 48.5 (48.2 - 48.8) | 51.9 (51.6 - 52.1) | 56.6 (56.4 - 56.9) | 57.2 (56.9 - 57.5) | 59.8 (59.5 - 60.1) | 47.8 | 53.1 | 57.6 | 59.2 | 61.6 | |
DCASE2024 baseline | Baseline | 36 | 50.7 | 32 | 36 | 37 | 34 | 33 | 11 | 15 | 44.0 (43.7 - 44.3) | 46.9 (46.7 - 47.2) | 51.5 (51.2 - 51.8) | 54.4 (54.1 - 54.7) | 56.8 (56.6 - 57.1) | 42.4 | 45.3 | 50.3 | 53.2 | 57.0 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 4 | 57.2 | 6 | 7 | 4 | 1 | 3 | 5 | 6 | 51.4 (51.1 - 51.7) | 53.8 (53.5 - 54.0) | 58.3 (58.0 - 58.6) | 60.6 (60.3 - 60.9) | 61.7 (61.4 - 62.0) | 51.1 | 53.5 | 59.7 | 62.3 | 64.6 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 8 | 56.1 | 13 | 10 | 7 | 6 | 5 | 9 | 7 | 48.5 (48.2 - 48.8) | 53.0 (52.7 - 53.3) | 57.7 (57.4 - 58.0) | 59.8 (59.6 - 60.1) | 61.6 (61.3 - 61.9) | 48.7 | 53.1 | 59.5 | 62.1 | 65.1 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 14 | 55.2 | 24 | 17 | 13 | 10 | 4 | 13 | 5 | 46.2 (45.9 - 46.5) | 51.8 (51.5 - 52.1) | 57.2 (56.9 - 57.4) | 59.2 (58.9 - 59.5) | 61.7 (61.4 - 61.9) | 46.6 | 51.4 | 58.3 | 62.2 | 65.1 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 27 | 52.7 | 18 | 20 | 25 | 33 | 36 | 11 | 8 | 48.0 (47.7 - 48.3) | 51.2 (50.9 - 51.5) | 54.3 (54.0 - 54.6) | 54.6 (54.3 - 54.9) | 55.2 (54.9 - 55.4) | 46.2 | 49.6 | 53.5 | 54.7 | 55.8 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 33 | 51.9 | 19 | 21 | 34 | 37 | 37 | 11 | 8 | 47.8 (47.5 - 48.1) | 50.3 (50.0 - 50.5) | 52.7 (52.5 - 53.0) | 53.9 (53.6 - 54.1) | 55.0 (54.7 - 55.3) | 46.5 | 49.0 | 51.8 | 54.0 | 55.6 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 34 | 51.7 | 22 | 27 | 35 | 35 | 35 | 11 | 15 | 46.5 (46.2 - 46.8) | 49.3 (49.0 - 49.6) | 52.6 (52.3 - 52.9) | 54.0 (53.7 - 54.3) | 56.1 (55.8 - 56.3) | 46.0 | 49.5 | 53.9 | 56.8 | 59.1 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 22 | 53.1 | 28 | 33 | 22 | 18 | 20 | 4 | 19 | 45.3 (45.0 - 45.6) | 48.1 (47.9 - 48.4) | 55.0 (54.7 - 55.3) | 57.4 (57.1 - 57.7) | 59.4 (59.1 - 59.7) | 44.2 | 47.7 | 55.5 | 58.4 | 61.0 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 26 | 52.7 | 25 | 24 | 30 | 29 | 22 | 4 | 19 | 46.0 (45.7 - 46.3) | 49.6 (49.4 - 49.9) | 53.4 (53.1 - 53.7) | 55.5 (55.2 - 55.8) | 58.8 (58.5 - 59.1) | 45.8 | 50.5 | 52.7 | 55.4 | 60.0 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 24 | 52.9 | 30 | 31 | 21 | 19 | 25 | 4 | 19 | 44.9 (44.7 - 45.2) | 48.9 (48.6 - 49.2) | 55.1 (54.9 - 55.4) | 57.2 (56.9 - 57.5) | 58.4 (58.1 - 58.7) | 44.8 | 48.8 | 54.9 | 56.9 | 58.9 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 18 | 54.4 | 8 | 11 | 18 | 26 | 26 | 11 | 15 | 49.2 (48.9 - 49.5) | 52.5 (52.2 - 52.8) | 55.5 (55.2 - 55.8) | 56.2 (55.9 - 56.5) | 58.3 (58.1 - 58.6) | 46.7 | 50.3 | 53.8 | 55.0 | 60.0 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 23 | 52.9 | 21 | 29 | 33 | 25 | 23 | 12 | 18 | 47.5 (47.2 - 47.8) | 49.1 (48.8 - 49.4) | 53.0 (52.7 - 53.3) | 56.4 (56.1 - 56.6) | 58.8 (58.5 - 59.1) | 45.7 | 48.3 | 52.1 | 55.7 | 59.8 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 21 | 53.1 | 23 | 26 | 20 | 30 | 21 | 2 | 9 | 46.3 (46.0 - 46.5) | 49.4 (49.1 - 49.7) | 55.2 (55.0 - 55.5) | 55.4 (55.1 - 55.7) | 59.3 (59.1 - 59.6) | 43.7 | 48.7 | 53.4 | 55.5 | 57.6 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 9 | 56.1 | 10 | 8 | 10 | 9 | 6 | 11 | 15 | 48.9 (48.6 - 49.2) | 53.3 (53.0 - 53.6) | 57.5 (57.2 - 57.8) | 59.4 (59.1 - 59.6) | 61.6 (61.3 - 61.9) | 48.0 | 53.0 | 56.8 | 59.8 | 61.7 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 19 | 54.2 | 26 | 22 | 19 | 16 | 11 | 11 | 15 | 46.0 (45.7 - 46.3) | 50.2 (49.9 - 50.5) | 55.4 (55.1 - 55.7) | 58.3 (58.0 - 58.6) | 61.1 (60.8 - 61.4) | 44.9 | 50.0 | 55.6 | 59.7 | 62.2 |
Split 5%
Submission information | Evaluation dataset | Development dataset | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Split 5 Rank |
Memory rank |
MACs rank |
Accuracy with 95% confidence interval (Evaluation dataset) |
Accuracy (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 6 | 3 | 33.1 (32.8 - 33.3) | 31.4 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 31 | 16 | 12 | 44.7 (44.5 - 45.0) | 42.6 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 34 | 16 | 12 | 43.8 (43.6 - 44.1) | 42.9 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 35 | 16 | 12 | 43.7 (43.4 - 43.9) | 42.2 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 20 | 15 | 16 | 47.5 (47.3 - 47.8) | 47.4 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 9 | 15 | 16 | 48.9 (48.6 - 49.2) | 49.0 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 17 | 15 | 16 | 48.4 (48.1 - 48.6) | 47.9 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 29 | 19 | 15 | 45.2 (44.9 - 45.5) | 43.2 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 33 | 8 | 4 | 43.9 (43.7 - 44.2) | 47.1 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 37 | 10 | 2 | 43.1 (42.8 - 43.3) | 46.5 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 36 | 1 | 1 | 43.1 (42.9 - 43.4) | 46.4 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 27 | 11 | 17 | 45.9 (45.6 - 46.2) | 44.3 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 3 | 17 | 21 | 53.4 (53.1 - 53.7) | 52.2 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 1 | 14 | 13 | 54.3 (54.1 - 54.6) | 52.7 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 2 | 18 | 20 | 54.0 (53.7 - 54.2) | 53.0 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 5 | 11 | 15 | 51.6 (51.3 - 51.8) | 49.7 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 4 | 11 | 15 | 52.0 (51.7 - 52.2) | 50.5 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 7 | 11 | 15 | 51.2 (50.9 - 51.4) | 49.5 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 14 | 7 | 14 | 48.5 (48.2 - 48.8) | 47.6 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 16 | 7 | 14 | 48.4 (48.1 - 48.7) | 47.6 | |
Park_KT_task1_1 | Quant | Park2024 | 11 | 3 | 11 | 48.9 (48.6 - 49.1) | 49.7 | |
Park_KT_task1_2 | Small | Park2024 | 12 | 20 | 10 | 48.7 (48.4 - 48.9) | 49.7 | |
Park_KT_task1_3 | KD | Park2024 | 15 | 20 | 10 | 48.5 (48.2 - 48.8) | 47.8 | |
DCASE2024 baseline | Baseline | 32 | 11 | 15 | 44.0 (43.7 - 44.3) | 42.4 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 6 | 5 | 6 | 51.4 (51.1 - 51.7) | 51.1 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 13 | 9 | 7 | 48.5 (48.2 - 48.8) | 48.7 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 24 | 13 | 5 | 46.2 (45.9 - 46.5) | 46.6 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 18 | 11 | 8 | 48.0 (47.7 - 48.3) | 46.2 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 19 | 11 | 8 | 47.8 (47.5 - 48.1) | 46.5 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 22 | 11 | 15 | 46.5 (46.2 - 46.8) | 46.0 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 28 | 4 | 19 | 45.3 (45.0 - 45.6) | 44.2 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 25 | 4 | 19 | 46.0 (45.7 - 46.3) | 45.8 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 30 | 4 | 19 | 44.9 (44.7 - 45.2) | 44.8 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 8 | 11 | 15 | 49.2 (48.9 - 49.5) | 46.7 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 21 | 12 | 18 | 47.5 (47.2 - 47.8) | 45.7 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 23 | 2 | 9 | 46.3 (46.0 - 46.5) | 43.7 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 10 | 11 | 15 | 48.9 (48.6 - 49.2) | 48.0 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 26 | 11 | 15 | 46.0 (45.7 - 46.3) | 44.9 |
Split 10%
%%
Submission information | Evaluation dataset | Development dataset | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Split 10 Rank |
Memory rank |
MACs rank |
Accuracy with 95% confidence interval (Evaluation dataset) |
Accuracy (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 6 | 3 | 35.3 (35.0 - 35.6) | 34.4 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 35 | 16 | 12 | 47.8 (47.5 - 48.1) | 47.1 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 37 | 16 | 12 | 46.9 (46.6 - 47.2) | 46.9 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 28 | 16 | 12 | 49.3 (49.0 - 49.6) | 49.2 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 14 | 15 | 16 | 52.4 (52.1 - 52.7) | 52.1 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 15 | 15 | 16 | 52.0 (51.8 - 52.3) | 52.3 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 9 | 15 | 16 | 53.2 (52.9 - 53.4) | 52.3 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 23 | 19 | 15 | 49.8 (49.5 - 50.1) | 48.7 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 34 | 8 | 4 | 47.8 (47.5 - 48.1) | 52.4 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 32 | 10 | 2 | 48.2 (48.0 - 48.5) | 53.1 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 30 | 1 | 1 | 48.9 (48.6 - 49.2) | 52.6 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 25 | 11 | 17 | 49.5 (49.2 - 49.7) | 47.9 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 2 | 17 | 21 | 56.4 (56.1 - 56.7) | 55.8 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 3 | 14 | 13 | 55.8 (55.5 - 56.1) | 55.8 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 1 | 18 | 20 | 56.7 (56.4 - 57.0) | 56.9 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 4 | 11 | 15 | 54.5 (54.2 - 54.7) | 53.7 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 5 | 11 | 15 | 54.0 (53.7 - 54.3) | 53.1 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 6 | 11 | 15 | 54.0 (53.7 - 54.3) | 53.5 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 18 | 7 | 14 | 51.4 (51.1 - 51.7) | 51.3 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 19 | 7 | 14 | 51.3 (51.1 - 51.6) | 51.5 | |
Park_KT_task1_1 | Quant | Park2024 | 13 | 3 | 11 | 52.4 (52.1 - 52.7) | 52.4 | |
Park_KT_task1_2 | Small | Park2024 | 12 | 20 | 10 | 52.4 (52.2 - 52.7) | 53.2 | |
Park_KT_task1_3 | KD | Park2024 | 16 | 20 | 10 | 51.9 (51.6 - 52.1) | 53.1 | |
DCASE2024 baseline | Baseline | 36 | 11 | 15 | 46.9 (46.7 - 47.2) | 45.3 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 7 | 5 | 6 | 53.8 (53.5 - 54.0) | 53.5 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 10 | 9 | 7 | 53.0 (52.7 - 53.3) | 53.1 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 17 | 13 | 5 | 51.8 (51.5 - 52.1) | 51.4 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 20 | 11 | 8 | 51.2 (50.9 - 51.5) | 49.6 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 21 | 11 | 8 | 50.3 (50.0 - 50.5) | 49.0 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 27 | 11 | 15 | 49.3 (49.0 - 49.6) | 49.5 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 33 | 4 | 19 | 48.1 (47.9 - 48.4) | 47.7 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 24 | 4 | 19 | 49.6 (49.4 - 49.9) | 50.5 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 31 | 4 | 19 | 48.9 (48.6 - 49.2) | 48.8 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 11 | 11 | 15 | 52.5 (52.2 - 52.8) | 50.3 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 29 | 12 | 18 | 49.1 (48.8 - 49.4) | 48.3 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 26 | 2 | 9 | 49.4 (49.1 - 49.7) | 48.7 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 8 | 11 | 15 | 53.3 (53.0 - 53.6) | 53.0 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 22 | 11 | 15 | 50.2 (49.9 - 50.5) | 50.0 |
Split 25%
Submission information | Evaluation dataset | Development dataset | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Split 25 Rank |
Memory rank |
MACs rank |
Accuracy with 95% confidence interval (Evaluation dataset) |
Accuracy (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 6 | 3 | 37.7 (37.4 - 38.0) | 38.4 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 24 | 16 | 12 | 54.5 (54.3 - 54.8) | 54.0 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 36 | 16 | 12 | 52.0 (51.8 - 52.3) | 51.7 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 23 | 16 | 12 | 54.9 (54.6 - 55.1) | 54.1 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 14 | 15 | 16 | 57.0 (56.8 - 57.3) | 57.5 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 5 | 15 | 16 | 58.1 (57.8 - 58.4) | 57.9 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 8 | 15 | 16 | 57.6 (57.3 - 57.8) | 57.5 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 26 | 19 | 15 | 53.9 (53.6 - 54.2) | 53.8 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 28 | 8 | 4 | 53.8 (53.5 - 54.0) | 58.0 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 32 | 10 | 2 | 53.3 (53.0 - 53.5) | 57.0 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 29 | 1 | 1 | 53.6 (53.4 - 53.9) | 57.4 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 31 | 11 | 17 | 53.3 (53.0 - 53.6) | 53.1 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 3 | 17 | 21 | 58.6 (58.4 - 58.9) | 58.9 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 2 | 14 | 13 | 58.9 (58.7 - 59.2) | 58.7 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 1 | 18 | 20 | 59.1 (58.8 - 59.4) | 59.1 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 6 | 11 | 15 | 58.0 (57.7 - 58.3) | 57.5 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 9 | 11 | 15 | 57.5 (57.3 - 57.8) | 56.8 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 11 | 11 | 15 | 57.3 (57.0 - 57.6) | 56.9 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 17 | 7 | 14 | 55.8 (55.5 - 56.1) | 56.7 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 16 | 7 | 14 | 55.9 (55.6 - 56.2) | 57.2 | |
Park_KT_task1_1 | Quant | Park2024 | 27 | 3 | 11 | 53.8 (53.5 - 54.1) | 55.8 | |
Park_KT_task1_2 | Small | Park2024 | 12 | 20 | 10 | 57.3 (57.0 - 57.6) | 58.4 | |
Park_KT_task1_3 | KD | Park2024 | 15 | 20 | 10 | 56.6 (56.4 - 56.9) | 57.6 | |
DCASE2024 baseline | Baseline | 37 | 11 | 15 | 51.5 (51.2 - 51.8) | 50.3 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 4 | 5 | 6 | 58.3 (58.0 - 58.6) | 59.7 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 7 | 9 | 7 | 57.7 (57.4 - 58.0) | 59.5 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 13 | 13 | 5 | 57.2 (56.9 - 57.4) | 58.3 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 25 | 11 | 8 | 54.3 (54.0 - 54.6) | 53.5 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 34 | 11 | 8 | 52.7 (52.5 - 53.0) | 51.8 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 35 | 11 | 15 | 52.6 (52.3 - 52.9) | 53.9 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 22 | 4 | 19 | 55.0 (54.7 - 55.3) | 55.5 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 30 | 4 | 19 | 53.4 (53.1 - 53.7) | 52.7 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 21 | 4 | 19 | 55.1 (54.9 - 55.4) | 54.9 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 18 | 11 | 15 | 55.5 (55.2 - 55.8) | 53.8 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 33 | 12 | 18 | 53.0 (52.7 - 53.3) | 52.1 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 20 | 2 | 9 | 55.2 (55.0 - 55.5) | 53.4 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 10 | 11 | 15 | 57.5 (57.2 - 57.8) | 56.8 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 19 | 11 | 15 | 55.4 (55.1 - 55.7) | 55.6 |
Split 50%
Submission information | Evaluation dataset | Development dataset | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Split 50 Rank |
Memory rank |
MACs rank |
Accuracy with 95% confidence interval (Evaluation dataset) |
Accuracy (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 6 | 3 | 39.8 (39.5 - 40.0) | 39.0 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 27 | 16 | 12 | 55.8 (55.5 - 56.1) | 57.0 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 36 | 16 | 12 | 53.9 (53.6 - 54.2) | 56.2 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 31 | 16 | 12 | 55.2 (54.9 - 55.4) | 56.4 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 8 | 15 | 16 | 59.5 (59.2 - 59.8) | 61.1 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 12 | 15 | 16 | 59.0 (58.8 - 59.3) | 60.7 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 11 | 15 | 16 | 59.2 (58.9 - 59.5) | 60.1 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 32 | 19 | 15 | 54.7 (54.4 - 55.0) | 56.8 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 21 | 8 | 4 | 57.0 (56.7 - 57.2) | 60.9 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 28 | 10 | 2 | 55.7 (55.4 - 56.0) | 60.2 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 23 | 1 | 1 | 56.5 (56.2 - 56.8) | 59.8 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 22 | 11 | 17 | 56.7 (56.5 - 57.0) | 56.3 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 2 | 17 | 21 | 60.4 (60.1 - 60.7) | 61.4 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 3 | 14 | 13 | 60.2 (60.0 - 60.5) | 60.4 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 5 | 18 | 20 | 60.0 (59.7 - 60.3) | 61.0 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 7 | 11 | 15 | 59.7 (59.4 - 60.0) | 60.2 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 4 | 11 | 15 | 60.0 (59.8 - 60.3) | 59.2 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 13 | 11 | 15 | 59.0 (58.7 - 59.3) | 59.6 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 15 | 7 | 14 | 58.4 (58.1 - 58.6) | 60.0 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 14 | 7 | 14 | 58.4 (58.1 - 58.7) | 60.1 | |
Park_KT_task1_1 | Quant | Park2024 | 24 | 3 | 11 | 56.4 (56.1 - 56.7) | 57.6 | |
Park_KT_task1_2 | Small | Park2024 | 17 | 20 | 10 | 58.1 (57.8 - 58.4) | 59.4 | |
Park_KT_task1_3 | KD | Park2024 | 20 | 20 | 10 | 57.2 (56.9 - 57.5) | 59.2 | |
DCASE2024 baseline | Baseline | 34 | 11 | 15 | 54.4 (54.1 - 54.7) | 53.2 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 1 | 5 | 6 | 60.6 (60.3 - 60.9) | 62.3 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 6 | 9 | 7 | 59.8 (59.6 - 60.1) | 62.1 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 10 | 13 | 5 | 59.2 (58.9 - 59.5) | 62.2 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 33 | 11 | 8 | 54.6 (54.3 - 54.9) | 54.7 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 37 | 11 | 8 | 53.9 (53.6 - 54.1) | 54.0 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 35 | 11 | 15 | 54.0 (53.7 - 54.3) | 56.8 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 18 | 4 | 19 | 57.4 (57.1 - 57.7) | 58.4 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 29 | 4 | 19 | 55.5 (55.2 - 55.8) | 55.4 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 19 | 4 | 19 | 57.2 (56.9 - 57.5) | 56.9 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 26 | 11 | 15 | 56.2 (55.9 - 56.5) | 55.0 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 25 | 12 | 18 | 56.4 (56.1 - 56.6) | 55.7 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 30 | 2 | 9 | 55.4 (55.1 - 55.7) | 55.5 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 9 | 11 | 15 | 59.4 (59.1 - 59.6) | 59.8 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 16 | 11 | 15 | 58.3 (58.0 - 58.6) | 59.7 |
Split 100%
Submission information | Evaluation dataset | Development dataset | ||||||
---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Official system rank |
Memory rank |
MACs rank |
Accuracy with 95% confidence interval (Evaluation dataset) |
Accuracy (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 6 | 3 | 41.1 (40.8 - 41.4) | 41.3 | |
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 30 | 16 | 12 | 57.1 (56.9 - 57.4) | 59.4 | |
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 34 | 16 | 12 | 56.7 (56.5 - 57.0) | 59.3 | |
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 29 | 16 | 12 | 57.3 (57.0 - 57.6) | 60.3 | |
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 14 | 15 | 16 | 60.6 (60.3 - 60.9) | 62.4 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 1 | 15 | 16 | 62.1 (61.8 - 62.4) | 62.9 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 12 | 15 | 16 | 61.1 (60.8 - 61.4) | 62.8 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 31 | 19 | 15 | 57.0 (56.7 - 57.2) | 57.3 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 16 | 8 | 4 | 60.1 (59.9 - 60.4) | 63.7 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 28 | 10 | 2 | 58.1 (57.8 - 58.3) | 61.5 | |
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 27 | 1 | 1 | 58.1 (57.8 - 58.4) | 62.0 | |
Gao_UniSA_task1_1 | base_fl | Gao2024 | 24 | 11 | 17 | 58.7 (58.5 - 59.0) | 59.6 | |
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 8 | 17 | 21 | 61.5 (61.2 - 61.7) | 62.2 | |
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 2 | 14 | 13 | 61.8 (61.5 - 62.1) | 61.7 | |
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 9 | 18 | 20 | 61.3 (61.1 - 61.6) | 61.3 | |
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 7 | 11 | 15 | 61.5 (61.2 - 61.8) | 62.2 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 10 | 11 | 15 | 61.3 (61.0 - 61.5) | 60.6 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 13 | 11 | 15 | 60.9 (60.6 - 61.2) | 61.5 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 18 | 7 | 14 | 59.9 (59.6 - 60.1) | 62.2 | |
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 17 | 7 | 14 | 59.9 (59.6 - 60.2) | 62.5 | |
Park_KT_task1_1 | Quant | Park2024 | 32 | 3 | 11 | 56.9 (56.6 - 57.2) | 58.8 | |
Park_KT_task1_2 | Small | Park2024 | 15 | 20 | 10 | 60.3 (60.0 - 60.6) | 61.9 | |
Park_KT_task1_3 | KD | Park2024 | 19 | 20 | 10 | 59.8 (59.5 - 60.1) | 61.6 | |
DCASE2024 baseline | Baseline | 33 | 11 | 15 | 56.8 (56.6 - 57.1) | 57.0 | ||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 3 | 5 | 6 | 61.7 (61.4 - 62.0) | 64.6 | |
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 5 | 9 | 7 | 61.6 (61.3 - 61.9) | 65.1 | |
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 4 | 13 | 5 | 61.7 (61.4 - 61.9) | 65.1 | |
Surkov_ITMO_task1_1 | Large | Surkov2024 | 36 | 11 | 8 | 55.2 (54.9 - 55.4) | 55.8 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 37 | 11 | 8 | 55.0 (54.7 - 55.3) | 55.6 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 35 | 11 | 15 | 56.1 (55.8 - 56.3) | 59.1 | |
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 20 | 4 | 19 | 59.4 (59.1 - 59.7) | 61.0 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 22 | 4 | 19 | 58.8 (58.5 - 59.1) | 60.0 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 25 | 4 | 19 | 58.4 (58.1 - 58.7) | 58.9 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 26 | 11 | 15 | 58.3 (58.1 - 58.6) | 60.0 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 23 | 12 | 18 | 58.8 (58.5 - 59.1) | 59.8 | |
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 21 | 2 | 9 | 59.3 (59.1 - 59.6) | 57.6 | |
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 6 | 11 | 15 | 61.6 (61.3 - 61.9) | 61.7 | |
Yeo_NTU_task1_3 | TFS | Yeo2024 | 11 | 11 | 15 | 61.1 (60.8 - 61.4) | 62.2 |
Logloss
Submission information | Overall rank | Evaluation dataset / Logloss | Development dataset / Logloss | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label | Name |
Technical Report |
Rank | Rank score |
Split 5% (Evaluation dataset) |
Split 10% (Evaluation dataset) |
Split 25% (Evaluation dataset) |
Split 50% (Evaluation dataset) |
Split 100% (Evaluation dataset) |
Split 5% (Development dataset) |
Split 10% (Development dataset) |
Split 25% (Development dataset) |
Split 50% (Development dataset) |
Split 100% (Development dataset) |
Auzanneau_CEA_task1_1 | Yolovote | Auzanneau2024 | 38 | 37.4 | 17.463 | 17.168 | 16.348 | 13.357 | 10.569 | ||||||
BAI_JLESS_task1_1 | BAI_T1_S1 | Bai2024 | 32 | 52.0 | 1.607 | 1.554 | 1.297 | 1.294 | 1.319 | ||||||
BAI_JLESS_task1_2 | BAI_T1_S2 | Bai2024 | 37 | 50.7 | 1.630 | 1.554 | 1.449 | 1.424 | 1.451 | ||||||
BAI_JLESS_task1_3 | BAI_T1_S3 | Bai2024 | 30 | 52.1 | 1.647 | 1.462 | 1.287 | 1.402 | 1.341 | ||||||
Cai_XJTLU_task1_1 | TFSN t=1 | Cai2024 | 12 | 55.4 | 1.474 | 1.318 | 1.192 | 1.139 | 1.137 | 1.467 | 1.325 | 1.169 | 1.085 | 1.069 | |
Cai_XJTLU_task1_2 | TFSN t=3 | Cai2024 | 10 | 56.0 | 1.397 | 1.312 | 1.141 | 1.123 | 1.041 | 1.387 | 1.314 | 1.139 | 1.085 | 1.009 | |
Cai_XJTLU_task1_3 | TFSN t=12 | Cai2024 | 11 | 55.9 | 1.435 | 1.269 | 1.157 | 1.129 | 1.093 | 1.459 | 1.295 | 1.152 | 1.089 | 1.034 | |
Chen_GXU_task1_1 | SENet | Chen2024 | 29 | 52.1 | 1.658 | 1.592 | 1.453 | 1.389 | 1.254 | 1.763 | 1.624 | 1.453 | 1.731 | 1.215 | |
Chen_SCUT_task1_1 | BC-PACN-64 | Chen2024a | 28 | 52.5 | 1.671 | 1.703 | 1.397 | 1.292 | 1.243 | 1.494 | 1.330 | 1.181 | 1.088 | 1.068 | |
Chen_SCUT_task1_2 | BC-5-PACB-48 | Chen2024a | 35 | 51.7 | 1.758 | 1.651 | 1.393 | 1.353 | 1.339 | ||||||
Chen_SCUT_task1_3 | BC-PACN-48 | Chen2024a | 31 | 52.0 | 1.729 | 1.563 | 1.391 | 1.306 | 1.307 | ||||||
Gao_UniSA_task1_1 | base_fl | Gao2024 | 25 | 52.8 | 1.546 | 1.508 | 1.311 | 1.215 | 1.150 | ||||||
Han_SJTUTHU_task1_1 | Agp_c64 | Bing2024 | 3 | 58.1 | 1.295 | 1.198 | 1.124 | 1.078 | 1.053 | ||||||
Han_SJTUTHU_task1_2 | Lin_c96c64 | Bing2024 | 1 | 58.2 | 1.261 | 1.206 | 1.119 | 1.077 | 1.049 | ||||||
Han_SJTUTHU_task1_3 | Linear_c96 | Bing2024 | 2 | 58.2 | 1.272 | 1.195 | 1.117 | 1.088 | 1.058 | ||||||
MALACH24_JKU_task1_1 | CR_B_CPM | David2024 | 5 | 57.0 | 1.364 | 1.269 | 1.168 | 1.118 | 1.066 | 1.388 | 1.274 | 1.169 | 1.104 | 1.051 | |
MALACH24_JKU_task1_2 | CR_P_B_CPM | David2024 | 6 | 57.0 | 1.440 | 1.402 | 1.256 | 1.203 | 1.174 | 1.462 | 1.413 | 1.268 | 1.213 | 1.185 | |
MALACH24_JKU_task1_3 | CR_M_CPM | David2024 | 7 | 56.5 | 1.370 | 1.282 | 1.180 | 1.131 | 1.080 | 1.388 | 1.277 | 1.175 | 1.111 | 1.058 | |
OO_NTUPRDCSG_task1_1 | MofleRes1 | Oo2024 | 17 | 54.8 | 1.486 | 1.395 | 1.295 | 1.197 | 1.139 | ||||||
OO_NTUPRDCSG_task1_2 | MofleRes2 | Oo2024 | 15 | 54.8 | 1.487 | 1.390 | 1.278 | 1.188 | 1.129 | ||||||
Park_KT_task1_1 | Quant | Park2024 | 20 | 53.7 | 1.666 | 1.806 | 1.729 | 1.717 | 1.462 | ||||||
Park_KT_task1_2 | Small | Park2024 | 13 | 55.4 | 1.740 | 1.754 | 1.538 | 1.486 | 1.420 | ||||||
Park_KT_task1_3 | KD | Park2024 | 16 | 54.8 | 1.674 | 1.733 | 1.494 | 1.596 | 1.469 | ||||||
DCASE2024 baseline | Baseline | 36 | 50.7 | 1.661 | 1.625 | 1.522 | 1.477 | 1.447 | |||||||
Shao_NEPUMSE_task1_1 | NEPUMSE | Shao2024 | 4 | 57.2 | 1.455 | 1.387 | 1.216 | 1.151 | 1.122 | ||||||
Shao_NEPUMSE_task1_2 | NEPUMSE | Shao2024 | 8 | 56.1 | 1.595 | 1.450 | 1.306 | 1.217 | 1.154 | ||||||
Shao_NEPUMSE_task1_3 | NEPUMSE | Shao2024 | 14 | 55.2 | 1.622 | 1.437 | 1.276 | 1.219 | 1.143 | ||||||
Surkov_ITMO_task1_1 | Large | Surkov2024 | 27 | 52.7 | 1.440 | 1.344 | 1.303 | 1.279 | 1.282 | 1.467 | 1.384 | 1.302 | 1.267 | 1.263 | |
Surkov_ITMO_task1_2 | Small | Surkov2024 | 33 | 51.9 | 1.452 | 1.384 | 1.354 | 1.345 | 1.330 | 1.477 | 1.426 | 1.380 | 1.340 | 1.302 | |
Tan_CISS_task1_1 | NTUCISS_T1 | Tan2024 | 34 | 51.7 | 1.522 | 1.430 | 1.353 | 1.294 | 1.248 | ||||||
Truchan_LUH_task1_1 | Isotropic | Truchan2024 | 22 | 53.1 | 1.722 | 1.592 | 1.351 | 1.286 | 1.228 | 1.770 | 1.600 | 1.320 | 1.230 | 1.140 | |
Truchan_LUH_task1_2 | Recursiv | Truchan2024 | 26 | 52.7 | 1.684 | 1.575 | 1.395 | 1.346 | 1.192 | 1.680 | 1.530 | 1.410 | 1.350 | 1.140 | |
Truchan_LUH_task1_3 | RSC | Truchan2024 | 24 | 52.9 | 1.736 | 1.590 | 1.406 | 1.277 | 1.225 | 1.710 | 1.600 | 1.410 | 1.250 | 1.190 | |
Werning_UPBNT_task1_1 | UPBNT | Werning2024 | 18 | 54.4 | 1.510 | 1.423 | 1.358 | 1.280 | 1.323 | 1.572 | 1.478 | 1.403 | 1.312 | 1.235 | |
Yan_NPU_task1_1 | Yan_NPU | Yan2024 | 23 | 52.9 | 1.723 | 1.625 | 1.493 | 1.305 | 1.221 | ||||||
Yeo_NTU_task1_1 | 24BCBL | Yeo2024 | 21 | 53.1 | 1.690 | 1.598 | 1.496 | 1.485 | 1.438 | ||||||
Yeo_NTU_task1_2 | KDEnsemble | Yeo2024 | 9 | 56.1 | 1.421 | 1.275 | 1.196 | 1.136 | 1.086 | ||||||
Yeo_NTU_task1_3 | TFS | Yeo2024 | 19 | 54.2 | 1.557 | 1.454 | 1.365 | 1.305 | 1.276 |
System complexity
Submission information | Rank | Accuracy / Evaluation dataset | Acoustic model | System | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score |
Split 5%/ Accuracy (Evaluation dataset) |
Split 10%/ Accuracy (Evaluation dataset) |
Split 25%/ Accuracy with 95% confidence interval (Evaluation dataset) |
Split 50%/ Accuracy (Evaluation dataset) |
Split 100%/ Accuracy (Evaluation dataset) |
MACS | Parameters |
Complexity management |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 33.1 | 35.3 | 37.7 | 39.8 | 41.1 | 13509354 | 114988 | Pruning, Quantization-aware training | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 44.7 | 47.8 | 54.5 | 55.8 | 57.1 | 28893268 | 126952 | knowledge distillation,weight quantization | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 43.8 | 46.9 | 52.0 | 53.9 | 56.7 | 28893268 | 126952 | knowledge distillation,weight quantization | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 43.7 | 49.3 | 54.9 | 55.2 | 57.3 | 28893268 | 126952 | knowledge distillation,weight quantization | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 47.5 | 52.4 | 57.0 | 59.5 | 60.6 | 29419648 | 126858 | knowledge distillation, network design, weight quantization | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 48.9 | 52.0 | 58.1 | 59.0 | 62.1 | 29419648 | 126858 | knowledge distillation, network design, weight quantization | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 48.4 | 53.2 | 57.6 | 59.2 | 61.1 | 29419648 | 126858 | knowledge distillation, network design, weight quantization | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 45.2 | 49.8 | 53.9 | 54.7 | 57.0 | 29419156 | 63900 | precision_16, network design | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 43.9 | 47.8 | 53.8 | 57.0 | 60.1 | 16591488 | 117870 | knowledge distillation,precision_8, network design,weight quantization | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 43.1 | 48.2 | 53.3 | 55.7 | 58.1 | 11210976 | 122294 | knowledge distillation,precision_8, network design,weight quantization | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 43.1 | 48.9 | 53.6 | 56.5 | 58.1 | 10068192 | 69782 | knowledge distillation,precision_8, network design,weight quantization | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 45.9 | 49.5 | 53.3 | 56.7 | 58.7 | 29428372 | 61148 | precision_16 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 53.4 | 56.4 | 58.6 | 60.4 | 61.5 | 29982132 | 63748 | precision_16, network design, knowledge distillation, pruning | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 54.3 | 55.8 | 58.9 | 60.2 | 61.8 | 29221122 | 63215 | precision_16, network design, knowledge distillation, pruning | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 54.0 | 56.7 | 59.1 | 60.0 | 61.3 | 29840890 | 63875 | precision_16, network design, knowledge distillation, pruning | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 51.6 | 54.5 | 58.0 | 59.7 | 61.5 | 29419156 | 61148 | precision_16, network design, knowledge distillation | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 52.0 | 54.0 | 57.5 | 60.0 | 61.3 | 29419156 | 61148 | precision_16, network design, knowledge distillation | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 51.2 | 54.0 | 57.3 | 59.0 | 60.9 | 29419156 | 61148 | precision_16, network design, knowledge distillation | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 48.5 | 51.4 | 55.8 | 58.4 | 59.9 | 29407896 | 116842 | Quantization Aware Training, network design | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 48.4 | 51.3 | 55.9 | 58.4 | 59.9 | 29407896 | 116842 | Quantization Aware Training, network design | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 48.9 | 52.4 | 53.8 | 56.4 | 56.9 | 28568272 | 87672 | weight quantization | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 48.7 | 52.4 | 57.3 | 58.1 | 60.3 | 26480312 | 63992 | precision_16 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 48.5 | 51.9 | 56.6 | 57.2 | 59.8 | 26480312 | 63992 | precision_16 | |
DCASE2024 baseline | 36 | 50.73 | 44.0 | 46.9 | 51.5 | 54.4 | 56.8 | 29419156 | 61148 | precision_16, network design | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 51.4 | 53.8 | 58.3 | 60.6 | 61.7 | 16911324 | 107457 | knowledge distillation, network design, weight quantization | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 48.5 | 53.0 | 57.7 | 59.8 | 61.6 | 17272736 | 121925 | knowledge distillation, network design, weight quantization | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 46.2 | 51.8 | 57.2 | 59.2 | 61.7 | 16785856 | 126410 | knowledge distillation, network design, weight quantization | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 48.0 | 51.2 | 54.3 | 54.6 | 55.2 | 21896340 | 61148 | precision_16, network design, knowledge distillation | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 47.8 | 50.3 | 52.7 | 53.9 | 55.0 | 21896340 | 61148 | precision_16, network design, knowledge distillation | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 46.5 | 49.3 | 52.6 | 54.0 | 56.1 | 29419156 | 61148 | int8, network design | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 45.3 | 48.1 | 55.0 | 57.4 | 59.4 | 29747914 | 47946 | precision_16, network design | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 46.0 | 49.6 | 53.4 | 55.5 | 58.8 | 29747914 | 47946 | precision_16, network design | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 44.9 | 48.9 | 55.1 | 57.2 | 58.4 | 29747914 | 47946 | precision_16, network design | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 49.2 | 52.5 | 55.5 | 56.2 | 58.3 | 29419156 | 61148 | precision_16, network design, knowledge distillation | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 47.5 | 49.1 | 53.0 | 56.4 | 58.8 | 29675722 | 31290 | precision_32, network design | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 46.3 | 49.4 | 55.2 | 55.4 | 59.3 | 22649568 | 35062 | precision_16, network design | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 48.9 | 53.3 | 57.5 | 59.4 | 61.6 | 29419156 | 61148 | precision_16, network design, knowledge distillation | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 46.0 | 50.2 | 55.4 | 58.3 | 61.1 | 29419156 | 61148 | precision_16, network design, knowledge distillation |
Generalization performance
All results with evaluation dataset.
Devices
Per split accuracy | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission information | Overall | Rank score | Split 5% | Split 10% | Split 25% | Split 50% | Split 100% | |||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score |
Unseen / rank score, unseen devices (Evaluation dataset) |
Seen / rank score, seen devices (Evaluation dataset) |
Unseen / Split 5%, accuracy, seen devices (Evaluation dataset) |
Seen / Split 5%, accuracy, seen devices (Evaluation dataset) |
Unseen / Split 10%, accuracy, unseen devices (Evaluation dataset) |
Seen / Split 10%, accuracy, seen devices (Evaluation dataset) |
Unseen / Split 25%, accuracy, unseen devices (Evaluation dataset) |
Seen / Split 25%, accuracy, seen devices (Evaluation dataset) |
Unseen / Split 50%, accuracy, unseen devices (Evaluation dataset) |
Seen / Split 50%, accuracy, seen devices (Evaluation dataset) |
Unseen / Split 100%, accuracy, unseen devices (Evaluation dataset) |
Seen / Split 100%, accuracy, seen devices (Evaluation dataset) |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 34.12 | 40.10 | 31.45 | 34.43 | 33.37 | 36.93 | 34.45 | 40.40 | 35.50 | 43.30 | 35.82 | 45.47 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 48.49 | 54.91 | 42.82 | 46.35 | 44.75 | 50.28 | 51.29 | 57.25 | 51.81 | 59.06 | 51.76 | 61.61 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 47.05 | 53.73 | 42.20 | 45.21 | 43.76 | 49.56 | 49.06 | 54.54 | 48.81 | 58.20 | 51.42 | 61.18 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 48.57 | 54.96 | 41.48 | 45.47 | 46.48 | 51.66 | 51.81 | 57.39 | 50.75 | 58.85 | 52.32 | 61.44 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 52.90 | 57.49 | 45.77 | 49.03 | 50.17 | 54.21 | 54.39 | 59.27 | 56.77 | 61.72 | 57.40 | 63.23 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 53.71 | 57.98 | 46.76 | 50.69 | 50.19 | 53.59 | 56.02 | 59.81 | 56.12 | 61.46 | 59.45 | 64.35 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 53.51 | 57.83 | 47.17 | 49.35 | 51.50 | 54.55 | 54.90 | 59.77 | 56.28 | 61.60 | 57.73 | 63.88 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 49.30 | 54.48 | 42.95 | 47.08 | 47.71 | 51.58 | 51.95 | 55.54 | 50.61 | 58.14 | 53.26 | 60.05 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 46.50 | 57.53 | 39.16 | 47.92 | 42.87 | 51.88 | 47.31 | 59.12 | 50.05 | 62.71 | 53.10 | 66.00 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 45.86 | 56.50 | 38.65 | 46.74 | 43.56 | 52.14 | 46.72 | 58.70 | 49.08 | 61.25 | 51.30 | 63.68 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 46.34 | 56.81 | 38.35 | 47.13 | 44.32 | 52.70 | 47.42 | 58.83 | 49.96 | 61.95 | 51.64 | 63.44 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 49.91 | 55.25 | 43.84 | 47.64 | 46.86 | 51.61 | 50.08 | 55.94 | 53.59 | 59.36 | 55.17 | 61.70 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 55.30 | 60.35 | 50.80 | 55.54 | 54.08 | 58.35 | 55.65 | 61.12 | 57.34 | 62.92 | 58.62 | 63.84 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 55.63 | 60.40 | 52.79 | 55.65 | 52.81 | 58.34 | 56.34 | 61.10 | 57.66 | 62.39 | 58.57 | 64.52 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 55.58 | 60.42 | 52.26 | 55.39 | 54.14 | 58.81 | 56.43 | 61.31 | 56.68 | 62.80 | 58.41 | 63.78 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 55.48 | 58.35 | 50.94 | 52.08 | 53.25 | 55.46 | 56.63 | 59.15 | 57.43 | 61.58 | 59.14 | 63.48 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 55.69 | 58.02 | 51.38 | 52.43 | 53.01 | 54.86 | 56.39 | 58.49 | 58.22 | 61.57 | 59.46 | 62.75 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 54.88 | 57.80 | 50.39 | 51.80 | 52.65 | 55.08 | 55.72 | 58.65 | 56.85 | 60.83 | 58.77 | 62.65 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 51.64 | 57.41 | 46.59 | 50.13 | 48.99 | 53.46 | 52.21 | 58.74 | 54.83 | 61.29 | 55.56 | 63.42 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 51.72 | 57.35 | 46.67 | 49.89 | 48.95 | 53.33 | 52.42 | 58.74 | 54.85 | 61.40 | 55.74 | 63.39 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 50.37 | 56.42 | 46.98 | 50.42 | 50.90 | 53.67 | 49.33 | 57.49 | 52.43 | 59.76 | 52.20 | 60.77 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 51.84 | 58.29 | 45.77 | 51.06 | 49.88 | 54.57 | 54.00 | 60.05 | 53.19 | 62.18 | 56.37 | 63.61 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 51.15 | 57.83 | 46.18 | 50.41 | 49.13 | 54.14 | 52.94 | 59.73 | 52.62 | 60.98 | 54.87 | 63.87 | |
DCASE2024 baseline | 36 | 50.73 | 48.13 | 52.90 | 42.41 | 45.33 | 43.83 | 49.54 | 49.48 | 53.12 | 51.05 | 57.20 | 53.88 | 59.30 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 53.28 | 60.38 | 48.88 | 53.46 | 49.68 | 57.15 | 54.19 | 61.75 | 56.46 | 64.07 | 57.20 | 65.48 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 51.73 | 59.79 | 44.63 | 51.78 | 48.92 | 56.40 | 52.97 | 61.60 | 55.22 | 63.69 | 56.91 | 65.51 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 50.54 | 59.11 | 42.06 | 49.67 | 47.81 | 55.15 | 52.47 | 61.08 | 53.98 | 63.58 | 56.37 | 66.07 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 49.73 | 55.09 | 46.56 | 49.26 | 48.30 | 53.57 | 51.49 | 56.62 | 51.61 | 57.14 | 50.69 | 58.87 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 48.85 | 54.49 | 46.11 | 49.16 | 46.94 | 53.03 | 49.73 | 55.26 | 50.56 | 56.60 | 50.90 | 58.38 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 48.80 | 54.13 | 44.33 | 48.31 | 47.51 | 50.83 | 49.05 | 55.61 | 50.93 | 56.61 | 52.19 | 59.30 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 51.10 | 54.69 | 43.95 | 46.43 | 45.74 | 50.14 | 53.19 | 56.55 | 55.46 | 59.06 | 57.17 | 61.25 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 50.53 | 54.47 | 44.59 | 47.21 | 46.71 | 52.08 | 51.81 | 54.72 | 53.21 | 57.46 | 56.31 | 60.90 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 50.82 | 54.65 | 43.20 | 46.40 | 46.25 | 51.05 | 53.46 | 56.55 | 54.90 | 59.09 | 56.30 | 60.15 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 52.09 | 56.24 | 48.06 | 50.18 | 50.79 | 53.95 | 53.61 | 57.06 | 53.10 | 58.79 | 54.89 | 61.22 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 49.91 | 55.46 | 45.86 | 48.88 | 46.02 | 51.60 | 49.82 | 55.59 | 53.10 | 59.07 | 54.77 | 62.15 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 50.61 | 55.22 | 44.32 | 47.89 | 47.49 | 50.94 | 52.80 | 57.29 | 51.74 | 58.46 | 56.72 | 61.54 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 54.02 | 57.87 | 47.84 | 49.75 | 50.67 | 55.46 | 55.83 | 58.84 | 56.81 | 61.49 | 58.93 | 63.81 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 51.82 | 56.16 | 44.70 | 47.04 | 48.17 | 51.85 | 52.69 | 57.66 | 55.29 | 60.81 | 58.25 | 63.46 |
Cities
Per split accuracy | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission information | Overall | Rank score | Split 5% | Split 10% | Split 25% | Split 50% | Split 100% | |||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score |
Unseen / rank score, unseen cities (Evaluation dataset) |
Seen / rank score, seen cities (Evaluation dataset) |
Unseen / Split 5%, accuracy, seen cities (Evaluation dataset) |
Seen / Split 5%, accuracy, seen cities (Evaluation dataset) |
Unseen / Split 10%, accuracy, unseen cities (Evaluation dataset) |
Seen / Split 10%, accuracy, seen cities (Evaluation dataset) |
Unseen / Split 25%, accuracy, unseen cities (Evaluation dataset) |
Seen / Split 25%, accuracy, seen cities (Evaluation dataset) |
Unseen / Split 50%, accuracy, unseen cities (Evaluation dataset) |
Seen / Split 50%, accuracy, seen cities (Evaluation dataset) |
Unseen / Split 100%, accuracy, unseen cities (Evaluation dataset) |
Seen / Split 100%, accuracy, seen cities (Evaluation dataset) |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 36.28 | 37.63 | 33.88 | 32.92 | 35.75 | 35.24 | 35.73 | 38.11 | 37.47 | 40.25 | 38.60 | 41.62 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 52.00 | 52.01 | 45.94 | 44.52 | 48.51 | 47.63 | 53.90 | 54.70 | 55.10 | 55.93 | 56.55 | 57.28 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 50.47 | 50.76 | 45.24 | 43.57 | 47.23 | 46.87 | 52.03 | 52.07 | 53.12 | 54.12 | 54.75 | 57.17 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 51.61 | 52.17 | 44.83 | 43.43 | 49.36 | 49.31 | 54.07 | 55.04 | 54.00 | 55.43 | 55.78 | 57.63 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 56.00 | 55.31 | 49.67 | 47.14 | 54.31 | 52.00 | 57.60 | 56.96 | 58.96 | 59.61 | 59.48 | 60.84 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 56.88 | 55.89 | 51.37 | 48.42 | 53.63 | 51.75 | 58.74 | 57.98 | 59.45 | 58.98 | 61.22 | 62.34 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 56.73 | 55.72 | 50.06 | 48.03 | 54.88 | 52.84 | 58.34 | 57.42 | 59.72 | 59.10 | 60.68 | 61.19 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 52.42 | 52.08 | 45.84 | 45.08 | 51.96 | 49.40 | 53.51 | 54.01 | 54.96 | 54.69 | 55.80 | 57.22 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 51.48 | 52.76 | 44.61 | 43.84 | 47.57 | 47.85 | 52.25 | 54.10 | 55.40 | 57.31 | 57.58 | 60.71 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 50.58 | 51.92 | 42.88 | 43.12 | 49.04 | 48.10 | 51.45 | 53.66 | 53.60 | 56.19 | 55.95 | 58.52 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 51.29 | 52.24 | 43.92 | 43.00 | 48.83 | 48.93 | 52.42 | 53.94 | 55.67 | 56.70 | 55.60 | 58.63 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 53.20 | 52.77 | 47.70 | 45.56 | 51.05 | 49.14 | 53.59 | 53.23 | 55.99 | 56.92 | 57.66 | 58.97 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 58.08 | 58.08 | 54.67 | 53.14 | 56.87 | 56.34 | 57.82 | 58.83 | 59.74 | 60.54 | 61.28 | 61.54 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 58.28 | 58.25 | 55.18 | 54.20 | 55.91 | 55.83 | 58.05 | 59.15 | 59.76 | 60.37 | 62.52 | 61.70 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 58.49 | 58.19 | 55.69 | 53.64 | 57.57 | 56.54 | 58.96 | 59.15 | 59.69 | 60.11 | 60.55 | 61.53 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 57.34 | 57.01 | 52.05 | 51.48 | 55.10 | 54.35 | 58.65 | 57.90 | 59.43 | 59.78 | 61.48 | 61.55 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 57.27 | 56.93 | 53.06 | 51.75 | 54.54 | 53.94 | 57.85 | 57.50 | 60.23 | 60.04 | 60.67 | 61.41 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 57.07 | 56.38 | 52.44 | 50.92 | 54.88 | 53.81 | 58.22 | 57.16 | 58.83 | 59.09 | 60.98 | 60.90 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 54.38 | 54.89 | 50.36 | 48.17 | 52.31 | 51.27 | 54.79 | 56.00 | 57.04 | 58.65 | 57.39 | 60.38 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 54.63 | 54.85 | 50.13 | 48.09 | 52.41 | 51.14 | 54.73 | 56.13 | 57.36 | 58.67 | 58.49 | 60.23 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 52.73 | 53.89 | 49.48 | 48.75 | 53.13 | 52.29 | 52.15 | 54.13 | 54.37 | 56.86 | 54.49 | 57.39 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 54.82 | 55.50 | 50.15 | 48.38 | 52.39 | 52.47 | 56.63 | 57.46 | 56.92 | 58.35 | 58.02 | 60.82 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 54.39 | 54.90 | 50.63 | 48.07 | 52.22 | 51.81 | 55.42 | 56.92 | 55.89 | 57.48 | 57.79 | 60.22 | |
DCASE2024 baseline | 36 | 50.73 | 51.48 | 50.60 | 46.65 | 43.48 | 48.58 | 46.63 | 52.28 | 51.33 | 54.49 | 54.41 | 55.42 | 57.16 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 56.90 | 57.23 | 53.10 | 51.05 | 54.35 | 53.65 | 57.90 | 58.42 | 59.43 | 60.88 | 59.73 | 62.15 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 55.11 | 56.36 | 48.90 | 48.47 | 52.45 | 53.12 | 56.52 | 57.94 | 58.23 | 60.20 | 59.45 | 62.07 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 54.29 | 55.42 | 46.68 | 46.13 | 51.54 | 51.88 | 55.88 | 57.45 | 57.40 | 59.62 | 59.94 | 62.04 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 52.94 | 52.63 | 50.46 | 47.57 | 51.90 | 51.06 | 53.77 | 54.42 | 54.16 | 54.76 | 54.42 | 55.33 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 51.93 | 51.96 | 50.06 | 47.34 | 51.18 | 50.10 | 51.55 | 53.02 | 52.98 | 54.07 | 53.89 | 55.24 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 51.82 | 51.72 | 46.18 | 46.59 | 50.15 | 49.17 | 54.18 | 52.34 | 53.24 | 54.24 | 55.33 | 56.26 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 52.70 | 53.15 | 47.13 | 44.95 | 48.79 | 48.03 | 53.64 | 55.33 | 56.37 | 57.67 | 57.57 | 59.79 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 52.38 | 52.76 | 47.97 | 45.64 | 50.62 | 49.45 | 53.00 | 53.51 | 53.65 | 55.93 | 56.65 | 59.28 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 52.34 | 53.05 | 45.77 | 44.79 | 48.60 | 48.93 | 54.94 | 55.21 | 56.15 | 57.42 | 56.23 | 58.87 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 55.30 | 54.18 | 51.33 | 48.81 | 55.01 | 52.02 | 56.90 | 55.22 | 56.35 | 56.19 | 56.90 | 58.67 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 52.92 | 52.97 | 48.96 | 47.23 | 50.39 | 48.81 | 52.46 | 53.09 | 55.54 | 56.55 | 57.22 | 59.15 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 53.07 | 53.17 | 47.60 | 46.01 | 49.23 | 49.42 | 55.03 | 55.32 | 55.22 | 55.47 | 58.28 | 59.60 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 56.19 | 56.13 | 49.45 | 48.78 | 54.15 | 53.13 | 57.05 | 57.58 | 58.86 | 59.49 | 61.42 | 61.66 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 54.65 | 54.12 | 45.94 | 45.99 | 51.58 | 49.91 | 55.39 | 55.42 | 59.02 | 58.18 | 61.33 | 61.07 |
Class-wise performance
Split 5%
Overall | Split | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy | Airport | Bus | Metro |
Metro station |
Park |
Public square |
Shopping mall |
Street pedestrian |
Street traffic |
Tram |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 33.1 | 21.5 | 46.5 | 33.2 | 25.5 | 56.2 | 11.6 | 38.9 | 17.1 | 60.7 | 19.5 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 44.7 | 26.8 | 56.7 | 37.1 | 39.1 | 65.4 | 26.1 | 59.3 | 30.7 | 63.0 | 43.2 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 43.8 | 31.0 | 58.6 | 42.2 | 34.2 | 74.9 | 16.3 | 52.6 | 27.9 | 68.4 | 32.4 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 43.7 | 21.5 | 47.3 | 43.8 | 39.1 | 67.1 | 20.0 | 63.5 | 29.0 | 63.9 | 41.3 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 47.5 | 27.7 | 56.8 | 41.2 | 40.7 | 76.2 | 28.2 | 67.5 | 22.8 | 70.1 | 44.4 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 48.9 | 27.0 | 59.6 | 32.2 | 40.4 | 75.5 | 29.2 | 70.5 | 21.4 | 69.8 | 63.5 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 48.4 | 25.1 | 62.8 | 31.7 | 50.2 | 73.1 | 32.4 | 65.7 | 25.5 | 70.7 | 46.4 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 45.2 | 24.7 | 60.2 | 38.2 | 37.6 | 72.7 | 22.6 | 47.5 | 29.5 | 70.0 | 49.2 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 43.9 | 28.6 | 62.4 | 37.0 | 44.1 | 66.6 | 22.3 | 47.0 | 16.2 | 63.8 | 51.3 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 43.1 | 26.6 | 75.9 | 29.6 | 44.0 | 66.4 | 20.0 | 43.2 | 17.3 | 60.8 | 46.7 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 43.1 | 25.9 | 69.0 | 34.3 | 40.4 | 62.0 | 20.3 | 43.2 | 22.2 | 61.1 | 52.9 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 45.9 | 28.9 | 56.6 | 43.7 | 43.0 | 78.3 | 26.8 | 43.6 | 33.6 | 60.7 | 43.9 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 53.4 | 27.7 | 62.1 | 53.8 | 50.7 | 79.9 | 36.9 | 56.3 | 37.3 | 75.1 | 53.9 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 54.3 | 32.1 | 58.2 | 45.3 | 52.4 | 77.9 | 32.2 | 67.4 | 38.7 | 77.9 | 61.2 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 54.0 | 35.2 | 62.4 | 51.9 | 50.9 | 75.0 | 36.8 | 60.7 | 36.1 | 77.7 | 52.8 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 51.6 | 34.6 | 63.5 | 47.8 | 41.7 | 73.1 | 28.6 | 64.4 | 38.2 | 74.0 | 49.6 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 52.0 | 36.9 | 65.2 | 48.7 | 43.3 | 76.7 | 27.5 | 63.6 | 32.0 | 77.5 | 48.2 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 51.2 | 34.3 | 61.0 | 51.0 | 41.8 | 72.7 | 27.2 | 65.1 | 36.7 | 73.9 | 47.9 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 48.5 | 18.8 | 61.9 | 52.1 | 39.8 | 75.0 | 24.9 | 67.6 | 31.1 | 67.7 | 46.3 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 48.4 | 18.2 | 61.3 | 51.8 | 41.3 | 74.4 | 25.1 | 69.3 | 29.6 | 67.8 | 45.5 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 48.9 | 23.2 | 74.5 | 45.1 | 30.2 | 74.6 | 28.3 | 59.5 | 42.4 | 71.8 | 38.9 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 48.7 | 33.4 | 67.4 | 56.3 | 31.8 | 68.9 | 29.5 | 48.2 | 31.5 | 77.4 | 42.3 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 48.5 | 26.9 | 50.3 | 52.9 | 36.5 | 70.7 | 33.9 | 57.3 | 31.1 | 70.7 | 54.5 | |
DCASE2024 baseline | 36 | 50.73 | 44.0 | 30.2 | 47.4 | 38.9 | 36.3 | 70.4 | 23.6 | 49.1 | 31.2 | 69.2 | 43.8 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 51.4 | 27.5 | 66.3 | 50.9 | 44.4 | 77.2 | 26.9 | 59.5 | 36.2 | 74.0 | 51.0 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 48.5 | 30.5 | 62.6 | 45.8 | 44.5 | 75.0 | 21.8 | 55.3 | 29.4 | 69.5 | 50.8 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 46.2 | 27.1 | 51.1 | 49.8 | 41.5 | 69.4 | 21.7 | 55.4 | 30.3 | 74.4 | 41.4 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 48.0 | 24.7 | 63.1 | 48.6 | 33.0 | 70.4 | 27.5 | 66.5 | 35.3 | 69.2 | 41.9 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 47.8 | 23.2 | 64.2 | 47.6 | 34.0 | 69.7 | 28.2 | 63.2 | 37.3 | 70.2 | 40.1 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 46.5 | 34.5 | 76.3 | 27.4 | 37.5 | 70.4 | 17.1 | 57.8 | 31.2 | 68.4 | 44.5 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 45.3 | 32.5 | 56.9 | 41.0 | 34.2 | 69.6 | 31.1 | 49.8 | 30.0 | 66.8 | 41.1 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 46.0 | 32.6 | 57.6 | 43.0 | 34.7 | 67.8 | 28.2 | 51.5 | 33.5 | 67.7 | 43.5 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 44.9 | 32.8 | 56.2 | 41.6 | 34.0 | 69.1 | 24.5 | 49.4 | 33.3 | 67.0 | 41.5 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 49.2 | 31.3 | 57.7 | 42.0 | 44.3 | 73.4 | 25.0 | 59.8 | 36.7 | 70.6 | 51.5 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 47.5 | 30.5 | 51.1 | 48.3 | 39.7 | 77.0 | 23.9 | 56.2 | 34.5 | 69.1 | 44.8 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 46.3 | 31.1 | 65.4 | 35.9 | 39.7 | 80.1 | 25.2 | 47.8 | 21.0 | 72.7 | 43.6 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 48.9 | 35.0 | 64.5 | 47.7 | 53.6 | 74.3 | 20.1 | 60.3 | 19.3 | 75.2 | 38.7 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 46.0 | 28.5 | 59.4 | 39.2 | 56.0 | 64.6 | 26.0 | 50.5 | 21.5 | 72.4 | 41.8 |
Split 10%
Overall | Split | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy | Airport | Bus | Metro |
Metro station |
Park |
Public square |
Shopping mall |
Street pedestrian |
Street traffic |
Tram |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 35.3 | 25.0 | 47.1 | 31.8 | 31.4 | 63.8 | 15.4 | 36.9 | 21.7 | 54.2 | 25.6 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 47.8 | 27.8 | 59.8 | 53.7 | 37.6 | 78.1 | 24.9 | 59.6 | 29.3 | 62.5 | 44.5 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 46.9 | 35.2 | 66.0 | 57.1 | 29.5 | 77.8 | 22.8 | 48.2 | 29.0 | 68.3 | 35.4 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 49.3 | 37.2 | 62.8 | 48.5 | 42.2 | 81.5 | 21.4 | 53.8 | 32.6 | 64.0 | 49.1 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 52.4 | 31.3 | 58.0 | 52.9 | 47.7 | 77.7 | 32.5 | 63.6 | 34.8 | 69.0 | 56.2 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 52.0 | 33.1 | 62.8 | 47.4 | 49.0 | 77.2 | 32.4 | 67.2 | 30.1 | 71.6 | 49.5 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 53.2 | 33.0 | 60.2 | 46.5 | 46.7 | 77.0 | 31.7 | 70.5 | 34.0 | 72.1 | 60.0 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 49.8 | 41.3 | 65.6 | 48.3 | 41.5 | 76.1 | 32.4 | 51.4 | 25.3 | 61.7 | 54.7 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 47.8 | 31.4 | 77.8 | 43.4 | 42.9 | 70.4 | 30.2 | 43.2 | 22.6 | 62.7 | 53.3 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 48.2 | 29.1 | 75.4 | 41.1 | 49.6 | 70.8 | 30.5 | 47.5 | 21.3 | 65.8 | 51.2 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 48.9 | 33.5 | 73.5 | 49.1 | 45.8 | 68.2 | 27.4 | 51.7 | 21.6 | 69.7 | 48.3 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 49.5 | 27.0 | 64.1 | 45.1 | 37.2 | 75.9 | 30.9 | 45.0 | 42.7 | 70.2 | 56.5 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 56.4 | 42.0 | 64.7 | 50.4 | 48.8 | 80.6 | 36.1 | 68.4 | 31.9 | 78.0 | 63.3 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 55.8 | 32.9 | 65.0 | 54.0 | 54.3 | 83.0 | 30.3 | 62.9 | 36.1 | 78.9 | 60.9 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 56.7 | 40.7 | 65.7 | 58.3 | 46.8 | 84.0 | 35.1 | 63.2 | 34.0 | 77.5 | 61.5 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 54.5 | 34.6 | 66.5 | 53.4 | 46.9 | 76.0 | 32.6 | 65.9 | 37.0 | 77.2 | 54.5 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 54.0 | 34.6 | 70.2 | 50.4 | 43.4 | 80.6 | 29.7 | 68.0 | 35.4 | 78.9 | 49.0 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 54.0 | 36.9 | 64.3 | 54.7 | 44.4 | 74.3 | 33.0 | 64.9 | 36.4 | 76.0 | 54.9 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 51.4 | 24.0 | 68.6 | 53.7 | 48.5 | 76.1 | 29.1 | 64.0 | 31.3 | 73.2 | 45.8 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 51.3 | 24.9 | 68.2 | 54.3 | 48.8 | 75.8 | 29.5 | 62.2 | 30.5 | 73.6 | 45.7 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 52.4 | 33.3 | 69.1 | 56.0 | 45.6 | 69.7 | 34.1 | 67.8 | 22.7 | 70.0 | 55.8 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 52.4 | 31.0 | 69.0 | 56.4 | 43.9 | 73.6 | 33.0 | 60.0 | 32.7 | 66.5 | 58.2 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 51.9 | 34.3 | 67.2 | 55.3 | 39.8 | 75.4 | 33.5 | 56.8 | 35.1 | 65.7 | 55.6 | |
DCASE2024 baseline | 36 | 50.73 | 46.9 | 25.0 | 53.1 | 45.2 | 43.2 | 80.4 | 25.6 | 53.8 | 28.9 | 68.1 | 46.2 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 53.8 | 29.3 | 65.8 | 55.4 | 51.0 | 82.1 | 30.5 | 54.1 | 39.3 | 71.7 | 58.2 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 53.0 | 28.7 | 64.5 | 57.0 | 46.3 | 81.9 | 27.6 | 59.3 | 38.0 | 71.5 | 55.2 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 51.8 | 31.2 | 67.4 | 52.1 | 51.3 | 77.7 | 26.1 | 55.4 | 36.1 | 71.4 | 49.3 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 51.2 | 26.5 | 63.4 | 53.7 | 38.8 | 76.9 | 34.4 | 63.0 | 34.6 | 71.5 | 48.8 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 50.3 | 27.8 | 62.5 | 49.1 | 41.4 | 78.6 | 27.8 | 57.2 | 34.2 | 68.3 | 55.6 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 49.3 | 31.1 | 85.4 | 37.4 | 37.7 | 70.5 | 23.4 | 65.7 | 26.1 | 71.3 | 44.5 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 48.1 | 29.8 | 56.3 | 42.0 | 38.2 | 75.5 | 32.9 | 53.5 | 35.1 | 68.2 | 50.0 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 49.6 | 34.4 | 66.1 | 46.1 | 37.4 | 75.8 | 29.7 | 53.3 | 34.6 | 68.7 | 50.3 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 48.9 | 31.0 | 63.5 | 48.5 | 41.8 | 73.0 | 28.0 | 52.5 | 36.4 | 67.9 | 46.1 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 52.5 | 30.8 | 58.1 | 51.7 | 47.0 | 76.1 | 34.6 | 54.9 | 42.6 | 75.0 | 54.3 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 49.1 | 27.2 | 55.7 | 53.3 | 39.2 | 79.2 | 29.4 | 55.3 | 34.2 | 69.4 | 47.7 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 49.4 | 34.8 | 70.4 | 50.2 | 32.1 | 74.9 | 27.8 | 54.0 | 26.5 | 78.6 | 44.3 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 53.3 | 29.6 | 65.6 | 51.1 | 52.8 | 79.2 | 31.5 | 60.8 | 35.1 | 75.2 | 52.0 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 50.2 | 29.1 | 60.5 | 48.5 | 49.3 | 75.2 | 33.6 | 52.6 | 30.7 | 72.3 | 50.1 |
Split 25%
Overall | Split | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy | Airport | Bus | Metro |
Metro station |
Park |
Public square |
Shopping mall |
Street pedestrian |
Street traffic |
Tram |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 37.7 | 23.1 | 43.3 | 36.8 | 22.8 | 72.5 | 17.1 | 36.1 | 23.2 | 53.8 | 48.1 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 54.5 | 43.1 | 77.2 | 43.6 | 49.5 | 85.9 | 29.6 | 68.7 | 24.7 | 64.6 | 58.4 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 52.0 | 45.3 | 72.8 | 54.1 | 42.7 | 86.2 | 30.6 | 50.3 | 23.8 | 65.3 | 49.5 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 54.9 | 49.1 | 73.6 | 48.7 | 48.9 | 83.3 | 33.8 | 53.4 | 28.4 | 69.4 | 60.0 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 57.0 | 41.2 | 73.1 | 53.7 | 47.1 | 75.0 | 40.5 | 60.6 | 35.3 | 76.5 | 67.4 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 58.1 | 44.6 | 70.4 | 54.7 | 50.8 | 77.8 | 37.0 | 67.4 | 34.9 | 78.5 | 64.8 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 57.6 | 38.8 | 67.4 | 51.7 | 53.0 | 78.5 | 35.1 | 62.5 | 41.2 | 76.2 | 71.1 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 53.9 | 40.4 | 71.1 | 60.1 | 45.4 | 79.8 | 35.7 | 60.2 | 29.4 | 66.6 | 50.4 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 53.8 | 42.7 | 80.9 | 53.3 | 41.3 | 75.6 | 34.4 | 45.0 | 31.1 | 70.9 | 62.2 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 53.3 | 44.3 | 77.6 | 47.1 | 39.9 | 77.9 | 33.2 | 51.5 | 30.6 | 67.2 | 63.3 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 53.6 | 39.8 | 79.6 | 46.2 | 47.3 | 79.3 | 32.1 | 52.7 | 31.8 | 68.5 | 59.3 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 53.3 | 31.6 | 67.1 | 45.8 | 41.5 | 78.1 | 35.3 | 59.1 | 40.8 | 72.7 | 60.6 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 58.6 | 43.6 | 73.0 | 53.2 | 49.1 | 82.1 | 33.2 | 65.8 | 41.2 | 78.6 | 66.6 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 58.9 | 46.3 | 67.6 | 52.4 | 52.4 | 87.3 | 31.4 | 70.0 | 34.4 | 78.2 | 69.3 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 59.1 | 48.2 | 70.8 | 48.6 | 55.0 | 85.0 | 34.0 | 66.9 | 34.8 | 76.8 | 70.8 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 58.0 | 45.7 | 71.8 | 54.1 | 51.7 | 80.9 | 32.7 | 67.7 | 35.6 | 79.8 | 60.0 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 57.5 | 42.6 | 72.5 | 53.0 | 53.1 | 82.1 | 30.2 | 70.2 | 32.6 | 80.8 | 58.2 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 57.3 | 45.5 | 71.0 | 53.7 | 51.3 | 79.5 | 32.5 | 65.4 | 36.5 | 78.8 | 59.1 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 55.8 | 30.3 | 72.9 | 54.5 | 55.0 | 80.6 | 33.8 | 64.6 | 33.3 | 69.6 | 63.1 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 55.9 | 30.3 | 73.0 | 54.4 | 55.1 | 80.7 | 33.6 | 65.4 | 33.3 | 69.8 | 63.2 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 53.8 | 36.7 | 73.2 | 55.0 | 45.7 | 78.4 | 27.3 | 60.0 | 36.3 | 67.1 | 58.2 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 57.3 | 39.4 | 74.0 | 54.8 | 50.7 | 81.0 | 33.8 | 61.5 | 38.3 | 74.3 | 65.3 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 56.6 | 37.4 | 74.9 | 58.3 | 49.6 | 80.5 | 35.0 | 58.0 | 35.1 | 72.4 | 65.2 | |
DCASE2024 baseline | 36 | 50.73 | 51.5 | 37.3 | 63.6 | 41.2 | 34.1 | 72.1 | 42.5 | 60.2 | 32.9 | 77.1 | 53.8 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 58.3 | 37.3 | 76.6 | 57.1 | 62.5 | 84.5 | 29.0 | 59.0 | 41.0 | 73.6 | 62.3 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 57.7 | 36.4 | 69.9 | 64.7 | 55.7 | 85.6 | 28.7 | 60.4 | 37.9 | 74.9 | 62.7 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 57.2 | 32.4 | 75.1 | 60.9 | 55.0 | 84.9 | 26.7 | 64.5 | 36.8 | 74.4 | 61.1 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 54.3 | 36.9 | 68.6 | 51.4 | 44.6 | 83.1 | 30.9 | 58.3 | 35.0 | 72.7 | 61.4 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 52.7 | 38.6 | 68.9 | 47.7 | 43.1 | 80.7 | 29.5 | 57.2 | 31.1 | 71.1 | 59.6 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 52.6 | 41.1 | 82.3 | 41.7 | 46.9 | 78.6 | 25.9 | 46.0 | 38.6 | 64.4 | 60.8 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 55.0 | 42.5 | 74.2 | 48.6 | 39.4 | 79.9 | 32.8 | 63.9 | 33.9 | 78.3 | 56.6 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 53.4 | 42.4 | 60.0 | 45.1 | 38.8 | 78.0 | 36.2 | 65.2 | 36.9 | 73.6 | 57.8 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 55.1 | 42.9 | 70.5 | 50.9 | 42.4 | 76.7 | 36.3 | 62.2 | 34.9 | 74.4 | 60.2 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 55.5 | 41.5 | 68.1 | 48.2 | 49.7 | 85.0 | 27.7 | 57.3 | 40.0 | 76.3 | 61.1 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 53.0 | 33.0 | 59.7 | 47.9 | 46.6 | 81.8 | 30.0 | 56.8 | 42.7 | 72.2 | 58.9 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 55.2 | 40.1 | 66.4 | 48.0 | 43.8 | 83.1 | 35.5 | 60.8 | 39.8 | 72.8 | 62.2 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 57.5 | 43.2 | 67.2 | 55.5 | 50.5 | 76.5 | 37.3 | 67.2 | 36.4 | 80.2 | 60.7 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 55.4 | 41.7 | 61.8 | 54.0 | 54.7 | 72.7 | 39.0 | 59.2 | 32.5 | 78.4 | 59.9 |
Split 50%
Overall | Split | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy | Airport | Bus | Metro |
Metro station |
Park |
Public square |
Shopping mall |
Street pedestrian |
Street traffic |
Tram |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 39.8 | 33.8 | 42.4 | 40.8 | 32.8 | 64.4 | 16.8 | 37.2 | 18.7 | 58.7 | 52.0 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 55.8 | 41.2 | 74.6 | 53.7 | 51.7 | 86.4 | 31.7 | 60.2 | 28.5 | 70.2 | 59.6 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 53.9 | 43.7 | 77.7 | 55.3 | 47.7 | 86.8 | 29.2 | 47.8 | 26.3 | 64.4 | 60.5 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 55.2 | 45.0 | 73.9 | 51.1 | 48.0 | 84.9 | 29.3 | 55.2 | 27.0 | 72.1 | 65.1 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 59.5 | 36.9 | 78.0 | 56.9 | 57.6 | 85.0 | 31.4 | 64.4 | 40.4 | 75.6 | 68.5 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 59.0 | 33.3 | 75.1 | 58.7 | 49.7 | 85.5 | 36.4 | 66.6 | 37.1 | 75.1 | 72.9 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 59.2 | 40.6 | 78.8 | 54.5 | 53.6 | 79.0 | 37.2 | 63.0 | 37.2 | 78.7 | 69.2 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 54.7 | 33.6 | 70.9 | 45.9 | 54.4 | 88.1 | 25.2 | 56.4 | 44.9 | 59.6 | 68.1 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 57.0 | 46.6 | 80.2 | 56.1 | 52.3 | 77.1 | 33.9 | 51.5 | 34.7 | 73.6 | 63.5 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 55.7 | 47.9 | 82.2 | 55.1 | 49.3 | 77.6 | 29.8 | 48.4 | 32.4 | 73.3 | 61.1 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 56.5 | 51.2 | 78.9 | 51.9 | 49.1 | 77.1 | 36.1 | 49.0 | 32.1 | 71.6 | 67.9 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 56.7 | 40.6 | 75.4 | 51.5 | 50.8 | 79.9 | 39.7 | 53.6 | 35.7 | 80.0 | 60.4 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 60.4 | 47.6 | 76.6 | 59.0 | 55.5 | 85.0 | 32.0 | 63.3 | 39.8 | 79.7 | 65.2 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 60.2 | 59.1 | 76.2 | 56.3 | 51.8 | 82.9 | 34.4 | 64.6 | 34.6 | 80.5 | 61.8 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 60.0 | 49.4 | 77.1 | 57.7 | 52.0 | 84.6 | 37.1 | 61.5 | 32.9 | 82.9 | 64.8 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 59.7 | 44.9 | 74.9 | 57.3 | 53.5 | 82.1 | 34.2 | 67.5 | 38.8 | 78.6 | 65.2 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 60.0 | 50.9 | 77.8 | 57.1 | 49.4 | 84.4 | 33.2 | 64.2 | 39.1 | 79.6 | 64.8 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 59.0 | 45.7 | 73.8 | 56.5 | 51.8 | 80.8 | 33.1 | 67.7 | 40.0 | 78.4 | 62.4 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 58.4 | 39.6 | 73.0 | 56.2 | 55.9 | 81.9 | 32.9 | 63.0 | 36.7 | 76.0 | 68.3 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 58.4 | 39.9 | 73.5 | 54.8 | 55.2 | 82.7 | 32.7 | 64.0 | 36.9 | 76.0 | 68.5 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 56.4 | 37.0 | 64.4 | 68.8 | 54.1 | 78.8 | 26.1 | 69.3 | 33.9 | 71.6 | 60.3 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 58.1 | 37.7 | 77.9 | 58.6 | 49.0 | 81.6 | 29.3 | 62.1 | 41.2 | 74.0 | 69.5 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 57.2 | 41.3 | 71.4 | 57.9 | 55.2 | 79.9 | 31.6 | 58.6 | 36.2 | 73.2 | 66.5 | |
DCASE2024 baseline | 36 | 50.73 | 54.4 | 29.9 | 71.8 | 45.6 | 46.0 | 79.5 | 34.1 | 54.1 | 41.8 | 77.4 | 63.8 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 60.6 | 41.2 | 78.4 | 61.7 | 57.0 | 84.2 | 33.1 | 59.6 | 40.4 | 78.9 | 71.7 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 59.8 | 41.5 | 76.5 | 60.9 | 60.2 | 85.6 | 28.7 | 60.1 | 39.2 | 78.0 | 67.7 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 59.2 | 39.2 | 78.9 | 60.5 | 60.6 | 88.1 | 26.0 | 61.3 | 38.7 | 75.8 | 63.0 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 54.6 | 41.0 | 64.9 | 57.6 | 46.9 | 83.0 | 28.4 | 57.0 | 31.5 | 72.5 | 63.5 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 53.9 | 37.9 | 70.1 | 53.6 | 45.1 | 82.2 | 28.4 | 54.6 | 33.8 | 71.3 | 61.7 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 54.0 | 44.4 | 80.8 | 43.5 | 39.7 | 80.7 | 25.4 | 64.0 | 33.4 | 66.2 | 62.2 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 57.4 | 46.2 | 69.7 | 60.0 | 44.6 | 76.6 | 32.6 | 62.5 | 38.9 | 80.8 | 62.3 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 55.5 | 36.4 | 71.0 | 55.3 | 39.4 | 75.3 | 32.7 | 62.0 | 50.8 | 76.4 | 56.1 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 57.2 | 48.7 | 70.4 | 52.7 | 46.9 | 71.0 | 43.1 | 57.7 | 39.2 | 77.7 | 64.5 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 56.2 | 34.8 | 74.3 | 46.6 | 52.8 | 78.7 | 26.6 | 58.8 | 45.4 | 76.9 | 67.2 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 56.4 | 41.8 | 61.1 | 57.7 | 54.3 | 85.6 | 29.0 | 61.9 | 35.5 | 74.4 | 62.4 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 55.4 | 42.3 | 79.1 | 44.4 | 49.7 | 83.4 | 32.1 | 43.2 | 38.3 | 75.2 | 66.4 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 59.4 | 42.1 | 72.4 | 60.9 | 51.2 | 79.8 | 33.3 | 68.8 | 39.0 | 80.5 | 65.7 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 58.3 | 51.1 | 68.9 | 63.4 | 56.5 | 73.6 | 39.4 | 53.4 | 38.7 | 78.0 | 60.0 |
Split 100%
Overall | Split | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy | Airport | Bus | Metro |
Metro station |
Park |
Public square |
Shopping mall |
Street pedestrian |
Street traffic |
Tram |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 41.1 | 29.3 | 48.5 | 42.4 | 30.4 | 67.0 | 25.5 | 35.8 | 26.4 | 50.3 | 55.3 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 57.1 | 40.8 | 74.6 | 61.2 | 54.4 | 88.8 | 33.9 | 52.3 | 30.8 | 69.0 | 65.6 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 56.7 | 42.3 | 77.3 | 60.2 | 54.6 | 82.4 | 31.1 | 47.8 | 31.2 | 74.1 | 66.5 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 57.3 | 49.2 | 80.1 | 57.7 | 54.1 | 87.4 | 33.0 | 52.3 | 27.1 | 70.1 | 62.1 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 60.6 | 48.6 | 84.9 | 53.5 | 57.3 | 80.3 | 36.8 | 59.7 | 38.1 | 77.8 | 68.8 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 62.1 | 52.6 | 82.9 | 56.9 | 56.9 | 83.0 | 36.7 | 65.3 | 36.6 | 79.2 | 71.2 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 61.1 | 46.8 | 77.0 | 63.7 | 57.1 | 80.1 | 33.1 | 59.3 | 41.4 | 80.5 | 71.8 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 57.0 | 38.1 | 71.5 | 65.3 | 53.9 | 85.9 | 32.6 | 53.8 | 35.0 | 74.2 | 59.4 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 60.1 | 50.4 | 78.1 | 62.8 | 59.1 | 77.6 | 38.9 | 52.2 | 36.2 | 79.3 | 66.8 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 58.1 | 44.1 | 78.2 | 59.0 | 55.8 | 75.4 | 41.5 | 52.6 | 33.5 | 74.1 | 66.4 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 58.1 | 45.9 | 81.7 | 56.3 | 51.4 | 73.1 | 40.4 | 54.9 | 31.6 | 77.3 | 68.2 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 58.7 | 41.6 | 78.2 | 53.9 | 51.7 | 85.5 | 36.1 | 53.9 | 42.0 | 75.9 | 68.6 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 61.5 | 55.6 | 74.4 | 61.8 | 59.4 | 84.0 | 33.0 | 60.2 | 38.3 | 83.3 | 64.8 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 61.8 | 51.6 | 75.6 | 61.1 | 58.6 | 83.0 | 35.1 | 61.3 | 38.5 | 84.0 | 69.4 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 61.3 | 49.6 | 71.3 | 60.2 | 56.0 | 82.9 | 35.4 | 61.4 | 41.3 | 84.2 | 71.1 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 61.5 | 46.0 | 78.5 | 59.8 | 55.2 | 83.1 | 35.5 | 66.9 | 42.7 | 79.7 | 67.5 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 61.3 | 47.6 | 79.9 | 58.6 | 47.4 | 82.8 | 34.5 | 70.0 | 43.0 | 80.9 | 67.9 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 60.9 | 45.8 | 77.1 | 59.7 | 55.4 | 83.2 | 33.7 | 68.3 | 40.6 | 79.3 | 65.7 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 59.9 | 43.1 | 77.8 | 61.6 | 56.9 | 78.1 | 31.0 | 62.5 | 44.0 | 75.1 | 68.4 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 59.9 | 44.1 | 77.3 | 61.7 | 57.7 | 78.0 | 31.1 | 63.1 | 43.3 | 74.5 | 68.3 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 56.9 | 35.4 | 74.4 | 61.8 | 59.7 | 71.5 | 26.7 | 63.8 | 38.8 | 76.4 | 60.2 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 60.3 | 43.0 | 77.3 | 59.3 | 57.1 | 82.6 | 35.2 | 61.2 | 43.8 | 76.2 | 67.5 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 59.8 | 40.6 | 78.3 | 63.2 | 56.5 | 81.8 | 34.9 | 60.7 | 37.8 | 75.2 | 68.7 | |
DCASE2024 baseline | 36 | 50.73 | 56.8 | 43.1 | 75.8 | 51.6 | 41.8 | 77.4 | 41.4 | 65.4 | 34.2 | 77.5 | 60.2 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 61.7 | 42.3 | 78.8 | 65.1 | 63.8 | 86.4 | 28.4 | 58.7 | 43.6 | 78.6 | 71.3 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 61.6 | 40.6 | 77.4 | 66.6 | 62.3 | 87.7 | 31.6 | 64.1 | 37.3 | 77.7 | 70.7 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 61.7 | 44.6 | 81.0 | 65.7 | 59.5 | 90.6 | 29.6 | 59.2 | 39.5 | 78.2 | 68.6 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 55.2 | 39.9 | 67.6 | 58.0 | 48.9 | 82.3 | 29.3 | 55.9 | 34.2 | 72.8 | 62.6 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 55.0 | 36.8 | 74.8 | 57.2 | 49.0 | 84.1 | 26.8 | 57.7 | 31.0 | 72.1 | 60.2 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 56.1 | 49.8 | 80.9 | 46.1 | 45.1 | 81.3 | 28.8 | 51.3 | 38.0 | 71.5 | 67.9 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 59.4 | 55.3 | 75.1 | 58.8 | 48.3 | 80.4 | 34.9 | 62.2 | 40.4 | 76.5 | 62.1 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 58.8 | 45.8 | 75.8 | 54.7 | 49.2 | 81.2 | 31.4 | 63.4 | 42.3 | 77.9 | 66.3 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 58.4 | 46.0 | 68.4 | 59.6 | 46.9 | 76.9 | 34.4 | 55.3 | 53.8 | 80.9 | 61.9 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 58.3 | 48.9 | 72.9 | 60.5 | 44.7 | 85.4 | 31.5 | 58.4 | 35.6 | 78.2 | 67.3 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 58.8 | 43.7 | 74.1 | 58.5 | 53.0 | 84.4 | 27.7 | 57.6 | 43.0 | 75.4 | 70.6 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 59.3 | 50.8 | 72.5 | 58.4 | 46.4 | 83.7 | 40.0 | 57.9 | 38.9 | 77.6 | 67.3 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 61.6 | 51.3 | 73.2 | 58.6 | 57.6 | 81.0 | 36.8 | 61.8 | 41.0 | 81.9 | 72.8 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 61.1 | 50.1 | 71.1 | 63.7 | 58.2 | 79.2 | 42.1 | 57.0 | 40.3 | 81.6 | 67.8 |
Device-wise performance
Split 5%
Overall | Split | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Unseen devices | Seen devices | ||||||||||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy |
Accuracy / Unseen |
Accuracy / Seen |
D | S7 | S8 | S9 | S10 | A | B | C | S1 | S2 | S3 |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 33.1 | 31.4 | 34.4 | 32.0 | 33.9 | 33.0 | 28.2 | 30.1 | 46.6 | 30.1 | 41.2 | 28.5 | 26.8 | 33.3 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 44.7 | 42.8 | 46.3 | 41.5 | 45.0 | 48.0 | 38.9 | 40.6 | 56.2 | 44.7 | 50.5 | 43.3 | 38.7 | 44.5 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 43.8 | 42.2 | 45.2 | 42.3 | 44.5 | 43.7 | 39.8 | 40.6 | 53.8 | 41.8 | 47.9 | 43.0 | 39.9 | 44.8 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 43.7 | 41.5 | 45.5 | 40.5 | 43.2 | 46.0 | 37.5 | 40.2 | 56.0 | 42.0 | 48.9 | 43.4 | 38.8 | 43.7 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 47.5 | 45.8 | 49.0 | 40.7 | 50.5 | 45.9 | 46.0 | 45.8 | 55.6 | 46.7 | 50.0 | 48.3 | 45.1 | 48.5 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 48.9 | 46.8 | 50.7 | 46.1 | 50.4 | 47.6 | 45.0 | 44.7 | 55.9 | 49.5 | 51.9 | 48.8 | 47.7 | 50.3 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 48.4 | 47.2 | 49.4 | 43.7 | 51.0 | 46.2 | 46.8 | 48.2 | 53.8 | 48.7 | 50.1 | 48.7 | 45.8 | 49.1 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 45.2 | 42.9 | 47.1 | 42.5 | 45.1 | 46.2 | 40.2 | 40.7 | 57.8 | 46.0 | 50.6 | 41.8 | 40.4 | 45.9 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 43.9 | 39.2 | 47.9 | 21.5 | 48.4 | 45.4 | 37.0 | 43.5 | 50.7 | 45.6 | 48.9 | 47.3 | 44.5 | 50.5 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 43.1 | 38.6 | 46.7 | 17.2 | 47.2 | 46.2 | 39.0 | 43.7 | 42.8 | 43.2 | 47.2 | 49.0 | 46.7 | 51.6 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 43.1 | 38.4 | 47.1 | 17.9 | 48.3 | 47.3 | 36.5 | 41.8 | 45.8 | 46.1 | 48.1 | 46.8 | 45.4 | 50.5 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 45.9 | 43.8 | 47.6 | 41.6 | 46.1 | 44.6 | 43.8 | 43.1 | 56.7 | 45.9 | 49.5 | 46.0 | 41.2 | 46.5 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 53.4 | 50.8 | 55.5 | 44.5 | 54.6 | 51.4 | 52.6 | 50.9 | 63.6 | 52.8 | 57.5 | 53.2 | 50.8 | 55.3 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 54.3 | 52.8 | 55.6 | 47.9 | 56.1 | 52.7 | 54.4 | 52.8 | 64.8 | 53.4 | 56.4 | 54.2 | 49.7 | 55.3 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 54.0 | 52.3 | 55.4 | 48.7 | 55.3 | 52.8 | 53.1 | 51.5 | 64.3 | 53.2 | 56.4 | 53.7 | 49.2 | 55.6 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 51.6 | 50.9 | 52.1 | 49.5 | 52.9 | 50.7 | 51.6 | 50.0 | 57.8 | 51.0 | 52.5 | 50.5 | 48.1 | 52.6 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 52.0 | 51.4 | 52.4 | 49.5 | 54.2 | 50.9 | 52.0 | 50.2 | 58.0 | 50.0 | 52.7 | 51.3 | 49.0 | 53.6 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 51.2 | 50.4 | 51.8 | 49.2 | 52.7 | 49.6 | 51.5 | 49.1 | 57.9 | 50.6 | 52.2 | 50.1 | 48.0 | 52.0 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 48.5 | 46.6 | 50.1 | 42.4 | 50.1 | 49.1 | 46.4 | 44.9 | 59.1 | 48.4 | 52.4 | 47.4 | 44.5 | 49.0 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 48.4 | 46.7 | 49.9 | 42.4 | 50.4 | 48.0 | 46.8 | 45.7 | 58.9 | 47.5 | 51.5 | 47.8 | 44.7 | 48.9 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 48.9 | 47.0 | 50.4 | 40.4 | 51.8 | 50.9 | 46.6 | 45.2 | 56.3 | 49.3 | 49.9 | 48.6 | 47.2 | 51.2 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 48.7 | 45.8 | 51.1 | 39.7 | 50.4 | 50.3 | 44.6 | 43.8 | 59.0 | 47.6 | 53.8 | 48.5 | 47.8 | 49.8 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 48.5 | 46.2 | 50.4 | 37.8 | 49.7 | 50.1 | 47.7 | 45.5 | 57.7 | 49.0 | 51.9 | 48.3 | 45.8 | 49.8 | |
DCASE2024 baseline | 36 | 50.73 | 44.0 | 42.4 | 45.3 | 42.3 | 46.0 | 42.6 | 39.3 | 41.8 | 56.3 | 43.9 | 47.5 | 41.3 | 37.9 | 45.2 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 51.4 | 48.9 | 53.5 | 44.3 | 53.8 | 49.2 | 47.6 | 49.4 | 61.3 | 52.5 | 55.2 | 50.9 | 48.0 | 52.9 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 48.5 | 44.6 | 51.8 | 39.4 | 50.5 | 50.2 | 38.3 | 44.7 | 61.4 | 51.4 | 54.2 | 48.2 | 44.9 | 50.6 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 46.2 | 42.1 | 49.7 | 36.4 | 48.2 | 45.0 | 36.1 | 44.5 | 60.3 | 49.3 | 54.0 | 45.6 | 41.6 | 47.1 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 48.0 | 46.6 | 49.3 | 47.0 | 48.7 | 49.6 | 44.2 | 43.2 | 62.5 | 46.2 | 55.8 | 43.4 | 38.5 | 49.1 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 47.8 | 46.1 | 49.2 | 47.2 | 47.7 | 48.1 | 43.2 | 44.2 | 61.5 | 46.4 | 54.7 | 43.6 | 38.7 | 50.1 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 46.5 | 44.3 | 48.3 | 41.9 | 46.2 | 44.2 | 44.1 | 45.2 | 53.2 | 45.7 | 52.0 | 45.2 | 45.8 | 47.9 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 45.3 | 43.9 | 46.4 | 42.2 | 47.0 | 43.0 | 43.7 | 43.9 | 52.7 | 45.4 | 47.6 | 44.6 | 42.6 | 45.7 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 46.0 | 44.6 | 47.2 | 41.5 | 47.7 | 43.2 | 45.4 | 45.1 | 54.2 | 45.9 | 48.5 | 45.2 | 42.9 | 46.6 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 44.9 | 43.2 | 46.4 | 41.9 | 45.8 | 41.1 | 43.4 | 43.8 | 52.6 | 45.0 | 47.2 | 44.8 | 42.1 | 46.7 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 49.2 | 48.1 | 50.2 | 49.4 | 49.5 | 49.5 | 47.3 | 44.6 | 62.0 | 49.8 | 52.9 | 45.2 | 42.9 | 48.2 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 47.5 | 45.9 | 48.9 | 41.1 | 49.0 | 49.2 | 46.2 | 43.8 | 59.3 | 48.0 | 53.0 | 46.1 | 40.9 | 46.0 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 46.3 | 44.3 | 47.9 | 41.5 | 46.4 | 46.3 | 43.4 | 44.1 | 53.1 | 44.8 | 50.3 | 46.0 | 44.1 | 48.9 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 48.9 | 47.8 | 49.7 | 47.9 | 50.9 | 49.5 | 45.3 | 45.7 | 55.4 | 48.4 | 51.8 | 48.1 | 44.8 | 50.0 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 46.0 | 44.7 | 47.0 | 43.9 | 47.6 | 44.1 | 43.6 | 44.2 | 52.2 | 46.5 | 48.6 | 45.3 | 43.0 | 46.6 |
Split 10%
Overall | Split | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Unseen devices | Seen devices | ||||||||||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy |
Accuracy / Unseen |
Accuracy / Seen |
D | S7 | S8 | S9 | S10 | A | B | C | S1 | S2 | S3 |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 35.3 | 33.4 | 36.9 | 32.5 | 36.2 | 36.2 | 29.4 | 32.5 | 48.0 | 33.8 | 43.2 | 31.2 | 30.1 | 35.3 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 47.8 | 44.8 | 50.3 | 38.9 | 48.6 | 50.2 | 41.5 | 44.6 | 59.2 | 47.2 | 51.9 | 47.4 | 46.6 | 49.4 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 46.9 | 43.8 | 49.6 | 41.2 | 47.3 | 49.2 | 38.7 | 42.4 | 58.7 | 45.9 | 51.9 | 47.6 | 44.4 | 48.8 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 49.3 | 46.5 | 51.7 | 42.2 | 50.1 | 51.9 | 42.7 | 45.5 | 60.4 | 47.8 | 53.3 | 50.0 | 46.9 | 51.7 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 52.4 | 50.2 | 54.2 | 44.8 | 54.0 | 50.6 | 50.6 | 50.9 | 60.0 | 52.7 | 54.7 | 53.5 | 51.0 | 53.3 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 52.0 | 50.2 | 53.6 | 47.4 | 55.0 | 50.7 | 48.3 | 49.6 | 59.8 | 50.6 | 54.4 | 52.8 | 49.5 | 54.5 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 53.2 | 51.5 | 54.6 | 48.9 | 55.8 | 51.2 | 50.4 | 51.3 | 61.0 | 52.5 | 56.0 | 53.5 | 50.1 | 54.3 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 49.8 | 47.7 | 51.6 | 45.2 | 51.4 | 51.2 | 43.8 | 47.0 | 61.7 | 48.8 | 54.2 | 47.7 | 45.0 | 52.1 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 47.8 | 42.9 | 51.9 | 21.0 | 51.8 | 52.4 | 43.8 | 45.3 | 49.6 | 46.8 | 51.7 | 53.6 | 54.6 | 55.0 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 48.2 | 43.6 | 52.1 | 20.2 | 52.2 | 53.7 | 45.9 | 45.8 | 51.2 | 46.4 | 52.6 | 53.3 | 53.8 | 55.5 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 48.9 | 44.3 | 52.7 | 24.8 | 53.6 | 53.6 | 44.4 | 45.3 | 53.9 | 47.6 | 52.8 | 54.3 | 53.2 | 54.3 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 49.5 | 46.9 | 51.6 | 43.3 | 50.5 | 50.3 | 44.4 | 45.8 | 61.5 | 50.7 | 53.3 | 46.6 | 46.2 | 51.3 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 56.4 | 54.1 | 58.3 | 50.2 | 57.7 | 55.0 | 53.4 | 54.1 | 67.6 | 56.4 | 59.2 | 55.1 | 53.3 | 58.3 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 55.8 | 52.8 | 58.3 | 46.0 | 57.0 | 53.9 | 54.1 | 53.0 | 67.0 | 56.6 | 59.5 | 55.3 | 54.1 | 57.6 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 56.7 | 54.1 | 58.8 | 48.6 | 57.7 | 56.0 | 54.8 | 53.5 | 66.5 | 56.5 | 60.0 | 56.2 | 55.2 | 58.5 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 54.5 | 53.3 | 55.5 | 50.3 | 56.2 | 53.0 | 53.3 | 53.5 | 60.8 | 53.3 | 54.5 | 54.7 | 52.8 | 56.6 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 54.0 | 53.0 | 54.9 | 49.3 | 56.1 | 52.2 | 53.9 | 53.6 | 59.8 | 51.9 | 53.6 | 55.0 | 52.3 | 56.6 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 54.0 | 52.6 | 55.1 | 49.4 | 55.8 | 51.9 | 52.8 | 53.3 | 59.9 | 53.1 | 54.4 | 54.1 | 52.6 | 56.4 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 51.4 | 49.0 | 53.5 | 40.6 | 54.2 | 50.5 | 50.7 | 48.9 | 61.9 | 52.9 | 54.4 | 51.4 | 48.5 | 51.6 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 51.3 | 48.9 | 53.3 | 39.9 | 54.0 | 50.5 | 50.9 | 49.4 | 61.5 | 52.4 | 54.1 | 51.6 | 48.5 | 51.8 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 52.4 | 50.9 | 53.7 | 46.8 | 54.7 | 54.0 | 51.9 | 47.0 | 61.7 | 52.3 | 54.6 | 52.5 | 49.2 | 51.7 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 52.4 | 49.9 | 54.6 | 41.5 | 55.0 | 54.6 | 49.7 | 48.7 | 63.0 | 52.6 | 55.9 | 52.2 | 49.8 | 53.9 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 51.9 | 49.1 | 54.1 | 40.5 | 54.7 | 54.0 | 49.2 | 47.2 | 62.1 | 52.5 | 53.9 | 52.3 | 50.1 | 53.8 | |
DCASE2024 baseline | 36 | 50.73 | 46.9 | 43.8 | 49.5 | 38.6 | 47.9 | 45.5 | 43.0 | 44.2 | 60.2 | 48.1 | 51.3 | 45.8 | 43.0 | 48.9 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 53.8 | 49.7 | 57.1 | 40.1 | 55.5 | 53.7 | 48.7 | 50.3 | 65.8 | 56.5 | 58.5 | 54.8 | 51.9 | 55.4 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 53.0 | 48.9 | 56.4 | 39.2 | 55.0 | 54.4 | 47.4 | 48.5 | 65.5 | 54.9 | 57.9 | 53.4 | 51.4 | 55.2 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 51.8 | 47.8 | 55.1 | 37.8 | 55.2 | 53.2 | 43.1 | 49.7 | 64.1 | 54.5 | 55.9 | 52.5 | 49.2 | 54.7 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 51.2 | 48.3 | 53.6 | 46.7 | 51.3 | 50.7 | 46.9 | 45.9 | 64.4 | 50.5 | 56.1 | 50.0 | 46.7 | 53.7 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 50.3 | 46.9 | 53.0 | 46.4 | 49.6 | 49.2 | 46.5 | 43.1 | 63.3 | 50.1 | 54.5 | 48.8 | 47.9 | 53.5 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 49.3 | 47.5 | 50.8 | 46.2 | 50.3 | 47.4 | 44.1 | 49.5 | 52.6 | 47.8 | 54.4 | 49.9 | 47.9 | 52.4 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 48.1 | 45.7 | 50.1 | 40.9 | 50.2 | 43.6 | 46.6 | 47.4 | 56.9 | 49.0 | 50.7 | 48.8 | 46.3 | 49.1 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 49.6 | 46.7 | 52.1 | 39.8 | 51.2 | 46.8 | 47.2 | 48.5 | 58.8 | 51.3 | 52.4 | 50.4 | 48.1 | 51.6 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 48.9 | 46.2 | 51.1 | 41.5 | 50.7 | 45.1 | 46.5 | 47.4 | 57.5 | 49.7 | 51.7 | 49.4 | 47.6 | 50.4 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 52.5 | 50.8 | 54.0 | 49.4 | 52.7 | 49.5 | 51.4 | 50.9 | 64.0 | 52.7 | 53.9 | 51.1 | 48.3 | 53.7 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 49.1 | 46.0 | 51.6 | 41.1 | 49.3 | 48.4 | 44.8 | 46.6 | 62.6 | 50.2 | 52.3 | 48.4 | 46.2 | 49.9 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 49.4 | 47.5 | 50.9 | 42.7 | 50.5 | 49.9 | 46.9 | 47.4 | 57.9 | 47.4 | 54.6 | 49.8 | 45.8 | 50.1 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 53.3 | 50.7 | 55.5 | 46.6 | 55.0 | 49.6 | 50.8 | 51.3 | 61.9 | 53.3 | 55.2 | 54.1 | 53.2 | 55.1 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 50.2 | 48.2 | 51.9 | 45.3 | 51.7 | 47.0 | 48.8 | 48.1 | 57.2 | 49.6 | 51.8 | 50.0 | 50.5 | 52.0 |
Split 25%
Overall | Split | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Unseen devices | Seen devices | ||||||||||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy |
Accuracy / Unseen |
Accuracy / Seen |
D | S7 | S8 | S9 | S10 | A | B | C | S1 | S2 | S3 |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 37.7 | 34.4 | 40.4 | 32.0 | 37.1 | 37.9 | 30.6 | 34.5 | 50.4 | 39.2 | 44.1 | 34.9 | 35.7 | 38.2 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 54.5 | 51.3 | 57.2 | 49.4 | 54.9 | 55.2 | 48.4 | 48.6 | 66.1 | 55.7 | 59.6 | 53.4 | 53.2 | 55.4 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 52.0 | 49.1 | 54.5 | 44.2 | 52.6 | 54.9 | 45.8 | 47.7 | 63.0 | 53.2 | 57.7 | 51.3 | 48.1 | 53.9 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 54.9 | 51.8 | 57.4 | 48.3 | 55.3 | 55.8 | 48.9 | 50.8 | 66.8 | 55.4 | 60.6 | 53.0 | 52.3 | 56.2 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 57.0 | 54.4 | 59.3 | 49.0 | 59.2 | 54.1 | 53.6 | 56.1 | 64.8 | 57.9 | 59.4 | 57.9 | 56.2 | 59.3 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 58.1 | 56.0 | 59.8 | 51.2 | 61.0 | 54.8 | 55.4 | 57.7 | 65.7 | 58.7 | 60.0 | 58.6 | 56.6 | 59.4 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 57.6 | 54.9 | 59.8 | 50.6 | 59.9 | 55.0 | 53.7 | 55.4 | 65.9 | 59.0 | 59.6 | 58.0 | 56.5 | 59.6 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 53.9 | 51.9 | 55.5 | 45.7 | 57.5 | 54.8 | 50.7 | 51.0 | 66.5 | 56.0 | 58.0 | 52.1 | 47.5 | 53.2 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 53.8 | 47.3 | 59.1 | 25.5 | 57.0 | 57.0 | 45.2 | 51.8 | 55.8 | 56.9 | 60.4 | 60.4 | 60.1 | 61.2 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 53.3 | 46.7 | 58.7 | 25.9 | 55.9 | 56.2 | 44.9 | 50.7 | 57.4 | 57.4 | 60.4 | 58.1 | 58.9 | 60.0 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 53.6 | 47.4 | 58.8 | 30.3 | 56.6 | 55.0 | 43.9 | 51.3 | 57.9 | 56.9 | 59.1 | 58.8 | 59.4 | 60.8 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 53.3 | 50.1 | 55.9 | 45.1 | 53.5 | 50.0 | 49.2 | 52.6 | 65.1 | 56.4 | 55.4 | 53.9 | 50.4 | 54.5 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 58.6 | 55.6 | 61.1 | 49.1 | 59.7 | 57.6 | 54.9 | 56.9 | 69.7 | 61.2 | 62.8 | 56.8 | 56.0 | 60.1 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 58.9 | 56.3 | 61.1 | 52.2 | 60.1 | 58.4 | 55.6 | 55.5 | 69.4 | 60.9 | 62.3 | 56.5 | 57.2 | 60.3 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 59.1 | 56.4 | 61.3 | 50.1 | 60.0 | 57.6 | 57.0 | 57.6 | 69.2 | 61.1 | 62.9 | 57.8 | 56.1 | 60.7 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 58.0 | 56.6 | 59.1 | 50.8 | 60.6 | 56.5 | 57.1 | 58.2 | 64.5 | 56.6 | 59.2 | 58.4 | 56.0 | 60.3 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 57.5 | 56.4 | 58.5 | 50.1 | 60.5 | 56.1 | 57.3 | 57.8 | 64.1 | 55.1 | 58.7 | 58.3 | 55.0 | 59.7 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 57.3 | 55.7 | 58.6 | 49.5 | 60.0 | 55.4 | 56.2 | 57.5 | 63.8 | 56.5 | 58.1 | 57.8 | 56.3 | 59.4 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 55.8 | 52.2 | 58.7 | 42.3 | 57.9 | 56.2 | 52.2 | 52.3 | 66.1 | 57.7 | 59.6 | 56.5 | 54.9 | 57.6 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 55.9 | 52.4 | 58.7 | 42.8 | 57.5 | 56.4 | 52.8 | 52.6 | 66.1 | 57.9 | 59.6 | 56.5 | 54.6 | 57.7 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 53.8 | 49.3 | 57.5 | 42.4 | 57.1 | 55.4 | 44.4 | 47.3 | 65.1 | 57.6 | 58.3 | 55.2 | 52.2 | 56.4 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 57.3 | 54.0 | 60.1 | 49.9 | 59.4 | 57.0 | 50.7 | 53.0 | 67.0 | 58.8 | 60.7 | 58.2 | 55.5 | 60.1 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 56.6 | 52.9 | 59.7 | 42.9 | 60.3 | 58.4 | 51.4 | 51.6 | 66.4 | 59.1 | 61.4 | 56.1 | 55.7 | 59.7 | |
DCASE2024 baseline | 36 | 50.73 | 51.5 | 49.5 | 53.1 | 46.5 | 52.7 | 48.8 | 46.3 | 53.2 | 63.1 | 54.0 | 54.3 | 50.1 | 44.9 | 52.4 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 58.3 | 54.2 | 61.7 | 45.9 | 60.2 | 57.3 | 52.9 | 54.6 | 69.0 | 61.4 | 62.4 | 59.3 | 57.1 | 61.3 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 57.7 | 53.0 | 61.6 | 43.8 | 58.2 | 57.1 | 51.4 | 54.3 | 70.0 | 61.8 | 62.8 | 59.0 | 55.4 | 60.5 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 57.2 | 52.5 | 61.1 | 44.1 | 58.5 | 56.8 | 50.0 | 53.0 | 68.5 | 61.2 | 62.1 | 58.4 | 55.7 | 60.6 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 54.3 | 51.5 | 56.6 | 50.4 | 54.7 | 53.1 | 49.9 | 49.3 | 65.2 | 55.9 | 58.6 | 52.8 | 50.9 | 56.4 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 52.7 | 49.7 | 55.3 | 47.7 | 52.3 | 52.9 | 48.3 | 47.5 | 63.8 | 54.9 | 57.3 | 50.6 | 50.0 | 55.0 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 52.6 | 49.0 | 55.6 | 40.2 | 53.0 | 50.9 | 49.1 | 52.1 | 53.3 | 56.1 | 59.9 | 53.7 | 54.1 | 56.5 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 55.0 | 53.2 | 56.5 | 46.3 | 57.7 | 52.2 | 54.1 | 55.6 | 62.4 | 55.3 | 56.7 | 54.7 | 53.2 | 57.0 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 53.4 | 51.8 | 54.7 | 47.8 | 56.6 | 49.2 | 51.7 | 53.6 | 60.8 | 54.8 | 54.3 | 53.7 | 50.2 | 54.6 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 55.1 | 53.5 | 56.6 | 48.7 | 57.7 | 52.8 | 52.9 | 55.3 | 62.8 | 55.5 | 56.6 | 55.2 | 52.5 | 56.7 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 55.5 | 53.6 | 57.1 | 51.1 | 56.5 | 54.4 | 52.8 | 53.3 | 66.4 | 57.2 | 56.9 | 52.9 | 52.2 | 56.7 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 53.0 | 49.8 | 55.6 | 40.6 | 55.3 | 53.1 | 48.1 | 52.0 | 65.1 | 56.8 | 57.7 | 52.1 | 48.5 | 53.4 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 55.2 | 52.8 | 57.3 | 48.6 | 55.7 | 55.4 | 52.4 | 52.0 | 63.5 | 55.8 | 58.3 | 55.5 | 53.5 | 57.2 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 57.5 | 55.8 | 58.8 | 52.3 | 60.1 | 53.6 | 56.3 | 56.9 | 65.2 | 56.2 | 58.5 | 58.4 | 55.5 | 59.3 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 55.4 | 52.7 | 57.7 | 46.9 | 58.1 | 51.1 | 54.0 | 53.4 | 63.5 | 56.6 | 57.5 | 55.9 | 54.7 | 57.7 |
Split 50%
Overall | Split | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Unseen devices | Seen devices | ||||||||||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy |
Accuracy / Unseen |
Accuracy / Seen |
D | S7 | S8 | S9 | S10 | A | B | C | S1 | S2 | S3 |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 39.8 | 35.5 | 43.3 | 29.7 | 39.0 | 41.1 | 32.8 | 34.9 | 52.4 | 42.1 | 48.4 | 39.4 | 35.0 | 42.5 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 55.8 | 51.8 | 59.1 | 42.3 | 56.8 | 56.3 | 51.0 | 52.6 | 67.4 | 58.5 | 61.8 | 56.0 | 54.0 | 56.6 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 53.9 | 48.8 | 58.2 | 39.5 | 54.4 | 56.1 | 44.6 | 49.4 | 66.9 | 58.3 | 61.6 | 54.9 | 51.0 | 56.4 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 55.2 | 50.7 | 58.8 | 43.7 | 56.4 | 55.7 | 49.3 | 48.6 | 67.1 | 58.6 | 61.9 | 56.4 | 52.8 | 56.4 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 59.5 | 56.8 | 61.7 | 50.7 | 61.1 | 57.9 | 56.4 | 57.8 | 67.2 | 59.7 | 61.7 | 60.6 | 59.5 | 61.7 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 59.0 | 56.1 | 61.5 | 48.7 | 60.0 | 57.4 | 57.7 | 56.8 | 67.3 | 59.6 | 61.3 | 60.5 | 59.0 | 61.1 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 59.2 | 56.3 | 61.6 | 49.5 | 60.5 | 55.6 | 57.6 | 58.2 | 66.8 | 59.7 | 61.8 | 60.7 | 59.5 | 61.2 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 54.7 | 50.6 | 58.1 | 48.0 | 55.0 | 54.5 | 45.7 | 49.9 | 67.5 | 58.7 | 60.3 | 53.8 | 53.6 | 55.0 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 57.0 | 50.0 | 62.7 | 29.4 | 60.0 | 58.7 | 47.3 | 54.9 | 60.9 | 60.9 | 63.7 | 63.3 | 63.5 | 64.0 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 55.7 | 49.1 | 61.2 | 30.0 | 57.5 | 58.6 | 46.9 | 52.4 | 60.2 | 60.0 | 63.3 | 61.8 | 60.1 | 62.0 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 56.5 | 50.0 | 61.9 | 36.8 | 58.2 | 57.9 | 45.0 | 51.9 | 60.7 | 59.9 | 63.6 | 62.1 | 62.1 | 63.2 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 56.7 | 53.6 | 59.4 | 46.8 | 58.0 | 55.0 | 53.3 | 54.9 | 67.4 | 59.8 | 58.8 | 57.2 | 55.1 | 58.0 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 60.4 | 57.3 | 62.9 | 48.1 | 62.3 | 59.5 | 58.1 | 58.6 | 71.0 | 62.5 | 63.6 | 60.2 | 58.0 | 62.2 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 60.2 | 57.7 | 62.4 | 52.7 | 62.0 | 58.1 | 56.6 | 59.0 | 70.3 | 62.0 | 63.7 | 59.5 | 57.6 | 61.3 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 60.0 | 56.7 | 62.8 | 48.5 | 61.0 | 58.0 | 57.3 | 58.7 | 70.4 | 62.6 | 63.7 | 60.0 | 58.8 | 61.3 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 59.7 | 57.4 | 61.6 | 49.3 | 61.4 | 57.6 | 59.4 | 59.6 | 66.6 | 59.2 | 61.2 | 61.2 | 59.3 | 62.0 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 60.0 | 58.2 | 61.6 | 51.0 | 62.4 | 58.1 | 59.6 | 60.0 | 66.6 | 58.7 | 60.8 | 61.6 | 59.5 | 62.3 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 59.0 | 56.9 | 60.8 | 48.0 | 61.0 | 56.9 | 58.7 | 59.6 | 66.1 | 58.3 | 60.2 | 60.7 | 58.5 | 61.2 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 58.4 | 54.8 | 61.3 | 46.1 | 60.6 | 57.4 | 55.0 | 55.1 | 67.8 | 60.7 | 62.5 | 59.6 | 56.9 | 60.2 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 58.4 | 54.8 | 61.4 | 46.7 | 60.6 | 56.9 | 54.8 | 55.3 | 67.6 | 61.0 | 63.3 | 59.2 | 56.8 | 60.6 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 56.4 | 52.4 | 59.8 | 46.6 | 59.4 | 57.6 | 49.6 | 48.9 | 67.1 | 57.8 | 60.3 | 59.1 | 56.0 | 58.2 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 58.1 | 53.2 | 62.2 | 49.5 | 58.9 | 57.6 | 51.4 | 48.6 | 69.2 | 61.6 | 62.2 | 59.6 | 59.8 | 60.8 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 57.2 | 52.6 | 61.0 | 45.8 | 58.4 | 56.8 | 49.7 | 52.4 | 68.6 | 59.8 | 61.5 | 59.1 | 57.0 | 59.9 | |
DCASE2024 baseline | 36 | 50.73 | 54.4 | 51.1 | 57.2 | 44.4 | 55.1 | 53.3 | 48.4 | 54.1 | 66.6 | 58.6 | 58.0 | 53.8 | 50.0 | 56.2 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 60.6 | 56.5 | 64.1 | 49.6 | 61.6 | 59.7 | 54.8 | 56.6 | 71.0 | 64.4 | 65.0 | 61.2 | 59.3 | 63.4 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 59.8 | 55.2 | 63.7 | 45.7 | 61.9 | 59.3 | 52.5 | 56.7 | 70.1 | 63.1 | 64.3 | 61.6 | 59.9 | 63.1 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 59.2 | 54.0 | 63.6 | 45.7 | 60.0 | 57.1 | 51.0 | 56.1 | 70.4 | 62.6 | 64.3 | 61.7 | 60.3 | 62.1 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 54.6 | 51.6 | 57.1 | 50.6 | 54.8 | 54.5 | 50.5 | 47.7 | 66.1 | 56.5 | 59.6 | 53.5 | 51.6 | 55.5 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 53.9 | 50.6 | 56.6 | 49.9 | 53.5 | 53.7 | 48.5 | 47.3 | 64.9 | 56.7 | 58.7 | 52.7 | 50.5 | 56.1 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 54.0 | 50.9 | 56.6 | 44.9 | 54.6 | 51.8 | 49.9 | 53.4 | 55.1 | 58.1 | 61.0 | 54.8 | 53.9 | 56.8 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 57.4 | 55.5 | 59.1 | 49.8 | 59.9 | 54.6 | 56.0 | 56.9 | 65.0 | 58.3 | 59.1 | 57.4 | 56.1 | 58.4 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 55.5 | 53.2 | 57.5 | 48.2 | 58.0 | 50.7 | 52.8 | 56.3 | 64.3 | 57.0 | 57.1 | 55.0 | 54.4 | 57.0 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 57.2 | 54.9 | 59.1 | 50.2 | 59.0 | 54.0 | 54.1 | 57.2 | 64.8 | 58.5 | 59.0 | 58.2 | 55.9 | 58.1 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 56.2 | 53.1 | 58.8 | 45.4 | 57.4 | 55.7 | 52.9 | 54.1 | 67.2 | 58.9 | 59.6 | 56.2 | 54.2 | 56.6 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 56.4 | 53.1 | 59.1 | 44.6 | 58.5 | 54.6 | 52.9 | 54.8 | 68.3 | 58.2 | 58.5 | 57.3 | 53.9 | 58.2 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 55.4 | 51.7 | 58.5 | 45.6 | 55.0 | 54.7 | 50.4 | 53.1 | 62.3 | 57.0 | 60.3 | 55.7 | 57.3 | 58.1 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 59.4 | 56.8 | 61.5 | 53.0 | 61.7 | 55.8 | 57.2 | 56.3 | 67.4 | 59.9 | 61.6 | 59.7 | 59.3 | 61.0 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 58.3 | 55.3 | 60.8 | 46.0 | 60.8 | 54.2 | 58.0 | 57.3 | 65.6 | 59.2 | 60.2 | 60.3 | 58.5 | 61.1 |
Split 100%
Overall | Split | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Unseen devices | Seen devices | ||||||||||||||||
Rank | Submission label |
Technical Report |
System rank |
Rank score | Accuracy |
Accuracy / Unseen |
Accuracy / Seen |
D | S7 | S8 | S9 | S10 | A | B | C | S1 | S2 | S3 |
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.38 | 41.1 | 35.8 | 45.5 | 30.5 | 40.3 | 41.4 | 34.0 | 33.0 | 54.0 | 47.0 | 48.7 | 41.3 | 38.2 | 43.6 | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 51.99 | 57.1 | 51.8 | 61.6 | 42.9 | 59.3 | 57.1 | 48.5 | 51.0 | 68.6 | 61.2 | 63.7 | 58.9 | 57.2 | 60.1 | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.70 | 56.7 | 51.4 | 61.2 | 41.8 | 57.8 | 59.2 | 47.8 | 50.4 | 68.7 | 61.1 | 62.6 | 59.2 | 55.9 | 59.5 | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.05 | 57.3 | 52.3 | 61.4 | 43.7 | 58.9 | 57.6 | 50.9 | 50.5 | 68.1 | 61.5 | 63.1 | 59.3 | 56.7 | 60.0 | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.40 | 60.6 | 57.4 | 63.2 | 50.3 | 61.9 | 57.6 | 57.3 | 59.9 | 68.6 | 62.6 | 62.8 | 61.8 | 61.0 | 62.5 | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.04 | 62.1 | 59.4 | 64.4 | 54.6 | 64.1 | 60.8 | 57.7 | 59.9 | 69.5 | 63.2 | 64.4 | 63.0 | 62.5 | 63.5 | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.87 | 61.1 | 57.7 | 63.9 | 51.7 | 62.6 | 58.2 | 57.4 | 58.8 | 69.5 | 62.0 | 63.6 | 62.6 | 62.1 | 63.5 | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.12 | 57.0 | 53.3 | 60.0 | 42.3 | 59.0 | 58.2 | 52.2 | 54.6 | 67.8 | 60.5 | 59.9 | 57.8 | 54.8 | 59.5 | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.52 | 60.1 | 53.1 | 66.0 | 36.4 | 62.3 | 60.7 | 53.4 | 52.7 | 67.5 | 65.0 | 66.2 | 65.7 | 65.5 | 66.0 | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.66 | 58.1 | 51.3 | 63.7 | 32.9 | 60.8 | 59.6 | 52.9 | 50.4 | 63.3 | 62.0 | 64.3 | 63.9 | 63.6 | 65.0 | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.05 | 58.1 | 51.6 | 63.4 | 31.9 | 61.2 | 60.2 | 53.4 | 51.6 | 63.1 | 61.8 | 64.1 | 63.7 | 63.7 | 64.2 | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.82 | 58.7 | 55.2 | 61.7 | 47.4 | 58.6 | 58.0 | 54.6 | 57.2 | 69.4 | 62.6 | 61.0 | 59.4 | 57.8 | 59.9 | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.05 | 61.5 | 58.6 | 63.8 | 51.4 | 62.6 | 60.6 | 59.2 | 59.4 | 71.8 | 63.6 | 64.6 | 61.4 | 59.1 | 62.7 | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.23 | 61.8 | 58.6 | 64.5 | 52.4 | 62.3 | 60.9 | 58.3 | 58.9 | 71.9 | 64.0 | 65.3 | 62.2 | 60.5 | 63.2 | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.22 | 61.3 | 58.4 | 63.8 | 51.1 | 62.8 | 60.0 | 59.4 | 58.7 | 71.6 | 63.1 | 65.1 | 61.3 | 58.9 | 62.7 | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.05 | 61.5 | 59.1 | 63.5 | 51.8 | 63.4 | 58.6 | 60.5 | 61.4 | 68.3 | 60.4 | 62.4 | 63.4 | 62.1 | 64.2 | |
MALACH24_JKU_task1_2 | David2024 | 6 | 56.96 | 61.3 | 59.5 | 62.7 | 53.4 | 63.9 | 58.5 | 60.9 | 60.6 | 67.5 | 59.3 | 62.0 | 63.2 | 60.6 | 63.9 | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.47 | 60.9 | 58.8 | 62.7 | 50.4 | 63.0 | 58.7 | 60.4 | 61.2 | 67.2 | 60.0 | 61.6 | 62.5 | 61.4 | 63.3 | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.79 | 59.9 | 55.6 | 63.4 | 50.5 | 61.4 | 57.7 | 54.8 | 53.4 | 69.5 | 62.9 | 63.9 | 61.6 | 60.3 | 62.3 | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.79 | 59.9 | 55.7 | 63.4 | 51.1 | 61.4 | 57.7 | 55.1 | 53.3 | 69.7 | 62.7 | 63.9 | 61.7 | 59.9 | 62.5 | |
Park_KT_task1_1 | Park2024 | 20 | 53.67 | 56.9 | 52.2 | 60.8 | 45.8 | 59.3 | 54.2 | 49.2 | 52.5 | 66.2 | 60.1 | 60.5 | 60.3 | 57.4 | 60.1 | |
Park_KT_task1_2 | Park2024 | 13 | 55.36 | 60.3 | 56.4 | 63.6 | 53.1 | 62.6 | 59.1 | 52.3 | 54.7 | 68.8 | 62.9 | 63.3 | 62.3 | 60.8 | 63.6 | |
Park_KT_task1_3 | Park2024 | 16 | 54.79 | 59.8 | 54.9 | 63.9 | 48.0 | 62.6 | 58.9 | 52.1 | 52.8 | 69.0 | 63.5 | 63.7 | 62.8 | 61.4 | 62.9 | |
DCASE2024 baseline | 36 | 50.73 | 56.8 | 53.9 | 59.3 | 47.0 | 58.4 | 56.0 | 53.1 | 54.9 | 66.7 | 61.1 | 60.3 | 56.5 | 54.2 | 57.0 | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.15 | 61.7 | 57.2 | 65.5 | 44.9 | 64.0 | 60.3 | 58.3 | 58.6 | 71.2 | 65.0 | 65.2 | 64.1 | 62.8 | 64.5 | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.13 | 61.6 | 56.9 | 65.5 | 47.9 | 62.9 | 60.3 | 55.8 | 57.7 | 71.8 | 64.9 | 66.1 | 64.0 | 62.4 | 63.9 | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.21 | 61.7 | 56.4 | 66.1 | 47.2 | 64.3 | 59.8 | 53.4 | 57.1 | 72.2 | 65.2 | 66.0 | 64.5 | 63.6 | 64.9 | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.65 | 55.2 | 50.7 | 58.9 | 48.9 | 54.7 | 53.4 | 49.7 | 46.7 | 65.5 | 59.2 | 60.5 | 56.7 | 53.9 | 57.4 | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.92 | 55.0 | 50.9 | 58.4 | 47.7 | 55.1 | 54.6 | 50.3 | 46.8 | 65.9 | 58.6 | 60.6 | 56.1 | 53.3 | 55.7 | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.71 | 56.1 | 52.2 | 59.3 | 45.0 | 56.9 | 54.9 | 47.8 | 56.5 | 59.1 | 58.5 | 64.0 | 57.7 | 56.5 | 60.0 | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.06 | 59.4 | 57.2 | 61.2 | 51.6 | 61.0 | 57.1 | 58.1 | 58.1 | 66.5 | 60.6 | 60.0 | 60.4 | 58.2 | 61.7 | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.68 | 58.8 | 56.3 | 60.9 | 51.0 | 61.3 | 55.4 | 56.0 | 57.9 | 65.4 | 60.6 | 60.4 | 60.0 | 57.7 | 61.3 | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.91 | 58.4 | 56.3 | 60.2 | 50.3 | 60.8 | 54.6 | 56.1 | 59.6 | 65.6 | 59.3 | 59.3 | 59.3 | 56.9 | 60.4 | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.35 | 58.3 | 54.9 | 61.2 | 46.9 | 57.7 | 58.7 | 53.1 | 58.0 | 68.5 | 61.6 | 61.4 | 59.0 | 56.8 | 60.0 | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.94 | 58.8 | 54.8 | 62.1 | 44.8 | 60.2 | 59.0 | 55.5 | 54.2 | 69.6 | 62.0 | 62.2 | 59.7 | 58.0 | 61.5 | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.13 | 59.3 | 56.7 | 61.5 | 52.6 | 60.4 | 58.1 | 56.2 | 56.4 | 66.6 | 59.6 | 62.7 | 60.2 | 58.7 | 61.5 | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.12 | 61.6 | 58.9 | 63.8 | 53.6 | 63.8 | 58.0 | 60.1 | 59.1 | 69.2 | 61.9 | 63.5 | 62.2 | 62.2 | 63.8 | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.19 | 61.1 | 58.2 | 63.5 | 50.7 | 63.3 | 58.6 | 59.3 | 59.4 | 68.8 | 61.8 | 62.3 | 61.7 | 62.5 | 63.7 |
System characteristics
General characteristics
Rank | Submission label |
Technical Report |
Rank | Rank score |
Sampling rate |
Data augmentation |
Features |
---|---|---|---|---|---|---|---|
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.4 | 22.05kHz | sound division | mel spectrogram | |
BAI_JLESS_task1_1 | Bai2024 | 32 | 52.0 | 32kHz | freq-mixstyle, FMix, frequency masking | log-mel energies | |
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.7 | 32kHz | freq-mixstyle, mixup, frequency masking | log-mel energies | |
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.1 | 32kHz | freq-mixstyle, fmix, frequency masking | log-mel energies | |
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.4 | 32kHz | mixup, freq-mixstyle, dir augmentation | log-mel energies | |
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.0 | 32kHz | mixup, freq-mixstyle, dir augmentation | log-mel energies | |
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.9 | 32kHz | mixup, freq-mixstyle, dir augmentation | log-mel energies | |
Chen_GXU_task1_1 | Chen2024 | 29 | 52.1 | 32kHz | freq-mixstyle, pitch shifting, time rolling | log-mel energies | |
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.5 | 44.1kHz | mix-style, specaugment, spectrum modulation | log-mel energies | |
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.7 | 44.1kHz | mix-style, specaugment, spectrum modulation | log-mel energies | |
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.0 | 44.1kHz | mix-style, specaugment, spectrum modulation | log-mel energies | |
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.8 | 32kHz | freq-mixstyle, time rolling | log-mel energies | |
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.1 | 32kHz | freq-mixstyle, frequency masking, time masking, time rolling | log-mel energies | |
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.2 | 32kHz | freq-mixstyle, frequency masking, time masking, time rolling | log-mel energies | |
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.2 | 32kHz | freq-mixstyle, frequency masking, time masking, time rolling | log-mel energies | |
MALACH24_JKU_task1_1 | David2024 | 5 | 57.0 | 32kHz | freq-mixstyle, frequency masking, time rolling, DIR augmentation | log-mel energies | |
MALACH24_JKU_task1_2 | David2024 | 6 | 57.0 | 32kHz | freq-mixstyle, frequency masking, time rolling, DIR augmentation, FilterAugment | log-mel energies | |
MALACH24_JKU_task1_3 | David2024 | 7 | 56.5 | 32kHz | freq-mixstyle, frequency masking, time rolling, DIR augmentation | log-mel energies | |
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.8 | 32kHz | freq-mixstyle, dir augmentation, time rolling | log-mel energies | |
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.8 | 32kHz | freq-mixstyle, dir augmentation, time rolling | log-mel energies | |
Park_KT_task1_1 | Park2024 | 20 | 53.7 | 32kHz | frequency masking, freq-mixstyle, dir augmentation, time rolling | log-mel energies | |
Park_KT_task1_2 | Park2024 | 13 | 55.4 | 32kHz | frequency masking, freq-mixstyle, dir augmentation, time rolling | log-mel energies | |
Park_KT_task1_3 | Park2024 | 16 | 54.8 | 32kHz | frequency masking, freq-mixstyle, dir augmentation, time rolling | log-mel energies | |
DCASE2024 baseline | 36 | 50.7 | 32kHz | freq-mixstyle, pitch shifting, time rolling | log-mel energies | ||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.2 | 32kHz | freq-mixstyle, dir augmentation, time rolling, playback | log-mel energies | |
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.1 | 32kHz | freq-mixstyle, dir augmentation, time rolling, playback | log-mel energies | |
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.2 | 32kHz | freq-mixstyle, dir augmentation, time rolling, playback | log-mel energies | |
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.7 | 16kHz | freq-mixstyle | log-mel spectrogram | |
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.9 | 16kHz | freq-mixstyle | log-mel spectrogram | |
Tan_CISS_task1_1 | Tan2024 | 34 | 51.7 | 44.1kHz | freq-mixstyle, device impulse response, Specaug | log-mel energies | |
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.1 | 32kHz | freq-mixstyle, time rolling, dir augmentation | log-mel energies | |
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.7 | 32kHz | freq-mixstyle, time rolling, dir augmentation | log-mel energies | |
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.9 | 32kHz | freq-mixstyle, time rolling, dir augmentation | log-mel energies | |
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.4 | 32kHz | freq-mixstyle, pitch shifting, time rolling | log-mel energies | |
Yan_NPU_task1_1 | Yan2024 | 23 | 52.9 | 32kHz | freq-mixstyle, frequency masking, time rolling | log-mel energies | |
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.1 | 44.1kHz | freq-mixstyle, mixup, device impulse response augmentation | log-mel energies | |
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.1 | 32kHz | freq-mixstyle, mixup, device impulse response augmentation, frequency masking | log-mel energies | |
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.2 | 32kHz | freq-mixstyle, mixup, device impulse response augmentation, frequency masking | log-mel energies |
Machine learning characteristics
Rank | Code |
Technical Report |
Rank | Rank score |
External data usage |
External data sources |
Model complexity |
Model MACS |
Classifier |
Decision making |
Framework | Pipeline | Split adaptations | System adaptations |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Auzanneau_CEA_task1_1 | Auzanneau2024 | 38 | 37.4 | 114988 | 13509354 | CNN Yolov8 | pytorch | training | batch size | division of sound samples, vote | ||||
BAI_JLESS_task1_1 | Bai2024 | 32 | 52.0 | pre-trained model | 126952 | 28893268 | Dymn,CP-Mobile | pytorch | training | |||||
BAI_JLESS_task1_2 | Bai2024 | 37 | 50.7 | pre-trained model | 126952 | 28893268 | Dymn,CP-Mobile | pytorch | training | |||||
BAI_JLESS_task1_3 | Bai2024 | 30 | 52.1 | pre-trained model | 126952 | 28893268 | Dymn,CP-Mobile | pytorch | training | |||||
Cai_XJTLU_task1_1 | Cai2024 | 12 | 55.4 | dataset | AudioSet, MicIRP | 126858 | 29419648 | TF-SepNet | pytorch-lightning | train teachers, ensemble teachers, train student using knowledge distillation, post-training static quantization | lr | knowledge distillation | ||
Cai_XJTLU_task1_2 | Cai2024 | 10 | 56.0 | dataset | AudioSet, MicIRP | 126858 | 29419648 | TF-SepNet | pytorch-lightning | train teachers, ensemble teachers, train student using knowledge distillation, post-training static quantization | lr | knowledge distillation | ||
Cai_XJTLU_task1_3 | Cai2024 | 11 | 55.9 | dataset | AudioSet, MicIRP | 126858 | 29419648 | TF-SepNet | pytorch-lightning | train teachers, ensemble teachers, train student using knowledge distillation, post-training static quantization | lr | knowledge distillation | ||
Chen_GXU_task1_1 | Chen2024 | 29 | 52.1 | 63900 | 29419156 | RF-regularized CNN | pytorch | training | ||||||
Chen_SCUT_task1_1 | Chen2024a | 28 | 52.5 | 117870 | 16591488 | RF-regularized CNN,Transformer | pytorch | train teachers,ensemble teachers,train student using knowledge distillation,quantization-aware training | lr, the weight coefficient and temperature coefficient of knowledge distillation | architecture,model size | ||||
Chen_SCUT_task1_2 | Chen2024a | 35 | 51.7 | 122294 | 11210976 | RF-regularized CNN,Transformer | pytorch | train teachers,ensemble teachers,train student using knowledge distillation,quantization-aware training | lr, the weight coefficient and temperature coefficient of knowledge distillation | architecture,model size | ||||
Chen_SCUT_task1_3 | Chen2024a | 31 | 52.0 | 69782 | 10068192 | RF-regularized CNN,Transformer | pytorch | train teachers,ensemble teachers,train student using knowledge distillation,quantization-aware training | lr, the weight coefficient and temperature coefficient of knowledge distillation | architecture,model size | ||||
Gao_UniSA_task1_1 | Gao2024 | 25 | 52.8 | 61148 | 29428372 | MobileNet | pytorch | training | batch size, lr | |||||
Han_SJTUTHU_task1_1 | Bing2024 | 3 | 58.1 | pre-trained model | PaSST | 63748 | 29982132 | CNN | pytorch | train teachers, ensemble teachers, train student using knowledge distillation, pruning, train student using knowledge distillation | ||||
Han_SJTUTHU_task1_2 | Bing2024 | 1 | 58.2 | pre-trained model | PaSST | 63215 | 29221122 | CNN | pytorch | train teachers, ensemble teachers, train student using knowledge distillation, pruning, train student using knowledge distillation, pruning, train student using knowledge distillation | ||||
Han_SJTUTHU_task1_3 | Bing2024 | 2 | 58.2 | pre-trained model | PaSST | 63875 | 29840890 | CNN | pytorch | train teachers, ensemble teachers, train student using knowledge distillation, pruning, train student using knowledge distillation | ||||
MALACH24_JKU_task1_1 | David2024 | 5 | 57.0 | dataset | MicIRP, AudioSet | 61148 | 29419156 | RF-regularized CNN | pytorch, pytorch-lightning | pretrain student on AudioSet, train pretrained student, train teachers, ensemble teachers, train student using knowledge distillation | knowledge distillation | |||
MALACH24_JKU_task1_2 | David2024 | 6 | 57.0 | pre-trained model, dataset | MicIRP, AudioSet, PaSST | 61148 | 29419156 | RF-regularized CNN, Transformer | pytorch, pytorch-lightning | pretrain student and PaSST on AudioSet, train pretrained student, train teachers, ensemble teachers, train student using knowledge distillation | lr, epochs, warmup steps | knowledge distillation, PaSST, data augmentations | ||
MALACH24_JKU_task1_3 | David2024 | 7 | 56.5 | dataset | MicIRP, AudioSet, PaSST | 61148 | 29419156 | RF-regularized CNN | pytorch, pytorch-lightning | pretrain student and on AudioSet, train pretrained student, train teachers, ensemble teachers, train student using knowledge distillation | knowledge distillation | |||
OO_NTUPRDCSG_task1_1 | Oo2024 | 17 | 54.8 | 116842 | 29407896 | CNN, Ensemble | pytorch | training, quantization-aware training, enssemble | ||||||
OO_NTUPRDCSG_task1_2 | Oo2024 | 15 | 54.8 | 116842 | 29407896 | CNN, Ensemble | pytorch | training, quantization-aware training, enssemble | ||||||
Park_KT_task1_1 | Park2024 | 20 | 53.7 | dataset | MicIRP | 87672 | 28568272 | GhostRes2Net | pytorch | training | weight quantization | |||
Park_KT_task1_2 | Park2024 | 13 | 55.4 | dataset | MicIRP | 63992 | 26480312 | GhostRes2Net | pytorch | training | model_size | |||
Park_KT_task1_3 | Park2024 | 16 | 54.8 | dataset, pre-trained model | EfficientAT, PaSST, MicIRP | 63992 | 26480312 | GhostRes2Net | pytorch | alternately train teacher and student model at each training step (online knowledge distillation) | knowledge distillation | |||
DCASE2024 baseline | 36 | 50.7 | 61148 | 29419156 | RF-regularized CNN | pytorch | training | |||||||
Shao_NEPUMSE_task1_1 | Shao2024 | 4 | 57.2 | 107457 | 16911324 | Mamba, Inverted residual block | pytorch | train student using knowledge distillation, quantization-aware training | ||||||
Shao_NEPUMSE_task1_2 | Shao2024 | 8 | 56.1 | 121925 | 17272736 | Mamba, Inverted residual block | pytorch | train student using knowledge distillation, quantization-aware training | ||||||
Shao_NEPUMSE_task1_3 | Shao2024 | 14 | 55.2 | 126410 | 16785856 | Mamba, Inverted residual block | pytorch | train student using knowledge distillation, quantization-aware training | ||||||
Surkov_ITMO_task1_1 | Surkov2024 | 27 | 52.7 | dataset, pre-trained model | EfficientAT, AudioSet | 61148 | 21896340 | CNN, CRNN | pytorch, pytorch-lightning | train teacher using mean-teacher SSL, train student using knowledge distillation | external unlabeled data size | |||
Surkov_ITMO_task1_2 | Surkov2024 | 33 | 51.9 | dataset, pre-trained model | EfficientAT, AudioSet | 61148 | 21896340 | CNN, CRNN | pytorch, pytorch-lightning | train teacher using mean-teacher SSL, train student using knowledge distillation | external unlabeled data size | |||
Tan_CISS_task1_1 | Tan2024 | 34 | 51.7 | 61148 | 29419156 | CNN | pytorch | training | ||||||
Truchan_LUH_task1_1 | Truchan2024 | 22 | 53.1 | MicIRP | 47946 | 29747914 | CNN | pytorch | training | architecture | ||||
Truchan_LUH_task1_2 | Truchan2024 | 26 | 52.7 | MicIRP | 47946 | 29747914 | CNN | pytorch | training | architecture | ||||
Truchan_LUH_task1_3 | Truchan2024 | 24 | 52.9 | MicIRP | 47946 | 29747914 | CNN | pytorch | training, discard dominant features | representation learning | ||||
Werning_UPBNT_task1_1 | Werning2024 | 18 | 54.4 | dataset, pre-trained model, embeddings | AudioSet | 61148 | 29419156 | RF-regularized CNN | pytorch | dataset pruning, knowledge distillation, fine-tuning | ||||
Yan_NPU_task1_1 | Yan2024 | 23 | 52.9 | 31290 | 29675722 | CNN | pytorch | training | ||||||
Yeo_NTU_task1_1 | Yeo2024 | 21 | 53.1 | MicIRP | MicIRP | 35062 | 22649568 | RF-regularized CNN | pytorch | training | ||||
Yeo_NTU_task1_2 | Yeo2024 | 9 | 56.1 | MicIRP, pre-trained model | MicIRP, AudioSet | 61148 | 29419156 | RF-regularized CNN, PaSST | pytorch | train teachers, ensemble teachers, train student using knowledge distillation | ||||
Yeo_NTU_task1_3 | Yeo2024 | 19 | 54.2 | MicIRP, pre-trained model | MicIRP, AudioSet | 61148 | 29419156 | RF-regularized CNN, PaSST | pytorch | train teachers, ensemble teachers, train student using knowledge distillation, train student using FocusNet | knowledge distillation, FocusNet |
Technical reports
Low-Complexity Classification of Acoustic Scenes Based on Reduced Sound Duration and Voting
Fabrice Auzanneau
CEA List, Palaiseau, France
Auzanneau_CEA_task1_1
Low-Complexity Classification of Acoustic Scenes Based on Reduced Sound Duration and Voting
Fabrice Auzanneau
CEA List, Palaiseau, France
Abstract
This report describes our approach to the DCASE (Detection and Classification of Acoustic Scenes and Events) Challenge for Task 1 ”Low-Complexity Acoustic Scene Classification” [1]. The task 1 of the DCASE challenge aims to classify acoustic scenes using devices with low computational power and memory. This task involves a combination of precision and complexity, which encourages participants to build efficient systems for acoustic scene classification (ASC). This year, an additional challenging real-world situation has been added: the limited availability of labeled data. The systems must take into account five scenarios that progressively limit the amount of training data. The largest set corresponds to the entire training data set, while the smallest contains only 5% of the audio clips in the training data set. Our approach is a combination of the use of a deep neural network and statistical processing. A network based on the YoloV8 topology is pruned to ensure that it meets the memory constraints of the challenge. The network is trained on half-length data (500ms), then quantized to reduce its size. During inference, each one-second sound is divided into two 500ms parts. Each half is used to make an inference, and both results are combined to improve the classification result. In the event of disagreement, a voting strategy is applied to decide on the correct category. Classification performance is thus improved by 2% for the smallest subset and by over 5% for the largest one.
System characteristics
Sampling rate | 22.05kHz |
Data augmentation | sound division |
Features | mel spectrogram |
Classifier | CNN Yolov8 |
Hierarchical Acoustic Scene Classification with Knowledge Distillation and Pre-Trained Dynamic Networks
Jisheng Bai1, Mou Wang2, Ee-Leng Tan3, Jin Jie Sean Yeo3, Jun Wei Yeow3, Santi Peksi3, Dongyuan Shi3, Woon-Seng Gan3 and Jianfeng Chen1
1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China, 2Chinese Academy of Sciences, Institute of Acoustics, Beijing, China, 3Nanyang Technological University, Smart Nation TRANS Lab, Singapore
BAI_JLESS_task1_1 BAI_JLESS_task1_2 BAI_JLESS_task1_3
Hierarchical Acoustic Scene Classification with Knowledge Distillation and Pre-Trained Dynamic Networks
Jisheng Bai1, Mou Wang2, Ee-Leng Tan3, Jin Jie Sean Yeo3, Jun Wei Yeow3, Santi Peksi3, Dongyuan Shi3, Woon-Seng Gan3 and Jianfeng Chen1
1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China, 2Chinese Academy of Sciences, Institute of Acoustics, Beijing, China, 3Nanyang Technological University, Smart Nation TRANS Lab, Singapore
Abstract
Previous acoustic scene classification (ASC) tasks in the DCASE challenge focused on two important aspects: recording device mismatch and low-complexity systems. However, implementing ASC systems in real-life applications remains challenging due to the time-consuming process of collecting large amounts of labeled data for system development. DCASE2024 Task 1 is proposed to explore possible solutions that can efficiently utilize varying ratios of available training data while maintaining ASC performance. In this paper, we propose a hierarchical learning-based method to develop ASC systems using knowledge distillation and pre-trained dynamic networks. Specifically, we fine-tune the dynamic networks, which are pre-trained on Audioset, with an additional classification task and various data augmentation methods. We then employ an ensemble of fine-tuned dynamic networks to teach CP-Mobile networks. Finally, we fine-tune the CP-Mobile networks using quantization-aware training to achieve low-complexity models. The experimental results demonstrate that the proposed systems outperform the baseline system.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, FMix, frequency masking; freq-mixstyle, mixup, frequency masking; freq-mixstyle, fmix, frequency masking |
Features | log-mel energies |
Classifier | Dymn,CP-Mobile |
Data-Efficient Acoustic Scene Classification via Ensemble Teachers Distillation and Pruning
Han Bing1, Huang Wen1, Chen Zhengyang1, Jiang Anbai2, Chen Xie1, Fan Pingyi2, Lu Cheng3, Lv Zhiqiang4, Liu Jia2, Zhang Wei-Qiang2 and Qian Yanmin1
1Shanghai Jiao Tong University, Shanghai, China, 2Tsinghua University, Beijing, China, 3North China Electric Power University, Beijing, China, 4Huakong AI, Beijing, China
Han_SJTUTHU_task1_1 Han_SJTUTHU_task1_2 Han_SJTUTHU_task1_3
Data-Efficient Acoustic Scene Classification via Ensemble Teachers Distillation and Pruning
Han Bing1, Huang Wen1, Chen Zhengyang1, Jiang Anbai2, Chen Xie1, Fan Pingyi2, Lu Cheng3, Lv Zhiqiang4, Liu Jia2, Zhang Wei-Qiang2 and Qian Yanmin1
1Shanghai Jiao Tong University, Shanghai, China, 2Tsinghua University, Beijing, China, 3North China Electric Power University, Beijing, China, 4Huakong AI, Beijing, China
Abstract
The goal of the acoustic scene classification task is to classify recordings into one of the ten predefined acous- tic scene classes. In this report, we describe the SJTU- THU team’s submission for Task 1 Data-Efficient Low- Complexity Acoustic Scene Classification of the DCASE 2024 challenge. Firstly, we design a new architecture named SSCP-Mobile (spatially separable) by enhancing the CP- Mobile with spatially separable convolution structure and achieve lower computation expenses and better performance. Then we adopt several pretrained PaSST models as ensemble teachers to teach CP-Mobile with knowledge distillation. Af- ter that, We use model pruning techniques to trim the model to meet the computational and parameter requirements of the competition. Finally, we will use knowledge distillation tech- niques again to fine tune the pruned model and further im- prove its performance.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, frequency masking, time masking, time rolling |
Features | log-mel energies |
Classifier | CNN |
DCASE2024 Task1 Submission: Data-Efficient Acoustic Scene Classification with Self-Supervised Teachers
Yiqiang Cai1, Minyu Lin1, Shengchen Li1 and Xi Shao2
1School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China, 2College of Tellecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
Cai_XJTLU_task1_1 Cai_XJTLU_task1_2 Cai_XJTLU_task1_3
DCASE2024 Task1 Submission: Data-Efficient Acoustic Scene Classification with Self-Supervised Teachers
Yiqiang Cai1, Minyu Lin1, Shengchen Li1 and Xi Shao2
1School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China, 2College of Tellecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
Abstract
The task 1 of the DCASE Challenge 2024 focuses on developing low-complexity acoustic scene classification (ASC) systems with limited labeled training data. This technical report details the systems we submitted. We firstly use self-supervised learning (SSL) techniques to pre-train large teacher models on AudioSet. The self-supervised teachers are then fine-tuned on ASC dataset using different weight-freezing strategies. Knowledge distillation is employed to transfer the self-supervised knowledge to a low-complexity ASC model. The student model, TF-SepNet-64, is designed to meet the upper complexity limit of the challenge requirements. To mitigate the device shift problem, we used Freq-MixStyle and device impulse response augmentation. In experiments, our best system, trained on 5 given subsets, achieves an average accuracy of 56.6%.
System characteristics
Sampling rate | 32kHz |
Data augmentation | mixup, freq-mixstyle, dir augmentation |
Features | log-mel energies |
Classifier | TF-SepNet |
Data-Efficient Low-Complexity Acoustic Scene Classification with Curriculum Learning and Se-Layer
Xuanyan Chen and Wei Xie
School of Computer and Electronic Information, Guangxi University (GXU) Guangxi, Guangxi, China
Abstract
This technical report presents a data-efficient and low-complexity acoustic scene classification (ASC) system developed for Task 1 of the DCASE2024 Challenge. The primary objective is to create ASC models that perform effectively with limited labeled data and minimal computational resources, addressing practical constraints in real-world applications. Our proposed system integrates Squeeze-and-Excitation (SE) layers within the baseline network and employs a curriculum learning approach for training. SE layers enhance feature representation by recalibrating channelwise feature responses, while curriculum learning structures the training process by progressively introducing more complex examples, facilitating better model generalization and robustness. Experimental results demonstrate significant improvements in classification accuracy across various data splits, with our system outperforming the baseline by up to 7% on the development dataset. The approach promises to advance the accessibility and scalability of ASC technologies in resource-constrained environments.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, pitch shifting, time rolling |
Features | log-mel energies |
Classifier | RF-regularized CNN |
Data-Efficient Low-Complexity Acoustic Scene Classification Using Parallel Attention Broad-Cast-Residual Network
Guoqing Chen and Yanxiong Li
School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
Chen_SCUT_task1_1 Chen_SCUT_task1_2 Chen_SCUT_task1_3
Data-Efficient Low-Complexity Acoustic Scene Classification Using Parallel Attention Broad-Cast-Residual Network
Guoqing Chen and Yanxiong Li
School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
Abstract
This technical report describes our proposed system for Task 1 of Detection and Classification of Acoustic Scenes and Events (DCASE) 2024. We propose a data-efficient low-complexity acoustic scene classification method, which utilizes a parallel attention broad-residual network that consists of four parts (i.e., the modules of pre-processing, fusion, global and local contextual information extraction). We integrate the broadcast residual learning into the network to enhance its ability for extracting local contextual information. To further improve accuracy and reduce complexity, we integrate other techniques into our method, such as knowledge distillation, data augmentation, adaptive residual normalization, and quantization-aware training. There are five training subsets that contain approximately 5%, 10%, 25%, 50%, and 100% of the audio snippets in the training dataset. Using a subset of the five training subsets above as training data to construct a system, we obtain five systems. The accuracy scores obtained by these five systems on the evaluation samples of the development dataset are 47.14%, 52.38%, 58.04%, 60.88%, and 63.7% respectively.
System characteristics
Sampling rate | 44.1kHz |
Data augmentation | mix-style, specaugment, spectrum modulation |
Features | log-mel energies |
Classifier | RF-regularized CNN,Transformer |
Data-Efficient Acoustic Scene Classification with Pre-Trained Cp-Mobile
Nadrchal David, Rostamza Aida and Schilcher Patrick
Johannes Kepler University (JKU) Linz, Linz, Austria
MALACH24_JKU_task1_1 MALACH24_JKU_task1_2 MALACH24_JKU_task1_3
Data-Efficient Acoustic Scene Classification with Pre-Trained Cp-Mobile
Nadrchal David, Rostamza Aida and Schilcher Patrick
Johannes Kepler University (JKU) Linz, Linz, Austria
Abstract
This report presents our submission for Task 1: Data-Efficient Low-Complexity Acoustic Scene Classification in the DCASE2024 challenge. Drawing inspiration from the top-ranked system in the 2023 edition, our approach is based on a Knowledge Distillation training routine: we employ ensembles of fine-tuned CP-ResNet and PaSST as teachers for each subset, with a modified version of the CP-Mobile baseline model serving as the student. A key improvement in our methodology is pre-training the student on both AudioSet and the corresponding training subset before knowledge distillation, which significantly enhances its performance. To improve device generalization, we use various data augmentation techniques, including Freq-MixStyle, Device impulse response augmentation, FilterAugment, frequency masking, and time rolling. Our results demonstrate substantial improvements in test accuracy compared to the baseline system, validating the effectiveness of our approach for each subset.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, frequency masking, time rolling, DIR augmentation; freq-mixstyle, frequency masking, time rolling, DIR augmentation, FilterAugment |
Features | log-mel energies |
Classifier | RF-regularized CNN; RF-regularized CNN, Transformer |
Data-Efficient Low-Complexity Acoustic Scene Classification Using Mobilenet Variant
Wei Gao and Ivan Lee
UniSA STEM, University of South Australia, Adelaide, Australia
Gao_UniSA_task1_1
Data-Efficient Low-Complexity Acoustic Scene Classification Using Mobilenet Variant
Wei Gao and Ivan Lee
UniSA STEM, University of South Australia, Adelaide, Australia
Abstract
This report describes our submission on the task of low-complexity acoustic scene classification of the DCASE 2024 challenge. To meet the system complexity limitations of the task, we trained a single MobileNet variant fitting for all five pre-defined data folds. The training was optimised towards a focal loss function that helped on hard misclassified samples. The models were deployed with FP16 precision for the sake of efficient inference.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, time rolling |
Features | log-mel energies |
Classifier | MobileNet |
Low Complexity Acoustic Scene Classification with Moflenet
Yifei Oo1 and Nagisetty Srikanth2
1Nanyang Technological University, Singapore, 2Institute of Computational Perception (CP), Johannes Kepler University (JKU) Linz, Linz, Austria
OO_NTUPRDCSG_task1_1 OO_NTUPRDCSG_task1_2
Low Complexity Acoustic Scene Classification with Moflenet
Yifei Oo1 and Nagisetty Srikanth2
1Nanyang Technological University, Singapore, 2Institute of Computational Perception (CP), Johannes Kepler University (JKU) Linz, Linz, Austria
Abstract
This technical report details our approach to Task 1: Low-Complexity Acoustic Scene Classification for the DCASE 2024 challenge. We introduced a novel architecture, MofleNet, featuring shuffle channels and residual inverted bottleneck blocks. For the challenge submission, we ensemble this new model with CPResNet. To enhance cross-device generalization performance, Freq-MixStyle and Device Impulse Response (DIR) augmentation are applied during training. To meet the constraint of keeping the model size under 128kB, both models are fine-tuned using Quantization Aware Training to perform computations in 8-bit precision. This ensemble method achieved an average accuracy improvement of 6% on the TAU Urban Acoustic Scenes 2022 Mobile development dataset compared to the baseline model of DCASE 2024 Task 1.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, dir augmentation, time rolling |
Features | log-mel energies |
Classifier | CNN, Ensemble |
Kt Submission: Periodic Activation and Knowledge Distillation for Data-Efficient Low-Complexity Acoustic Scene Classification
JaeHan Park1, Taesoo Kim2, Daniel Rho3, Jiwon Kim3 and Gahui Lee3
1AI Tech Lab, Korea Telecom Corporation, Seoul, South Korea, 2AI Tech Lab, Korea Telecom Coporation, Seoul, South Korea, 3AI Tech Lab, Korea Telecom Corporation, Seoul Korea
Park_KT_task1_1 Park_KT_task1_2 Park_KT_task1_3
Kt Submission: Periodic Activation and Knowledge Distillation for Data-Efficient Low-Complexity Acoustic Scene Classification
JaeHan Park1, Taesoo Kim2, Daniel Rho3, Jiwon Kim3 and Gahui Lee3
1AI Tech Lab, Korea Telecom Corporation, Seoul, South Korea, 2AI Tech Lab, Korea Telecom Coporation, Seoul, South Korea, 3AI Tech Lab, Korea Telecom Corporation, Seoul Korea
Abstract
This technical report describes our approach to participating in DCASE 2024 Challenge Task 1: Data-Efficient Low-Complexity Acoustic Scene Classification. Our main contribution to this work is the use of an improved backbone model, a modified BC-Res2Net with the GhostNet module. In addition, in order to improve generalization performance even with a limited amount of training data, we adopted the snake activation function, which is known to be robust to unseen data due to its extrapolation capabilities. Through experiments, we demonstrated that our model significantly improves acoustic scene classification performance, especially when the number of training samples is limited.
System characteristics
Sampling rate | 32kHz |
Data augmentation | frequency masking, freq-mixstyle, dir augmentation, time rolling |
Features | log-mel energies |
Classifier | GhostRes2Net |
Low-Complexity Acoustic Scene Classification with Limited Training Data
Yun-Fei Shao, Peng Jiang and Wei Li
The School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, China
Shao_NEPUMSE_task1_1 Shao_NEPUMSE_task1_2 Shao_NEPUMSE_task1_3
Low-Complexity Acoustic Scene Classification with Limited Training Data
Yun-Fei Shao, Peng Jiang and Wei Li
The School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, China
Abstract
This report details the architecture we used to address task 1 of the DCASE2024 challenge. In addition to dealing with device mismatches and low complexity limitations, this year's tasks have also added training data limitations. The architecture we propose is based on Mamba, which is a selection state space model with the ability to establish long-term dependencies. Specifically, we designed a variable parallel mamba architecture to further reduce parameters and combined it with the inverted residual block in MobilenetV2 to address training data constraints by adjusting the number of mamba modules and the number of parallels. In addition, we also enhanced the impulse response of audio with energy values greater than the average. Freq-MixStyle (FMS) and audio playback data augmentation methods were used. We apply two model compression schemes: Quantization-Aware Training (QAT), and Knowledge distillation. The proposed system achieves higher classification accuracies than the baseline system. After model compression, our model achieves an average accuracy of 50.1% within the 107.46 K parameters size, 8-bit quantization, and MMACs 16.9 M.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, dir augmentation, time rolling, playback |
Features | log-mel energies |
Classifier | Mamba, Inverted residual block |
Efficient Acoustic Scene Classification Using Mean-Teacher and Knowledge Distillation
Maxim Surkov
ITMO University, Saint Petersburg, Russia
Surkov_ITMO_task1_1 Surkov_ITMO_task1_2
Efficient Acoustic Scene Classification Using Mean-Teacher and Knowledge Distillation
Maxim Surkov
ITMO University, Saint Petersburg, Russia
Abstract
This technical report describes submission for the DCASE 2024 Task 1 ”Data-Efficient Low-Complexity Acoustic Scene Classifica- tion”. Pretrained Efficient-AT was fine-tuned using a mean-teacher self supervised learning algorithm on labeled data, presented by the authors of the task, and on external unlabeled data taken from AudioSet. Current state-of-the-art efficient neural network CP-Mobile was then trained on the same data using knowledge distillation from fine-tuned Efficient-AT model. Proposed model consists of 61K pa- rameters and requires 22M MACs. Using sufficient amount of external data in pair with knowledge distillation improve the results by around 4% in accuracy in compare with the baseline approach in cases with the small amount of labeled data.
System characteristics
Sampling rate | 16kHz |
Data augmentation | freq-mixstyle |
Features | log-mel spectrogram |
Classifier | CNN, CRNN |
Acoustic Scene Classification Using Convolution Neural Network with Limited Data
Ee-Leng Tan1, Bai Jisheng2, Jun Wei Yeo3, Santi Peksi3 and Woon-Seng Gan3
1EEE, Nanyang Technological University, Singapore, 2School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China, 3EEE, Nanyang Technological Univeristy, Singapore, Singapore
Tan_CISS_task1_1
Acoustic Scene Classification Using Convolution Neural Network with Limited Data
Ee-Leng Tan1, Bai Jisheng2, Jun Wei Yeo3, Santi Peksi3 and Woon-Seng Gan3
1EEE, Nanyang Technological University, Singapore, 2School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China, 3EEE, Nanyang Technological Univeristy, Singapore, Singapore
Abstract
This technical report describes the SNTL-NTU team’s submission for Task 1 Low-Complexity Acoustic Scene Classification of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 challenge [1]. The proposed CNN model is trained using the TAU Urban Acoustic Scene 2022 Mobile development dataset [2]. For the model's input, each audio sample is transformed into log-mel energies. The model has a memory usage of 88.2 KB and requires 25.9M multiply-and-accumulate (MAC) operations. Using the development dataset, the proposed model achieved an accuracy of 46.02%, 49.54%, 53.89%, 56.43%, and 59.08% for 5%, 10%, 25%, 50%, and 100% of the development dataset, respectively.
System characteristics
Sampling rate | 44.1kHz |
Data augmentation | freq-mixstyle, device impulse response, Specaug |
Features | log-mel energies |
Classifier | CNN |
Ascdomain: Domain Invariant Device-Adversarial Isotropic Convolutional Neural Architecture
Hubert Truchan1, Tien Hung Ngo1 and Zahra Ahmadi2
1L3S Research Center, Leibniz University Hannover, Hanover, Germany, 2Peter L. Reichertz Medical Informatics Institute, Hannover Medical School, Hanover, Germany
Truchan_LUH_task1_1 Truchan_LUH_task1_2 Truchan_LUH_task1_3
Ascdomain: Domain Invariant Device-Adversarial Isotropic Convolutional Neural Architecture
Hubert Truchan1, Tien Hung Ngo1 and Zahra Ahmadi2
1L3S Research Center, Leibniz University Hannover, Hanover, Germany, 2Peter L. Reichertz Medical Informatics Institute, Hannover Medical School, Hanover, Germany
Abstract
The ongoing advancement of deep learning in the classification of acoustic scenes (ASC) showcases the expanded versatility of handling complex auditory environments. However, the imperative for efficient real-time decision-making in practical applications requires models that are adaptive and computationally frugal. Addressing these constraints, we introduce four innovative architectures: a scalable isotropic convolutional network, a recursive columnar architecture, an adversarial version to unlearn domain-specific features, and a representation self-challenging method. Each architecture is designed for low-complexity and data-efficient ASC, incorporating advanced techniques such as device impulse response enhancement and two-dimensional signal embedding to enhance robustness against device mismatch. Our approaches are validated in the DCASE 2024 Task 1 challenge using the TAU Urban Acoustic Scenes 2022 Mobile dataset, achieving state-of-the-art performance and significantly improving domain generalization.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, time rolling, dir augmentation |
Features | log-mel energies |
Classifier | CNN |
Upb-Nt Submission to Dcase24: Dataset Pruning for Targeted Knowledge Distillation
Alexander Werning and Reinhold Haeb-Umbach
Department of Communications Engineering (NT), Paderborn University (UPB), Paderborn, Germany
Werning_UPBNT_task1_1
Upb-Nt Submission to Dcase24: Dataset Pruning for Targeted Knowledge Distillation
Alexander Werning and Reinhold Haeb-Umbach
Department of Communications Engineering (NT), Paderborn University (UPB), Paderborn, Germany
Abstract
In this technical report, we describe our submission for Task 1 Data-Efficient Low-Complexity Acoustic Scene Classification. We adopt the baseline model and add a specialised knowledge distillation process before proceeding with the baseline training process. Our model was distilled on a pruned subset of the AudioSet dataset using large pretrained models. The pruning of the dataset is based on the similarity of the data to the targeted challenge dataset.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, pitch shifting, time rolling |
Features | log-mel energies |
Classifier | RF-regularized CNN |
Submission for DCASE 2024 Task1: An Asymmetric Residual Deep Neural Network for Low-Complexityacoustic Scene Classification
Chenhong Yan, Yang Yu and Xiaohang Xiong
School of Marine Science and Technology, Northwestern Polytechnical Universi University, Xi’an, China
Yan_NPU_task1_1
Submission for DCASE 2024 Task1: An Asymmetric Residual Deep Neural Network for Low-Complexityacoustic Scene Classification
Chenhong Yan, Yang Yu and Xiaohang Xiong
School of Marine Science and Technology, Northwestern Polytechnical Universi University, Xi’an, China
Abstract
This technical report describes the Sunshine Team24’s submission for DCASE 2024 ASC Task 1, data-efficient low-complexity acoustic scene classification(ASC). Compared to Task 1 in the DCASE 2023 Challenge, the following aspects change in the 2024 edition: (a) Training sets of different sizes are provided. These train subsets contain approximately 5%, 10%, 25%, 50%, and 100% of the audio snippets in the train split provided in Task 1 of the DCASE 2023 challenge. A system must only be trained on the specified subset and the explicitly allowed external resources. (b)The model complexity is not part of the ranking system. The model's complexity is limited in terms of hard constraints. To this end, the memory requirement for model parameters is restricted to 128 kB, and the maximum number of multiply-accumulate operations (MACs) is restricted to 30 million. In this report, we present low-complexity systems for ASC that follow the rules intended for the task.
System characteristics
Sampling rate | 32kHz |
Data augmentation | freq-mixstyle, frequency masking, time rolling |
Features | log-mel energies |
Classifier | CNN |
Data Efficient Acoustic Scene Classification using Teacher-Informed Confusing Class Instruction
Sean Yeo1, Ee-Leng Tan1, Jisheng Bai2, Santi Peksi1 and Woon-Seng Gan1
1Smart Nation TRANS Lab (SNTL), Nanyang Technological University, Singapore, 2Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
Yeo_NTU_task1_1 Yeo_NTU_task1_2 Yeo_NTU_task1_3
Data Efficient Acoustic Scene Classification using Teacher-Informed Confusing Class Instruction
Sean Yeo1, Ee-Leng Tan1, Jisheng Bai2, Santi Peksi1 and Woon-Seng Gan1
1Smart Nation TRANS Lab (SNTL), Nanyang Technological University, Singapore, 2Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
Abstract
In this technical report, we describe the CISS-NTU team’s submission for Task 1 Data-Efficient Low-Complexity Acoustic Scene Classification of the detection and classification of acoustic scenes and events (DCASE) 2024 challenge. Three systems are introduced to tackle training subsets of different sizes. For small training subsets, we explored reducing the complexity of the provided baseline model by reducing the number of base channels. We introduce data augmentation in the form of mixup to increase the diversity of training samples. For the larger training subsets, we use FocusNet to provide confusing class information to an ensemble of multiple Patchout faSt Spectrogram Transformer (PaSST) models and baseline models trained on the original sampling rate of 44.1 kHz. We use Knowledge Distillation to distill the ensemble model to the baseline student model. Training the systems on the TAU Urban Acoustic Scene 2022 Mobile development dataset yielded the highest average testing accuracy of (62.21, 59.82, 56.81, 53.03, 47.97)% on split (100, 50, 25, 10, 5)% respectively over the three systems
System characteristics
Sampling rate | 44.1kHz; 32kHz |
Data augmentation | freq-mixstyle, mixup, device impulse response augmentation; freq-mixstyle, mixup, device impulse response augmentation, frequency masking |
Features | log-mel energies |
Classifier | RF-regularized CNN; RF-regularized CNN, PaSST |