Task description
The goal of this task is to identify whether a machine is normal or anomalous using only normal sound data under domain shifted conditions. Our task in 2023 was also focused on the first-shot problem and domain generalization, which was realized by providing completely different machine types for the development and evaluation dataset with additional attribute information (such as the machine operation speed) attached to them. Our task in 2024 will also be held with the development and evaluation dataset having different machine types, whereas for the evaluation dataset, the machine types will be new ones not seen in our previous tasks. In addition, we will conceal additional attribute information for at least one machine type in the development dataset, which also mimics some real-world situations. The participants are expected to develop techniques that can be useful for solving the first-shot problem and train models robust to domain shifts.
More detailed task description can be found in the task description page
Teams ranking
Table including only the best performing system per submitting team.
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
3DPrinter (AUC) |
3DPrinter (pAUC) |
AirCompressor (AUC) |
AirCompressor (pAUC) |
BrushlessMotor (AUC) |
BrushlessMotor (pAUC) |
HairDryer (AUC) |
HairDryer (pAUC) |
HoveringDrone (AUC) |
HoveringDrone (pAUC) |
RoboticArm (AUC) |
RoboticArm (pAUC) |
Scanner (AUC) |
Scanner (pAUC) |
ToothBrush (AUC) |
ToothBrush (pAUC) |
ToyCircuit (AUC) |
ToyCircuit (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Bearing (AUC) |
Bearing (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | 39 | 56.50830191796572 ± 0.001050516938082758 | 59.72 | 49.42 | 55.38 | 55.47 | 66.92 | 55.58 | 52.89 | 51.63 | 58.11 | 50.21 | 50.96 | 51.16 | 60.48 | 50.11 | 72.15 | 52.74 | 62.41 | 50.00 | 50.37 | 48.77 | 61.77 | 47.95 | 61.70 | 57.58 | 61.47 | 57.53 | 69.87 | 55.65 | 61.26 | 51.77 | 48.66 | 52.42 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | 62 | 52.46265926819839 ± 0.0010707667655151189 | 67.11 | 58.74 | 53.56 | 48.63 | 47.76 | 50.68 | 57.02 | 56.32 | 43.14 | 53.26 | 67.81 | 58.11 | 58.67 | 49.16 | 41.68 | 52.00 | 48.59 | 48.00 | 50.45 | 49.40 | 60.65 | 53.50 | 68.60 | 58.80 | 75.10 | 59.50 | 72.55 | 54.80 | 86.25 | 65.60 | 77.30 | 68.30 | |
Fujimura_NU_task2_1 | FujimuraNU2024 | 26 | 58.89866752033418 ± 0.001041273079131894 | 73.17 | 59.79 | 60.48 | 49.05 | 56.59 | 50.53 | 65.50 | 52.68 | 66.39 | 53.16 | 70.58 | 57.68 | 60.86 | 50.37 | 71.18 | 56.11 | 47.10 | 48.68 | 54.41 | 49.84 | 75.94 | 59.74 | 75.75 | 61.16 | 63.17 | 56.68 | 72.28 | 54.53 | 93.24 | 80.37 | 78.61 | 69.16 | |
Zhao_CUMT_task2_1 | ZhaoCUMT2024 | 9 | 61.96515488201288 ± 0.0011914958305639057 | 54.91 | 51.37 | 63.75 | 60.16 | 78.63 | 61.05 | 64.81 | 54.53 | 74.05 | 53.21 | 71.06 | 53.26 | 78.57 | 63.24 | 55.76 | 50.16 | 63.81 | 50.79 | 54.88 | 48.32 | 56.47 | 48.58 | 53.41 | 58.79 | 65.01 | 56.79 | 77.39 | 58.21 | 77.03 | 54.42 | 52.78 | 50.05 | |
Wang_USTC_task2_1 | WangUSTC2024 | 19 | 59.683659221054455 ± 0.0011407300964302418 | 54.82 | 51.37 | 63.64 | 60.16 | 61.90 | 50.24 | 64.81 | 54.53 | 74.06 | 53.21 | 71.07 | 53.26 | 71.53 | 51.21 | 55.88 | 50.16 | 63.80 | 50.79 | 60.14 | 49.91 | 70.44 | 55.14 | 70.78 | 59.75 | 59.67 | 57.30 | 67.09 | 52.13 | 72.33 | 54.91 | 80.04 | 67.37 | |
Lee_KNU_task2_3 | LeeKNU2024 | 73 | 50.31619240957195 ± 0.0009955894014041765 | 54.53 | 49.68 | 54.53 | 48.11 | 63.57 | 50.95 | 40.12 | 49.74 | 43.15 | 49.00 | 43.09 | 51.05 | 64.12 | 49.32 | 53.45 | 55.16 | 47.89 | 50.63 | 45.40 | 49.26 | 69.42 | 53.75 | 66.54 | 56.16 | 59.48 | 52.16 | 63.74 | 51.63 | 63.06 | 51.21 | 45.16 | 48.26 | |
Qian_NIVIC_task2_1 | QianNIVIC2024 | 14 | 60.49793602398476 ± 0.0011415310840067227 | 54.91 | 51.37 | 63.64 | 60.16 | 73.40 | 53.00 | 64.80 | 54.53 | 74.16 | 53.21 | 71.08 | 53.26 | 71.53 | 51.21 | 55.78 | 50.16 | 63.70 | 50.79 | 59.21 | 49.42 | 68.92 | 54.84 | 69.78 | 58.47 | 58.80 | 56.37 | 68.15 | 52.84 | 71.22 | 54.89 | 78.94 | 66.74 | |
Jiang_CUP_task2_2 | JiangCUP2024 | 80 | 49.54166350875297 ± 0.0009707659088424591 | 55.62 | 53.32 | 49.99 | 48.68 | 51.88 | 49.53 | 54.41 | 49.32 | 42.47 | 48.21 | 50.59 | 51.00 | 51.49 | 48.32 | 46.74 | 49.37 | 45.96 | 47.89 | 47.96 | 48.63 | 46.36 | 51.26 | 62.98 | 53.73 | 62.88 | 55.73 | 70.42 | 54.15 | 90.34 | 69.52 | 82.16 | 67.10 | |
Jiang_THUEE_task2_1 | JiangTHUEE2024 | 4 | 65.36869889765188 ± 0.001185491785330456 | 64.77 | 53.53 | 68.31 | 53.37 | 67.82 | 53.79 | 69.81 | 54.63 | 73.21 | 57.74 | 72.70 | 57.16 | 93.07 | 76.89 | 67.46 | 54.89 | 67.72 | 52.95 | 62.68 | 51.05 | 71.04 | 58.53 | 71.66 | 57.21 | 63.46 | 58.26 | 76.87 | 61.79 | 89.51 | 65.68 | 81.54 | 68.00 | |
Lv_AITHU_task2_4 | LvAITHU2024 | 1 | 66.24102452310362 ± 0.0011854991900309608 | 68.07 | 56.11 | 64.88 | 50.84 | 69.26 | 54.05 | 73.14 | 54.79 | 74.73 | 56.84 | 72.89 | 54.58 | 94.89 | 79.26 | 72.35 | 59.74 | 67.69 | 52.11 | 63.45 | 48.63 | 70.37 | 57.68 | 73.39 | 62.11 | 65.41 | 60.05 | 76.93 | 62.63 | 88.50 | 61.53 | 81.93 | 64.68 | |
Yin_Midea_task2_2 | YinMidea2024 | 63 | 52.23563242136593 ± 0.0010200734060762124 | 62.26 | 50.68 | 53.81 | 48.32 | 51.02 | 51.21 | 61.81 | 51.95 | 46.85 | 54.42 | 67.66 | 60.21 | 51.86 | 48.79 | 45.61 | 48.79 | 42.77 | 51.47 | 50.78 | 50.53 | 66.56 | 58.16 | 70.36 | 54.42 | 63.22 | 56.16 | 75.26 | 53.63 | 91.94 | 73.68 | 76.76 | 63.84 | |
Perez_UPV_task2_1 | PerezUPV2024 | 85 | 48.98393318219933 ± 0.0009685037559411823 | 53.60 | 51.13 | 47.61 | 49.16 | 50.71 | 49.74 | 40.66 | 48.23 | 41.77 | 49.83 | 49.17 | 49.66 | 49.54 | 50.01 | 44.25 | 51.63 | 65.35 | 54.98 | 56.24 | 56.06 | 69.02 | 66.19 | 60.71 | 59.84 | 59.00 | ||||||||
Wu_IACAS_task2_3 | WuIACAS2024 | 47 | 54.16899844515759 ± 0.001057108336360687 | 61.69 | 53.47 | 55.90 | 48.47 | 52.08 | 51.21 | 53.71 | 48.63 | 52.53 | 51.95 | 66.58 | 55.00 | 66.90 | 49.68 | 43.65 | 50.89 | 60.10 | 47.89 | 49.46 | 48.63 | 64.08 | 53.84 | 69.84 | 59.47 | 62.61 | 55.42 | 77.56 | 60.00 | 93.80 | 73.21 | 75.92 | 64.36 | |
Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | 53 | 53.81856456562342 ± 0.0011243926792786517 | 51.46 | 50.00 | 49.04 | 48.37 | 54.65 | 53.74 | 55.68 | 49.11 | 45.79 | 53.63 | 65.34 | 50.16 | 93.89 | 74.63 | 40.74 | 51.16 | 56.53 | 54.68 | 55.64 | 49.21 | 66.26 | 53.53 | 66.68 | 55.42 | 65.74 | 57.84 | 77.52 | 59.16 | 69.82 | 51.47 | 77.02 | 65.21 | |
Huang_Xju_task2_1 | HuangXju2024 | 46 | 54.38612240957236 ± 0.001005392973156531 | 54.05 | 49.84 | 58.72 | 58.63 | 67.92 | 52.21 | 53.68 | 48.53 | 57.09 | 55.00 | 45.11 | 50.16 | 54.60 | 49.79 | 62.31 | 52.89 | 55.06 | 49.32 | 49.89 | 50.57 | 49.98 | 47.68 | 54.82 | 59.31 | 61.59 | 52.26 | 73.29 | 51.94 | 70.10 | 48.21 | 52.55 | 51.68 | |
Guo_BIT_task2_3 | GuoBIT2024 | 48 | 54.084345600639494 ± 0.0010037944335590143 | 65.66 | 51.26 | 59.86 | 53.84 | 57.17 | 50.47 | 59.52 | 55.32 | 52.75 | 56.79 | 52.10 | 52.32 | 54.94 | 48.42 | 53.79 | 50.16 | 46.16 | 49.32 | 48.16 | 51.58 | 59.22 | 49.16 | 55.92 | 59.11 | 55.92 | 50.84 | 81.31 | 57.79 | 78.01 | 58.32 | 49.28 | 51.11 | |
Wan_HFUU_task2_1 | WanHFUU2024 | 37 | 56.95741891894512 ± 0.0010154269725155024 | 62.30 | 51.63 | 63.32 | 51.53 | 55.72 | 53.58 | 55.58 | 51.26 | 50.91 | 55.16 | 60.41 | 55.63 | 64.45 | 51.89 | 61.04 | 53.84 | 65.54 | 47.89 | 51.10 | 49.20 | 70.44 | 52.57 | 64.40 | 57.57 | 62.80 | 55.42 | 75.68 | 54.31 | 91.74 | 70.84 | 76.82 | 63.21 | |
Kong_IMECAS_task2_2 | KongIMECAS2024 | 40 | 56.50382577391263 ± 0.0009983711243153732 | 55.91 | 51.16 | 64.26 | 60.68 | 77.64 | 60.16 | 59.36 | 52.05 | 53.65 | 53.95 | 51.42 | 51.05 | 52.16 | 48.47 | 65.65 | 53.84 | 54.09 | 49.16 | 49.86 | 51.21 | 50.65 | 47.89 | 54.30 | 58.95 | 60.62 | 52.05 | 77.56 | 54.79 | 77.83 | 48.84 | 52.46 | 50.74 | |
Hai_SCU_task2_1 | HaiSCU2024 | 72 | 50.34153796416583 ± 0.0010155482504932121 | 57.31 | 51.00 | 41.57 | 47.84 | 65.33 | 57.16 | 54.01 | 54.53 | 41.13 | 47.84 | 57.91 | 55.74 | 49.20 | 48.58 | 46.77 | 49.53 | 46.16 | 50.53 | 49.64 | 51.21 | 54.78 | 48.78 | 66.57 | 60.36 | 51.51 | 48.95 | 62.52 | 50.47 | 63.18 | 48.89 | 51.29 | 50.94 | |
Kim_DAU_task2_1 | KimDAU2024 | 71 | 50.433236408626016 ± 0.0010116627475769257 | 69.05 | 52.05 | 46.70 | 48.32 | 50.78 | 49.68 | 49.59 | 49.63 | 57.53 | 54.21 | 51.58 | 50.11 | 45.57 | 49.05 | 46.63 | 49.42 | 45.13 | 50.00 | 66.83 | 66.65 | 62.39 | 53.43 | 80.15 | 70.95 | 75.95 | 75.95 | 73.51 | 72.32 | 79.72 | 71.36 | 78.03 | 72.48 | |
Bian_NR_task2_2 | BianNR2024 | 74 | 50.30296617352682 ± 0.0009936159397799474 | 59.33 | 62.84 | 52.88 | 49.74 | 58.74 | 51.74 | 43.64 | 48.89 | 51.73 | 51.68 | 51.21 | 50.53 | 52.51 | 49.00 | 38.20 | 49.95 | 47.03 | 51.84 | 42.45 | 51.05 | 61.04 | 52.63 | 61.91 | 56.95 | 54.52 | 50.00 | 54.82 | 51.63 | 49.69 | 50.58 | 48.06 | 49.26 | |
Gleichmann_TNT_task2_1 | GleichmannTNT2024 | 93 | 45.314372753290186 ± 0.0009577819435369494 | 49.30 | 49.37 | 49.06 | 49.26 | 48.12 | 48.63 | 33.24 | 48.32 | 29.82 | 50.42 | 48.21 | 53.37 | 48.73 | 50.37 | 40.46 | 50.95 | 55.87 | 55.37 | 57.34 | 50.05 | 59.56 | 52.68 | 62.16 | 52.32 | 54.56 | 51.74 | 59.38 | 53.16 | 73.42 | 57.74 | 58.48 | 49.95 | |
Kim_CAU_task2_1 | KimCAU2024 | 89 | 46.45632996840251 ± 0.0010088781424119019 | 45.63 | 50.37 | 42.38 | 47.89 | 42.28 | 49.16 | 38.85 | 51.58 | 41.32 | 51.95 | 56.60 | 50.53 | 50.01 | 50.42 | 44.30 | 49.79 | 46.82 | 49.11 | 47.70 | 49.11 | 56.48 | 51.58 | 60.34 | 53.26 | 58.14 | 57.37 | 62.30 | 52.42 | 77.70 | 49.53 | 65.50 | 56.79 | |
Zhang_HEU_task2_1 | ZhangHEU2024 | 54 | 53.74623090811457 ± 0.001070067273571812 | 64.76 | 53.95 | 56.05 | 51.32 | 49.93 | 49.79 | 61.59 | 56.63 | 50.50 | 54.42 | 47.10 | 50.42 | 59.50 | 48.00 | 58.03 | 51.79 | 50.86 | 50.79 | 45.17 | 49.37 | 61.37 | 50.05 | 56.23 | 58.00 | 58.81 | 51.74 | 81.43 | 61.05 | 85.73 | 78.84 | 73.25 | 56.63 | |
Liu_CXL_task2_1 | LiuCXL2024 | 13 | 60.52026046959108 ± 0.0011605372202239733 | 54.82 | 51.37 | 63.76 | 60.16 | 61.91 | 50.24 | 64.81 | 54.53 | 74.04 | 53.21 | 71.15 | 53.26 | 78.56 | 63.24 | 55.87 | 50.16 | 63.70 | 50.79 | 58.38 | 49.43 | 68.99 | 54.26 | 69.94 | 57.44 | 57.45 | 55.74 | 67.03 | 52.54 | 70.32 | 55.24 | 79.75 | 65.69 | |
Guan_HEU_task2_4 | GuanHEU2024 | 43 | 55.56904711277052 ± 0.0010596716564482372 | 60.80 | 51.05 | 61.57 | 50.42 | 62.33 | 53.42 | 58.52 | 49.32 | 60.31 | 55.63 | 58.50 | 56.11 | 59.44 | 51.95 | 54.08 | 53.32 | 46.05 | 48.53 | 52.52 | 49.58 | 70.52 | 52.32 | 63.66 | 53.84 | 60.77 | 55.79 | 70.29 | 51.42 | 89.24 | 76.00 | 81.29 | 65.63 | |
Wang_iflytek_task2_1 | Wangiflytek2024 | 11 | 61.08842633062041 ± 0.0011747355735174372 | 54.87 | 51.37 | 63.72 | 60.16 | 78.59 | 61.05 | 64.76 | 54.53 | 74.08 | 53.21 | 71.11 | 53.26 | 71.52 | 51.21 | 55.83 | 50.16 | 63.75 | 50.79 | 60.37 | 51.13 | 69.31 | 55.32 | 71.55 | 58.90 | 60.14 | 57.35 | 68.38 | 53.86 | 72.44 | 55.67 | 80.31 | 67.34 | |
Yang_IND_task2_1 | YangIND2024 | 10 | 61.35410342629337 ± 0.001148839259798822 | 54.91 | 51.37 | 63.77 | 60.16 | 73.30 | 53.00 | 64.81 | 54.53 | 74.03 | 53.21 | 71.16 | 53.26 | 78.56 | 63.24 | 55.78 | 50.16 | 63.70 | 50.79 | 55.63 | 47.28 | 55.48 | 47.79 | 52.98 | 57.09 | 64.15 | 54.98 | 76.33 | 60.04 | 75.31 | 55.65 | 53.61 | 49.98 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
3DPrinter (F1 score) |
3DPrinter (Recall) |
3DPrinter (Precision) |
AirCompressor (F1 score) |
AirCompressor (Recall) |
AirCompressor (Precision) |
BrushlessMotor (F1 score) |
BrushlessMotor (Recall) |
BrushlessMotor (Precision) |
HairDryer (F1 score) |
HairDryer (Recall) |
HairDryer (Precision) |
HoveringDrone (F1 score) |
HoveringDrone (Recall) |
HoveringDrone (Precision) |
RoboticArm (F1 score) |
RoboticArm (Recall) |
RoboticArm (Precision) |
Scanner (F1 score) |
Scanner (Recall) |
Scanner (Precision) |
ToothBrush (F1 score) |
ToothBrush (Recall) |
ToothBrush (Precision) |
ToyCircuit (F1 score) |
ToyCircuit (Recall) |
ToyCircuit (Precision) |
|
DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | 39 | 66.64 | 74.68 | 60.17 | 53.49 | 54.11 | 52.88 | 66.67 | 100.00 | 50.00 | 62.65 | 82.02 | 50.68 | 61.92 | 64.86 | 59.23 | 66.43 | 97.96 | 50.25 | 65.89 | 75.34 | 58.55 | 66.67 | 100.00 | 50.00 | 70.50 | 95.83 | 55.76 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | 62 | 64.52 | 71.11 | 59.04 | 15.86 | 10.18 | 35.90 | 61.35 | 80.40 | 49.60 | 65.16 | 83.72 | 53.33 | 36.36 | 27.59 | 53.33 | 70.19 | 97.96 | 54.68 | 11.15 | 7.11 | 25.81 | 58.14 | 66.67 | 51.55 | 18.22 | 11.22 | 48.50 | |
Fujimura_NU_task2_1 | FujimuraNU2024 | 26 | 64.46 | 58.17 | 72.28 | 11.76 | 6.86 | 41.38 | 59.68 | 68.64 | 52.80 | 40.92 | 29.76 | 65.46 | 23.92 | 14.40 | 70.59 | 67.34 | 100.00 | 50.76 | 6.26 | 3.60 | 24.00 | 67.03 | 69.92 | 64.38 | 7.29 | 3.90 | 55.71 | |
Zhao_CUMT_task2_1 | ZhaoCUMT2024 | 9 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 70.06 | 69.94 | 70.18 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 78.59 | 78.38 | 78.80 | 53.90 | 53.70 | 54.10 | 63.62 | 63.44 | 63.80 | |
Wang_USTC_task2_1 | WangUSTC2024 | 19 | 52.14 | 52.08 | 52.21 | 54.51 | 53.53 | 55.53 | 57.53 | 56.14 | 59.00 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 63.62 | 63.44 | 63.80 | |
Lee_KNU_task2_3 | LeeKNU2024 | 73 | 53.93 | 53.33 | 54.55 | 58.00 | 58.00 | 58.00 | 60.00 | 60.00 | 60.00 | 18.09 | 11.27 | 45.92 | 0.00 | 0.00 | 0.00 | 46.14 | 43.10 | 49.65 | 57.46 | 54.19 | 61.14 | 48.23 | 37.89 | 66.30 | 22.40 | 14.79 | 46.12 | |
Qian_NIVIC_task2_1 | QianNIVIC2024 | 14 | 53.33 | 53.33 | 53.33 | 54.51 | 53.53 | 55.53 | 67.14 | 67.06 | 67.22 | 55.84 | 55.58 | 56.11 | 70.97 | 70.99 | 70.95 | 66.00 | 66.00 | 66.00 | 63.44 | 61.54 | 65.47 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Jiang_CUP_task2_2 | JiangCUP2024 | 80 | 32.75 | 21.91 | 64.78 | 10.24 | 6.22 | 28.87 | 46.07 | 40.98 | 52.60 | 40.00 | 32.00 | 53.33 | 26.32 | 18.11 | 48.10 | 61.25 | 74.99 | 51.77 | 10.26 | 6.22 | 29.17 | 23.24 | 14.81 | 53.91 | 17.84 | 10.71 | 53.19 | |
Jiang_THUEE_task2_1 | JiangTHUEE2024 | 4 | 56.33 | 55.52 | 57.17 | 60.79 | 60.59 | 60.99 | 63.02 | 62.98 | 63.06 | 61.98 | 61.71 | 62.25 | 68.44 | 68.64 | 68.24 | 64.37 | 64.62 | 64.12 | 86.06 | 85.58 | 86.55 | 61.18 | 60.39 | 61.99 | 62.86 | 62.86 | 62.86 | |
Lv_AITHU_task2_4 | LvAITHU2024 | 1 | 58.46 | 57.31 | 59.66 | 59.97 | 59.93 | 60.01 | 64.86 | 64.86 | 64.86 | 66.41 | 66.27 | 66.55 | 65.88 | 65.88 | 65.88 | 67.17 | 67.47 | 66.88 | 90.02 | 89.60 | 90.44 | 62.44 | 60.94 | 64.02 | 63.98 | 63.94 | 64.02 | |
Yin_Midea_task2_2 | YinMidea2024 | 63 | 57.25 | 50.04 | 66.88 | 12.97 | 8.00 | 34.29 | 43.64 | 38.40 | 50.53 | 36.89 | 27.69 | 55.21 | 32.94 | 24.56 | 50.00 | 67.34 | 100.00 | 50.76 | 11.15 | 7.06 | 26.55 | 44.21 | 37.33 | 54.19 | 13.18 | 7.56 | 51.52 | |
Perez_UPV_task2_1 | PerezUPV2024 | 85 | 67.59 | 98.00 | 51.58 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 63.32 | 89.29 | 49.05 | 66.67 | 100.00 | 50.00 | 42.75 | 39.07 | 47.19 | 16.11 | 9.60 | 50.00 | 66.67 | 100.00 | 50.00 | 65.45 | 70.87 | 60.80 | |
Wu_IACAS_task2_3 | WuIACAS2024 | 47 | 60.12 | 57.38 | 63.13 | 15.38 | 9.60 | 38.71 | 66.60 | 87.64 | 53.71 | 55.84 | 58.22 | 53.64 | 32.94 | 24.56 | 50.00 | 66.69 | 93.83 | 51.72 | 16.09 | 10.00 | 41.10 | 53.69 | 50.75 | 56.99 | 65.48 | 75.79 | 57.65 | |
Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | 53 | 63.38 | 74.72 | 55.02 | 14.10 | 8.73 | 36.64 | 56.93 | 57.75 | 56.14 | 25.42 | 16.97 | 50.63 | 30.77 | 21.43 | 54.55 | 69.46 | 84.05 | 59.19 | 84.07 | 96.91 | 74.24 | 63.69 | 66.67 | 60.98 | 35.29 | 24.08 | 66.01 | |
Huang_Xju_task2_1 | HuangXju2024 | 46 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Guo_BIT_task2_3 | GuoBIT2024 | 48 | 64.22 | 64.62 | 63.83 | 56.08 | 55.36 | 56.82 | 54.72 | 53.43 | 56.07 | 51.62 | 47.36 | 56.72 | 7.28 | 3.92 | 50.51 | 50.00 | 50.00 | 50.00 | 50.71 | 48.44 | 53.22 | 56.52 | 52.88 | 60.70 | 51.72 | 46.98 | 57.52 | |
Wan_HFUU_task2_1 | WanHFUU2024 | 37 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Kong_IMECAS_task2_2 | KongIMECAS2024 | 40 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Hai_SCU_task2_1 | HaiSCU2024 | 72 | 58.01 | 57.93 | 58.09 | 41.13 | 40.19 | 42.13 | 61.03 | 60.85 | 61.21 | 49.52 | 49.28 | 49.76 | 38.54 | 29.89 | 54.25 | 56.00 | 56.00 | 56.00 | 49.06 | 47.69 | 50.52 | 48.51 | 47.35 | 49.72 | 46.33 | 39.25 | 56.52 | |
Kim_DAU_task2_1 | KimDAU2024 | 71 | 65.60 | 60.98 | 70.97 | 26.37 | 19.09 | 42.60 | 56.29 | 58.41 | 54.31 | 40.39 | 36.71 | 44.89 | 53.33 | 48.48 | 59.26 | 57.14 | 64.86 | 51.06 | 16.75 | 10.67 | 39.02 | 47.06 | 48.48 | 45.71 | 48.92 | 50.75 | 47.22 | |
Bian_NR_task2_2 | BianNR2024 | 74 | 46.09 | 32.94 | 76.71 | 16.65 | 9.43 | 70.97 | 25.51 | 16.42 | 57.14 | 16.05 | 9.60 | 48.98 | 21.05 | 13.33 | 50.00 | 41.90 | 34.32 | 53.79 | 40.17 | 31.54 | 55.31 | 50.00 | 48.48 | 51.61 | 58.03 | 62.61 | 54.08 | |
Gleichmann_TNT_task2_1 | GleichmannTNT2024 | 93 | 55.53 | 65.76 | 48.06 | 52.53 | 54.86 | 50.39 | 39.72 | 30.91 | 55.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 38.30 | 36.00 | 40.91 | 20.40 | 13.22 | 44.71 | 66.67 | 100.00 | 50.00 | 0.00 | 0.00 | 0.00 | |
Kim_CAU_task2_1 | KimCAU2024 | 89 | 31.19 | 23.04 | 48.24 | 9.88 | 6.00 | 27.91 | 6.59 | 3.50 | 56.00 | 0.00 | 0.00 | 0.00 | 33.23 | 26.98 | 43.24 | 0.00 | 0.00 | 0.00 | 29.82 | 22.61 | 43.77 | 48.89 | 45.04 | 53.47 | 0.00 | 0.00 | 0.00 | |
Zhang_HEU_task2_1 | ZhangHEU2024 | 54 | 57.70 | 52.08 | 64.70 | 51.67 | 45.96 | 59.02 | 36.56 | 28.96 | 49.59 | 46.50 | 36.71 | 63.41 | 0.00 | 0.00 | 0.00 | 35.85 | 29.47 | 45.75 | 20.95 | 14.44 | 38.12 | 56.33 | 50.08 | 64.36 | 28.99 | 19.64 | 55.38 | |
Liu_CXL_task2_1 | LiuCXL2024 | 13 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 57.53 | 56.14 | 59.00 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 66.98 | 66.99 | 66.97 | 78.59 | 78.38 | 78.80 | 54.79 | 54.55 | 55.05 | 62.75 | 62.60 | 62.90 | |
Guan_HEU_task2_4 | GuanHEU2024 | 43 | 59.94 | 63.44 | 56.82 | 58.99 | 57.38 | 60.69 | 55.65 | 54.86 | 56.47 | 50.79 | 47.72 | 54.29 | 54.56 | 49.35 | 61.00 | 50.43 | 47.08 | 54.30 | 48.94 | 43.52 | 55.91 | 43.68 | 34.69 | 58.95 | 34.04 | 24.37 | 56.43 | |
Wang_iflytek_task2_1 | Wangiflytek2024 | 11 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 69.08 | 68.87 | 69.29 | 55.01 | 54.86 | 55.17 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 62.75 | 62.60 | 62.90 | |
Yang_IND_task2_1 | YangIND2024 | 10 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 65.97 | 65.79 | 66.15 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 67.01 | 66.99 | 67.03 | 78.59 | 78.38 | 78.80 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 |
Systems ranking
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
3DPrinter (AUC) |
3DPrinter (pAUC) |
AirCompressor (AUC) |
AirCompressor (pAUC) |
BrushlessMotor (AUC) |
BrushlessMotor (pAUC) |
HairDryer (AUC) |
HairDryer (pAUC) |
HoveringDrone (AUC) |
HoveringDrone (pAUC) |
RoboticArm (AUC) |
RoboticArm (pAUC) |
Scanner (AUC) |
Scanner (pAUC) |
ToothBrush (AUC) |
ToothBrush (pAUC) |
ToyCircuit (AUC) |
ToyCircuit (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Bearing (AUC) |
Bearing (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2024_baseline_task2_MAHALA | DCASE2024baseline2024 | 41 | 56.489334216102336 ± 0.001002115182882003 | 54.29 | 50.84 | 60.34 | 60.79 | 76.69 | 59.05 | 59.78 | 55.11 | 59.75 | 58.00 | 49.18 | 51.79 | 56.16 | 49.26 | 61.49 | 48.37 | 53.88 | 49.21 | 50.18 | 51.04 | 50.99 | 48.21 | 53.00 | 58.82 | 61.04 | 53.44 | 78.08 | 55.74 | 71.73 | 49.05 | 54.65 | 51.26 | |
DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | 39 | 56.50830191796572 ± 0.001050516938082758 | 59.72 | 49.42 | 55.38 | 55.47 | 66.92 | 55.58 | 52.89 | 51.63 | 58.11 | 50.21 | 50.96 | 51.16 | 60.48 | 50.11 | 72.15 | 52.74 | 62.41 | 50.00 | 50.37 | 48.77 | 61.77 | 47.95 | 61.70 | 57.58 | 61.47 | 57.53 | 69.87 | 55.65 | 61.26 | 51.77 | 48.66 | 52.42 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | 62 | 52.46265926819839 ± 0.0010707667655151189 | 67.11 | 58.74 | 53.56 | 48.63 | 47.76 | 50.68 | 57.02 | 56.32 | 43.14 | 53.26 | 67.81 | 58.11 | 58.67 | 49.16 | 41.68 | 52.00 | 48.59 | 48.00 | 50.45 | 49.40 | 60.65 | 53.50 | 68.60 | 58.80 | 75.10 | 59.50 | 72.55 | 54.80 | 86.25 | 65.60 | 77.30 | 68.30 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2024 | 67 | 51.45784872819026 ± 0.0010613673898969037 | 65.63 | 54.42 | 50.61 | 48.84 | 48.03 | 50.84 | 58.13 | 56.11 | 41.64 | 49.63 | 63.31 | 54.32 | 49.73 | 49.05 | 46.30 | 55.95 | 48.02 | 48.05 | 57.70 | 50.00 | 64.00 | 54.10 | 74.50 | 60.30 | 67.25 | 54.90 | 74.85 | 58.10 | 87.65 | 68.50 | 75.75 | 69.30 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2024 | 69 | 51.23779473216818 ± 0.0010540273988512347 | 65.59 | 58.47 | 49.04 | 48.79 | 50.68 | 51.95 | 59.74 | 57.42 | 39.52 | 48.95 | 59.74 | 53.63 | 52.00 | 48.63 | 44.80 | 54.37 | 47.01 | 48.32 | 56.95 | 51.10 | 63.30 | 55.40 | 73.55 | 60.50 | 67.15 | 53.30 | 72.05 | 57.30 | 86.95 | 65.80 | 75.15 | 67.70 | |
Fujimura_NU_task2_1 | FujimuraNU2024 | 26 | 58.89866752033418 ± 0.001041273079131894 | 73.17 | 59.79 | 60.48 | 49.05 | 56.59 | 50.53 | 65.50 | 52.68 | 66.39 | 53.16 | 70.58 | 57.68 | 60.86 | 50.37 | 71.18 | 56.11 | 47.10 | 48.68 | 54.41 | 49.84 | 75.94 | 59.74 | 75.75 | 61.16 | 63.17 | 56.68 | 72.28 | 54.53 | 93.24 | 80.37 | 78.61 | 69.16 | |
Fujimura_NU_task2_2 | FujimuraNU2024 | 35 | 57.532141353597495 ± 0.0010455433495501576 | 73.45 | 60.32 | 63.14 | 49.53 | 53.02 | 50.21 | 65.09 | 51.84 | 60.06 | 54.05 | 70.73 | 58.16 | 61.57 | 50.16 | 56.32 | 54.11 | 48.02 | 48.47 | 55.98 | 50.58 | 69.11 | 52.84 | 75.62 | 61.32 | 64.36 | 56.95 | 71.69 | 53.26 | 89.40 | 66.16 | 77.34 | 66.84 | |
Fujimura_NU_task2_3 | FujimuraNU2024 | 28 | 58.53027365695134 ± 0.0010570956736933555 | 73.10 | 59.11 | 58.86 | 49.05 | 56.51 | 50.79 | 66.16 | 54.05 | 63.81 | 51.21 | 67.75 | 55.53 | 60.31 | 50.32 | 73.93 | 56.68 | 47.23 | 49.11 | 53.65 | 49.84 | 69.59 | 60.16 | 75.44 | 61.47 | 63.96 | 56.79 | 71.33 | 53.74 | 94.55 | 84.95 | 77.73 | 70.42 | |
Fujimura_NU_task2_4 | FujimuraNU2024 | 27 | 58.873674197238635 ± 0.0010315496724687262 | 72.85 | 59.21 | 58.43 | 49.05 | 55.39 | 51.00 | 64.20 | 51.89 | 70.97 | 54.79 | 71.51 | 58.95 | 60.48 | 50.11 | 72.63 | 55.84 | 46.34 | 48.74 | 54.30 | 49.00 | 75.36 | 60.37 | 75.47 | 60.47 | 60.56 | 55.79 | 73.21 | 56.26 | 93.67 | 83.68 | 78.53 | 70.00 | |
Zhao_CUMT_task2_1 | ZhaoCUMT2024 | 9 | 61.96515488201288 ± 0.0011914958305639057 | 54.91 | 51.37 | 63.75 | 60.16 | 78.63 | 61.05 | 64.81 | 54.53 | 74.05 | 53.21 | 71.06 | 53.26 | 78.57 | 63.24 | 55.76 | 50.16 | 63.81 | 50.79 | 54.88 | 48.32 | 56.47 | 48.58 | 53.41 | 58.79 | 65.01 | 56.79 | 77.39 | 58.21 | 77.03 | 54.42 | 52.78 | 50.05 | |
Zhao_CUMT_task2_2 | ZhaoCUMT2024 | 12 | 60.55214715135816 ± 0.0011622221324711875 | 54.91 | 51.37 | 52.46 | 49.89 | 78.63 | 61.05 | 64.81 | 54.53 | 74.05 | 53.21 | 71.06 | 53.26 | 78.57 | 63.24 | 55.76 | 50.16 | 63.81 | 50.79 | 54.97 | 49.55 | 55.61 | 48.65 | 53.41 | 58.79 | 64.38 | 56.12 | 76.10 | 57.21 | 75.93 | 54.23 | 52.37 | 49.11 | |
Zhao_CUMT_task2_3 | ZhaoCUMT2024 | 15 | 60.39913436930961 ± 0.001192077122815144 | 54.91 | 51.37 | 63.75 | 60.16 | 78.63 | 61.05 | 64.81 | 54.53 | 74.05 | 53.21 | 53.34 | 48.26 | 78.57 | 63.24 | 55.76 | 50.16 | 63.81 | 50.79 | 54.94 | 47.45 | 53.81 | 48.35 | 57.98 | 57.79 | 62.85 | 51.94 | 75.11 | 53.96 | 74.54 | 49.36 | 51.70 | 49.33 | |
Zhao_CUMT_task2_4 | ZhaoCUMT2024 | 23 | 59.05587078043073 ± 0.0011118351899573856 | 54.91 | 51.37 | 52.46 | 49.89 | 78.63 | 61.05 | 64.81 | 54.53 | 74.05 | 53.21 | 53.34 | 48.26 | 78.57 | 63.24 | 55.76 | 50.16 | 63.81 | 50.79 | 56.02 | 48.58 | 55.09 | 49.37 | 58.94 | 58.74 | 63.41 | 52.95 | 75.29 | 54.79 | 75.19 | 49.74 | 51.64 | 49.68 | |
Wang_USTC_task2_1 | WangUSTC2024 | 19 | 59.683659221054455 ± 0.0011407300964302418 | 54.82 | 51.37 | 63.64 | 60.16 | 61.90 | 50.24 | 64.81 | 54.53 | 74.06 | 53.21 | 71.07 | 53.26 | 71.53 | 51.21 | 55.88 | 50.16 | 63.80 | 50.79 | 60.14 | 49.91 | 70.44 | 55.14 | 70.78 | 59.75 | 59.67 | 57.30 | 67.09 | 52.13 | 72.33 | 54.91 | 80.04 | 67.37 | |
Wang_USTC_task2_2 | WangUSTC2024 | 30 | 58.37825228494783 ± 0.0011047130855523176 | 54.82 | 51.37 | 52.46 | 49.89 | 61.90 | 50.24 | 64.81 | 54.53 | 74.06 | 53.21 | 71.07 | 53.26 | 71.53 | 51.21 | 55.88 | 50.16 | 63.80 | 50.79 | 60.14 | 49.91 | 70.44 | 55.14 | 70.78 | 59.75 | 59.67 | 57.30 | 67.09 | 52.13 | 72.33 | 54.91 | 80.04 | 67.37 | |
Wang_USTC_task2_3 | WangUSTC2024 | 32 | 58.22887759850294 ± 0.0010416091654744295 | 54.82 | 51.37 | 63.64 | 60.16 | 61.90 | 50.24 | 64.81 | 54.53 | 74.06 | 53.21 | 53.33 | 48.26 | 71.53 | 51.21 | 55.88 | 50.16 | 63.80 | 50.79 | 60.14 | 49.91 | 70.44 | 55.14 | 70.78 | 59.75 | 59.67 | 57.30 | 67.09 | 52.13 | 72.33 | 54.91 | 80.04 | 67.37 | |
Wang_USTC_task2_4 | WangUSTC2024 | 36 | 56.98567054157987 ± 0.000993057635763809 | 54.82 | 51.37 | 52.46 | 49.89 | 61.90 | 50.24 | 64.81 | 54.53 | 74.06 | 53.21 | 53.33 | 48.26 | 71.53 | 51.21 | 55.88 | 50.16 | 63.80 | 50.79 | 60.14 | 49.91 | 70.44 | 55.14 | 70.78 | 59.75 | 59.67 | 57.30 | 67.09 | 52.13 | 72.33 | 54.91 | 80.04 | 67.37 | |
Lee_KNU_task2_1 | LeeKNU2024 | 75 | 50.24397240705927 ± 0.0010165017564282086 | 58.85 | 52.53 | 55.61 | 48.74 | 57.55 | 51.11 | 40.75 | 49.68 | 44.32 | 48.42 | 43.85 | 50.79 | 57.30 | 48.89 | 54.27 | 57.21 | 45.28 | 51.53 | 45.64 | 48.21 | 71.00 | 52.32 | 65.90 | 56.74 | 55.72 | 53.63 | 61.18 | 55.47 | 61.60 | 52.53 | 47.04 | 48.26 | |
Lee_KNU_task2_2 | LeeKNU2024 | 79 | 49.690264893541816 ± 0.0009967144688343946 | 55.07 | 49.68 | 53.99 | 48.21 | 59.23 | 50.79 | 37.54 | 49.21 | 43.27 | 48.79 | 43.86 | 51.26 | 62.43 | 49.53 | 51.61 | 54.79 | 47.92 | 51.84 | 42.94 | 49.42 | 60.52 | 52.47 | 67.04 | 57.21 | 62.58 | 57.00 | 58.32 | 54.16 | 63.72 | 52.16 | 44.56 | 48.53 | |
Lee_KNU_task2_3 | LeeKNU2024 | 73 | 50.31619240957195 ± 0.0009955894014041765 | 54.53 | 49.68 | 54.53 | 48.11 | 63.57 | 50.95 | 40.12 | 49.74 | 43.15 | 49.00 | 43.09 | 51.05 | 64.12 | 49.32 | 53.45 | 55.16 | 47.89 | 50.63 | 45.40 | 49.26 | 69.42 | 53.75 | 66.54 | 56.16 | 59.48 | 52.16 | 63.74 | 51.63 | 63.06 | 51.21 | 45.16 | 48.26 | |
Lee_KNU_task2_4 | LeeKNU2024 | 77 | 49.75884067621996 ± 0.0010006630722986074 | 54.68 | 49.47 | 54.00 | 48.37 | 60.08 | 50.84 | 36.81 | 49.21 | 43.71 | 49.11 | 43.48 | 51.26 | 61.99 | 49.47 | 52.68 | 55.63 | 48.62 | 51.74 | 42.76 | 49.68 | 68.02 | 51.89 | 66.48 | 56.47 | 61.50 | 56.32 | 63.88 | 51.89 | 64.40 | 52.95 | 44.60 | 48.63 | |
Qian_NIVIC_task2_1 | QianNIVIC2024 | 14 | 60.49793602398476 ± 0.0011415310840067227 | 54.91 | 51.37 | 63.64 | 60.16 | 73.40 | 53.00 | 64.80 | 54.53 | 74.16 | 53.21 | 71.08 | 53.26 | 71.53 | 51.21 | 55.78 | 50.16 | 63.70 | 50.79 | 59.21 | 49.42 | 68.92 | 54.84 | 69.78 | 58.47 | 58.80 | 56.37 | 68.15 | 52.84 | 71.22 | 54.89 | 78.94 | 66.74 | |
Qian_NIVIC_task2_2 | QianNIVIC2024 | 22 | 59.14659735390466 ± 0.0010937560006732772 | 54.91 | 51.37 | 52.35 | 49.89 | 73.40 | 53.00 | 64.80 | 54.53 | 74.16 | 53.21 | 71.08 | 53.26 | 71.53 | 51.21 | 55.78 | 50.16 | 63.70 | 50.79 | 59.21 | 49.42 | 68.92 | 54.84 | 69.78 | 58.47 | 58.80 | 56.37 | 68.15 | 52.84 | 71.22 | 54.89 | 78.94 | 66.74 | |
Qian_NIVIC_task2_3 | QianNIVIC2024 | 25 | 59.00312635614466 ± 0.0011170532039945762 | 54.91 | 51.37 | 63.64 | 60.16 | 73.40 | 53.00 | 64.80 | 54.53 | 74.16 | 53.21 | 53.33 | 48.26 | 71.53 | 51.21 | 55.78 | 50.16 | 63.70 | 50.79 | 59.21 | 49.42 | 68.92 | 54.84 | 69.78 | 58.47 | 58.80 | 56.37 | 68.15 | 52.84 | 71.22 | 54.89 | 78.94 | 66.74 | |
Qian_NIVIC_task2_4 | QianNIVIC2024 | 34 | 57.71703181759845 ± 0.0010255811693124191 | 54.91 | 51.37 | 52.35 | 49.89 | 73.40 | 53.00 | 64.80 | 54.53 | 74.16 | 53.21 | 53.33 | 48.26 | 71.53 | 51.21 | 55.78 | 50.16 | 63.70 | 50.79 | 59.21 | 49.42 | 68.92 | 54.84 | 69.78 | 58.47 | 58.80 | 56.37 | 68.15 | 52.84 | 71.22 | 54.89 | 78.94 | 66.74 | |
Jiang_CUP_task2_1 | JiangCUP2024 | 81 | 49.48958984650561 ± 0.0009901396645261601 | 64.32 | 51.84 | 51.05 | 48.11 | 53.21 | 51.00 | 52.66 | 49.84 | 39.94 | 48.32 | 57.92 | 51.53 | 53.75 | 48.32 | 40.17 | 50.05 | 42.69 | 48.21 | 48.23 | 49.36 | 60.84 | 53.10 | 61.19 | 55.94 | 61.96 | 57.68 | 68.56 | 50.84 | 89.24 | 64.52 | 81.50 | 65.73 | |
Jiang_CUP_task2_2 | JiangCUP2024 | 80 | 49.54166350875297 ± 0.0009707659088424591 | 55.62 | 53.32 | 49.99 | 48.68 | 51.88 | 49.53 | 54.41 | 49.32 | 42.47 | 48.21 | 50.59 | 51.00 | 51.49 | 48.32 | 46.74 | 49.37 | 45.96 | 47.89 | 47.96 | 48.63 | 46.36 | 51.26 | 62.98 | 53.73 | 62.88 | 55.73 | 70.42 | 54.15 | 90.34 | 69.52 | 82.16 | 67.10 | |
Jiang_CUP_task2_3 | JiangCUP2024 | 84 | 48.99951485756926 ± 0.0009749502685763356 | 59.19 | 49.21 | 51.44 | 48.42 | 51.44 | 50.79 | 49.26 | 49.95 | 40.94 | 47.37 | 55.97 | 51.32 | 49.11 | 48.16 | 48.50 | 51.53 | 39.86 | 48.32 | 48.56 | 49.31 | 56.09 | 51.47 | 62.92 | 55.10 | 62.66 | 59.89 | 69.62 | 50.79 | 93.38 | 71.57 | 83.64 | 69.57 | |
Jiang_CUP_task2_4 | JiangCUP2024 | 82 | 49.22249405887789 ± 0.000994320172050672 | 59.69 | 51.05 | 51.16 | 48.89 | 49.26 | 48.79 | 48.87 | 49.00 | 41.40 | 50.84 | 57.52 | 51.63 | 49.98 | 48.47 | 48.15 | 51.42 | 40.97 | 47.84 | 45.42 | 48.57 | 57.00 | 52.36 | 60.16 | 53.79 | 60.78 | 58.79 | 70.24 | 52.42 | 87.52 | 64.42 | 86.94 | 69.68 | |
Jiang_THUEE_task2_1 | JiangTHUEE2024 | 4 | 65.36869889765188 ± 0.001185491785330456 | 64.77 | 53.53 | 68.31 | 53.37 | 67.82 | 53.79 | 69.81 | 54.63 | 73.21 | 57.74 | 72.70 | 57.16 | 93.07 | 76.89 | 67.46 | 54.89 | 67.72 | 52.95 | 62.68 | 51.05 | 71.04 | 58.53 | 71.66 | 57.21 | 63.46 | 58.26 | 76.87 | 61.79 | 89.51 | 65.68 | 81.54 | 68.00 | |
Jiang_THUEE_task2_2 | JiangTHUEE2024 | 6 | 64.54151796485333 ± 0.0011315770633509113 | 64.24 | 53.63 | 64.77 | 52.89 | 67.09 | 54.63 | 72.46 | 54.16 | 73.28 | 59.63 | 62.59 | 53.63 | 93.07 | 76.89 | 68.28 | 56.16 | 68.31 | 52.47 | 63.64 | 49.58 | 70.50 | 56.58 | 73.46 | 59.05 | 65.01 | 57.84 | 85.80 | 65.89 | 89.11 | 68.58 | 80.05 | 61.74 | |
Jiang_THUEE_task2_3 | JiangTHUEE2024 | 7 | 64.1653429214525 ± 0.0011555541315495161 | 64.24 | 53.32 | 67.29 | 53.16 | 64.63 | 53.68 | 70.54 | 54.21 | 73.79 | 57.68 | 71.33 | 54.68 | 88.49 | 58.26 | 69.52 | 55.53 | 67.95 | 51.95 | 61.77 | 49.00 | 70.76 | 57.32 | 73.01 | 59.68 | 63.83 | 57.74 | 76.95 | 62.32 | 88.98 | 63.79 | 84.82 | 66.74 | |
Jiang_THUEE_task2_4 | JiangTHUEE2024 | 8 | 63.96711447500272 ± 0.001131928850363913 | 64.24 | 53.32 | 67.29 | 53.16 | 64.63 | 53.68 | 70.54 | 54.21 | 73.79 | 57.68 | 68.16 | 54.68 | 88.49 | 58.26 | 69.52 | 55.53 | 67.95 | 51.95 | 61.77 | 49.00 | 70.76 | 57.32 | 73.01 | 59.68 | 63.83 | 57.74 | 83.42 | 66.47 | 89.45 | 68.89 | 81.32 | 66.74 | |
Lv_AITHU_task2_1 | LvAITHU2024 | 3 | 65.9743472963728 ± 0.0011594559701770019 | 66.59 | 55.74 | 66.03 | 54.21 | 71.21 | 56.11 | 72.51 | 54.95 | 74.27 | 57.95 | 71.05 | 54.68 | 93.21 | 76.26 | 67.51 | 55.79 | 68.18 | 53.26 | 63.72 | 52.26 | 69.52 | 56.84 | 73.05 | 57.95 | 64.37 | 58.37 | 75.65 | 61.79 | 86.62 | 61.95 | 79.74 | 66.58 | |
Lv_AITHU_task2_2 | LvAITHU2024 | 5 | 64.95825202580062 ± 0.00112965431185421 | 64.24 | 53.63 | 64.77 | 52.89 | 67.09 | 54.63 | 72.46 | 54.16 | 73.28 | 59.63 | 68.29 | 53.68 | 93.07 | 76.89 | 68.28 | 56.16 | 68.31 | 52.47 | 63.64 | 49.58 | 70.50 | 56.58 | 73.46 | 59.05 | 65.01 | 57.84 | 73.85 | 58.89 | 85.25 | 59.21 | 80.05 | 61.74 | |
Lv_AITHU_task2_3 | LvAITHU2024 | 2 | 66.16902475266467 ± 0.0011908734444371603 | 67.55 | 57.32 | 65.17 | 50.63 | 73.58 | 54.05 | 72.70 | 56.21 | 73.98 | 56.58 | 72.30 | 55.53 | 94.88 | 82.26 | 68.97 | 57.42 | 66.06 | 51.89 | 63.88 | 50.68 | 69.57 | 56.74 | 72.17 | 59.68 | 65.33 | 61.16 | 76.21 | 60.37 | 89.53 | 64.42 | 82.21 | 68.68 | |
Lv_AITHU_task2_4 | LvAITHU2024 | 1 | 66.24102452310362 ± 0.0011854991900309608 | 68.07 | 56.11 | 64.88 | 50.84 | 69.26 | 54.05 | 73.14 | 54.79 | 74.73 | 56.84 | 72.89 | 54.58 | 94.89 | 79.26 | 72.35 | 59.74 | 67.69 | 52.11 | 63.45 | 48.63 | 70.37 | 57.68 | 73.39 | 62.11 | 65.41 | 60.05 | 76.93 | 62.63 | 88.50 | 61.53 | 81.93 | 64.68 | |
Yin_Midea_task2_1 | YinMidea2024 | 68 | 51.3642460731876 ± 0.0010446326970144333 | 52.20 | 51.95 | 62.19 | 50.47 | 49.29 | 50.32 | 57.69 | 51.58 | 44.57 | 51.79 | 62.74 | 51.74 | 52.63 | 48.74 | 43.78 | 50.79 | 46.56 | 51.58 | 56.82 | 48.68 | 61.16 | 50.26 | 70.54 | 59.89 | 65.46 | 55.00 | 71.28 | 52.26 | 76.10 | 70.79 | 78.34 | 65.00 | |
Yin_Midea_task2_2 | YinMidea2024 | 63 | 52.23563242136593 ± 0.0010200734060762124 | 62.26 | 50.68 | 53.81 | 48.32 | 51.02 | 51.21 | 61.81 | 51.95 | 46.85 | 54.42 | 67.66 | 60.21 | 51.86 | 48.79 | 45.61 | 48.79 | 42.77 | 51.47 | 50.78 | 50.53 | 66.56 | 58.16 | 70.36 | 54.42 | 63.22 | 56.16 | 75.26 | 53.63 | 91.94 | 73.68 | 76.76 | 63.84 | |
Yin_Midea_task2_3 | YinMidea2024 | 83 | 49.080583650031464 ± 0.0010066512326207871 | 58.08 | 51.00 | 52.02 | 48.58 | 49.40 | 53.47 | 49.44 | 49.89 | 44.17 | 53.16 | 56.78 | 52.05 | 47.57 | 48.68 | 44.39 | 51.79 | 38.87 | 48.95 | 52.24 | 49.53 | 66.82 | 60.58 | 64.74 | 55.89 | 59.68 | 55.89 | 68.06 | 55.26 | 92.36 | 72.37 | 80.18 | 69.63 | |
Yin_Midea_task2_4 | YinMidea2024 | 70 | 50.60604025688289 ± 0.0010345626785820143 | 53.73 | 50.63 | 53.38 | 48.79 | 44.34 | 52.58 | 59.50 | 52.95 | 45.86 | 53.58 | 65.75 | 56.74 | 59.01 | 49.32 | 39.49 | 50.00 | 43.25 | 48.58 | 47.82 | 48.00 | 67.12 | 53.74 | 64.80 | 51.79 | 62.64 | 57.11 | 68.80 | 51.68 | 92.16 | 75.26 | 76.48 | 64.16 | |
Perez_UPV_task2_1 | PerezUPV2024 | 85 | 48.98393318219933 ± 0.0009685037559411823 | 53.60 | 51.13 | 47.61 | 49.16 | 50.71 | 49.74 | 40.66 | 48.23 | 41.77 | 49.83 | 49.17 | 49.66 | 49.54 | 50.01 | 44.25 | 51.63 | 65.35 | 54.98 | 56.24 | 56.06 | 69.02 | 66.19 | 60.71 | 59.84 | 59.00 | ||||||||
Wu_IACAS_task2_1 | WuIACAS2024 | 61 | 52.50061129302863 ± 0.0010378134153598755 | 61.93 | 54.37 | 56.24 | 48.37 | 45.93 | 50.37 | 52.89 | 49.37 | 52.94 | 52.00 | 64.35 | 52.63 | 50.06 | 49.05 | 43.85 | 50.32 | 62.33 | 47.89 | 49.62 | 49.21 | 60.82 | 53.26 | 68.76 | 59.78 | 64.08 | 55.52 | 72.70 | 57.68 | 95.72 | 80.47 | 75.36 | 64.21 | |
Wu_IACAS_task2_2 | WuIACAS2024 | 50 | 54.02394583622731 ± 0.001088203562160475 | 61.28 | 52.32 | 55.38 | 48.47 | 51.50 | 51.79 | 52.04 | 49.16 | 51.45 | 50.79 | 65.40 | 54.32 | 71.54 | 50.95 | 43.56 | 51.95 | 59.96 | 48.26 | 49.84 | 48.31 | 64.44 | 53.15 | 70.64 | 59.89 | 62.52 | 56.21 | 77.92 | 60.05 | 93.03 | 66.15 | 75.74 | 64.36 | |
Wu_IACAS_task2_3 | WuIACAS2024 | 47 | 54.16899844515759 ± 0.001057108336360687 | 61.69 | 53.47 | 55.90 | 48.47 | 52.08 | 51.21 | 53.71 | 48.63 | 52.53 | 51.95 | 66.58 | 55.00 | 66.90 | 49.68 | 43.65 | 50.89 | 60.10 | 47.89 | 49.46 | 48.63 | 64.08 | 53.84 | 69.84 | 59.47 | 62.61 | 55.42 | 77.56 | 60.00 | 93.80 | 73.21 | 75.92 | 64.36 | |
Wu_IACAS_task2_4 | WuIACAS2024 | 66 | 51.777140739159734 ± 0.0010371057163386184 | 61.55 | 54.68 | 53.63 | 49.32 | 52.99 | 52.16 | 47.96 | 49.53 | 47.09 | 50.21 | 59.04 | 53.79 | 44.20 | 49.05 | 48.44 | 54.84 | 59.37 | 48.53 | 50.95 | 48.26 | 67.68 | 53.84 | 70.78 | 60.26 | 64.70 | 56.15 | 81.72 | 63.68 | 91.26 | 66.94 | 80.00 | 66.00 | |
Li_SMALLRICE_task2_1 | LiSMALLRICE2024 | 58 | 53.3398550207269 ± 0.001077868702592486 | 52.83 | 49.74 | 50.94 | 48.53 | 53.20 | 51.74 | 47.76 | 48.47 | 44.92 | 53.79 | 67.18 | 51.95 | 95.80 | 82.58 | 43.44 | 50.32 | 51.43 | 52.63 | 55.34 | 49.95 | 65.53 | 54.42 | 67.56 | 59.21 | 64.12 | 58.53 | 76.70 | 55.26 | 78.02 | 52.47 | 76.52 | 64.89 | |
Li_SMALLRICE_task2_2 | LiSMALLRICE2024 | 59 | 53.219453690488216 ± 0.0010799999895663354 | 52.20 | 48.74 | 48.96 | 48.47 | 53.46 | 51.00 | 48.59 | 48.68 | 45.32 | 53.26 | 65.87 | 50.26 | 96.08 | 84.00 | 43.60 | 50.37 | 52.60 | 53.58 | 55.38 | 50.84 | 64.66 | 55.11 | 67.30 | 60.05 | 65.22 | 58.79 | 77.04 | 56.16 | 77.04 | 52.63 | 77.38 | 64.95 | |
Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | 53 | 53.81856456562342 ± 0.0011243926792786517 | 51.46 | 50.00 | 49.04 | 48.37 | 54.65 | 53.74 | 55.68 | 49.11 | 45.79 | 53.63 | 65.34 | 50.16 | 93.89 | 74.63 | 40.74 | 51.16 | 56.53 | 54.68 | 55.64 | 49.21 | 66.26 | 53.53 | 66.68 | 55.42 | 65.74 | 57.84 | 77.52 | 59.16 | 69.82 | 51.47 | 77.02 | 65.21 | |
Li_SMALLRICE_task2_4 | LiSMALLRICE2024 | 60 | 52.8949449499208 ± 0.0010522151699050406 | 56.40 | 49.53 | 50.42 | 48.32 | 52.69 | 51.47 | 46.53 | 48.47 | 43.79 | 52.84 | 64.89 | 50.16 | 95.54 | 81.79 | 43.76 | 50.11 | 50.03 | 51.89 | 55.16 | 50.42 | 65.42 | 55.21 | 65.22 | 59.58 | 64.70 | 58.37 | 74.98 | 54.32 | 76.68 | 52.84 | 79.60 | 67.32 | |
Huang_Xju_task2_1 | HuangXju2024 | 46 | 54.38612240957236 ± 0.001005392973156531 | 54.05 | 49.84 | 58.72 | 58.63 | 67.92 | 52.21 | 53.68 | 48.53 | 57.09 | 55.00 | 45.11 | 50.16 | 54.60 | 49.79 | 62.31 | 52.89 | 55.06 | 49.32 | 49.89 | 50.57 | 49.98 | 47.68 | 54.82 | 59.31 | 61.59 | 52.26 | 73.29 | 51.94 | 70.10 | 48.21 | 52.55 | 51.68 | |
Huang_Xju_task2_2 | HuangXju2024 | 55 | 53.659991099222346 ± 0.0009880937196739639 | 57.51 | 48.74 | 51.31 | 50.05 | 60.40 | 51.16 | 44.39 | 48.32 | 55.47 | 49.32 | 43.64 | 50.11 | 59.23 | 50.58 | 73.18 | 57.42 | 65.80 | 50.79 | 50.20 | 47.68 | 58.68 | 48.15 | 63.03 | 58.42 | 62.05 | 57.78 | 62.07 | 53.52 | 59.62 | 51.00 | 46.50 | 50.94 | |
Guo_BIT_task2_1 | GuoBIT2024 | 88 | 46.96912513794397 ± 0.00097893022763103 | 46.68 | 49.26 | 44.54 | 48.53 | 45.94 | 50.32 | 33.16 | 47.89 | 42.96 | 53.11 | 50.70 | 49.63 | 65.40 | 55.21 | 53.72 | 51.58 | 39.32 | 48.95 | 46.97 | 47.58 | 56.73 | 49.05 | 62.46 | 54.63 | 56.00 | 54.11 | 70.10 | 58.42 | 68.03 | 49.16 | 63.61 | 56.95 | |
Guo_BIT_task2_2 | GuoBIT2024 | 76 | 50.04651414050538 ± 0.0009972105745301837 | 59.76 | 57.32 | 41.74 | 49.95 | 45.09 | 49.42 | 50.32 | 49.00 | 44.69 | 51.79 | 50.83 | 51.21 | 51.51 | 51.47 | 58.08 | 51.84 | 49.40 | 48.79 | 51.23 | 48.84 | 66.14 | 51.84 | 63.25 | 57.00 | 65.08 | 56.68 | 58.57 | 52.74 | 70.78 | 55.05 | 59.56 | 50.53 | |
Guo_BIT_task2_3 | GuoBIT2024 | 48 | 54.084345600639494 ± 0.0010037944335590143 | 65.66 | 51.26 | 59.86 | 53.84 | 57.17 | 50.47 | 59.52 | 55.32 | 52.75 | 56.79 | 52.10 | 52.32 | 54.94 | 48.42 | 53.79 | 50.16 | 46.16 | 49.32 | 48.16 | 51.58 | 59.22 | 49.16 | 55.92 | 59.11 | 55.92 | 50.84 | 81.31 | 57.79 | 78.01 | 58.32 | 49.28 | 51.11 | |
Guo_BIT_task2_4 | GuoBIT2024 | 86 | 48.48349564494921 ± 0.0010170844716108469 | 49.91 | 49.58 | 44.98 | 48.53 | 48.39 | 49.74 | 34.20 | 48.37 | 43.15 | 52.53 | 53.43 | 49.95 | 65.84 | 54.53 | 54.72 | 53.16 | 45.59 | 49.53 | 51.53 | 48.84 | 63.96 | 49.74 | 61.93 | 56.37 | 56.10 | 57.11 | 73.54 | 57.95 | 70.24 | 48.89 | 64.97 | 54.68 | |
Wan_HFUU_task2_1 | WanHFUU2024 | 37 | 56.95741891894512 ± 0.0010154269725155024 | 62.30 | 51.63 | 63.32 | 51.53 | 55.72 | 53.58 | 55.58 | 51.26 | 50.91 | 55.16 | 60.41 | 55.63 | 64.45 | 51.89 | 61.04 | 53.84 | 65.54 | 47.89 | 51.10 | 49.20 | 70.44 | 52.57 | 64.40 | 57.57 | 62.80 | 55.42 | 75.68 | 54.31 | 91.74 | 70.84 | 76.82 | 63.21 | |
Wan_HFUU_task2_2 | WanHFUU2024 | 51 | 54.004134027500136 ± 0.0010180479918878796 | 60.74 | 50.79 | 52.14 | 48.74 | 51.93 | 51.58 | 56.17 | 51.68 | 53.34 | 56.05 | 68.16 | 62.26 | 55.45 | 51.63 | 40.89 | 49.32 | 67.67 | 48.32 | 48.80 | 49.36 | 71.84 | 55.21 | 63.20 | 55.15 | 70.72 | 58.78 | 68.72 | 54.47 | 92.28 | 75.00 | 73.25 | 61.47 | |
Wan_HFUU_task2_3 | WanHFUU2024 | 49 | 54.040077780815054 ± 0.0010321740735709471 | 51.33 | 49.84 | 58.40 | 56.05 | 82.19 | 69.00 | 54.70 | 49.47 | 46.75 | 51.11 | 51.53 | 51.16 | 45.71 | 50.37 | 58.73 | 49.26 | 57.92 | 50.74 | 53.34 | 48.89 | 50.33 | 47.52 | 62.11 | 57.42 | 78.91 | 61.10 | 58.28 | 58.73 | 77.33 | 55.10 | 55.65 | 50.78 | |
Wan_HFUU_task2_4 | WanHFUU2024 | 38 | 56.86467346294555 ± 0.0010054281005031146 | 57.38 | 51.42 | 61.62 | 57.63 | 77.14 | 55.47 | 57.36 | 51.84 | 61.01 | 53.11 | 52.15 | 52.37 | 56.66 | 49.32 | 61.38 | 53.11 | 54.99 | 49.58 | 50.30 | 50.47 | 49.71 | 47.78 | 61.36 | 53.00 | 77.59 | 54.36 | 55.73 | 59.42 | 77.12 | 48.47 | 51.43 | 52.94 | |
Kong_IMECAS_task2_1 | KongIMECAS2024 | 42 | 56.02395073995415 ± 0.001077883896106262 | 58.38 | 49.16 | 59.54 | 53.47 | 67.74 | 56.84 | 41.24 | 50.42 | 52.62 | 50.26 | 53.60 | 51.47 | 63.83 | 50.16 | 74.03 | 57.21 | 68.14 | 50.42 | 51.78 | 48.42 | 62.55 | 48.31 | 63.98 | 57.35 | 60.86 | 56.00 | 69.14 | 55.32 | 63.69 | 53.32 | 47.24 | 52.05 | |
Kong_IMECAS_task2_2 | KongIMECAS2024 | 40 | 56.50382577391263 ± 0.0009983711243153732 | 55.91 | 51.16 | 64.26 | 60.68 | 77.64 | 60.16 | 59.36 | 52.05 | 53.65 | 53.95 | 51.42 | 51.05 | 52.16 | 48.47 | 65.65 | 53.84 | 54.09 | 49.16 | 49.86 | 51.21 | 50.65 | 47.89 | 54.30 | 58.95 | 60.62 | 52.05 | 77.56 | 54.79 | 77.83 | 48.84 | 52.46 | 50.74 | |
Kong_IMECAS_task2_3 | KongIMECAS2024 | 45 | 55.20983600747095 ± 0.0010311321102316356 | 59.55 | 49.16 | 54.27 | 51.32 | 66.66 | 55.53 | 50.21 | 51.79 | 55.56 | 50.95 | 54.17 | 50.16 | 57.09 | 50.53 | 71.92 | 56.26 | 50.76 | 51.74 | 50.17 | 48.89 | 61.16 | 47.89 | 60.84 | 56.11 | 61.52 | 58.78 | 67.97 | 54.78 | 58.88 | 51.05 | 46.75 | 51.63 | |
Kong_IMECAS_task2_4 | KongIMECAS2024 | 52 | 53.84279796938759 ± 0.0010404899494742628 | 55.32 | 49.11 | 59.63 | 57.26 | 77.12 | 59.37 | 55.66 | 53.63 | 52.85 | 58.42 | 50.35 | 51.84 | 49.78 | 47.79 | 61.78 | 51.53 | 40.44 | 49.32 | 50.43 | 49.84 | 51.95 | 48.26 | 52.58 | 59.63 | 60.09 | 55.32 | 75.75 | 54.68 | 61.87 | 48.95 | 52.88 | 49.05 | |
Hai_SCU_task2_1 | HaiSCU2024 | 72 | 50.34153796416583 ± 0.0010155482504932121 | 57.31 | 51.00 | 41.57 | 47.84 | 65.33 | 57.16 | 54.01 | 54.53 | 41.13 | 47.84 | 57.91 | 55.74 | 49.20 | 48.58 | 46.77 | 49.53 | 46.16 | 50.53 | 49.64 | 51.21 | 54.78 | 48.78 | 66.57 | 60.36 | 51.51 | 48.95 | 62.52 | 50.47 | 63.18 | 48.89 | 51.29 | 50.94 | |
Kim_DAU_task2_1 | KimDAU2024 | 71 | 50.433236408626016 ± 0.0010116627475769257 | 69.05 | 52.05 | 46.70 | 48.32 | 50.78 | 49.68 | 49.59 | 49.63 | 57.53 | 54.21 | 51.58 | 50.11 | 45.57 | 49.05 | 46.63 | 49.42 | 45.13 | 50.00 | 66.83 | 66.65 | 62.39 | 53.43 | 80.15 | 70.95 | 75.95 | 75.95 | 73.51 | 72.32 | 79.72 | 71.36 | 78.03 | 72.48 | |
Bian_NR_task2_1 | BianNR2024 | 78 | 49.753503516592126 ± 0.000993616773430831 | 59.52 | 62.89 | 52.98 | 49.79 | 58.57 | 51.26 | 42.63 | 49.00 | 50.48 | 52.00 | 49.23 | 50.89 | 49.61 | 48.95 | 38.07 | 49.84 | 46.87 | 52.05 | 42.29 | 50.84 | 61.04 | 52.63 | 61.25 | 56.47 | 51.90 | 50.84 | 54.74 | 51.47 | 51.38 | 51.31 | 42.70 | 48.31 | |
Bian_NR_task2_2 | BianNR2024 | 74 | 50.30296617352682 ± 0.0009936159397799474 | 59.33 | 62.84 | 52.88 | 49.74 | 58.74 | 51.74 | 43.64 | 48.89 | 51.73 | 51.68 | 51.21 | 50.53 | 52.51 | 49.00 | 38.20 | 49.95 | 47.03 | 51.84 | 42.45 | 51.05 | 61.04 | 52.63 | 61.91 | 56.95 | 54.52 | 50.00 | 54.82 | 51.63 | 49.69 | 50.58 | 48.06 | 49.26 | |
Gleichmann_TNT_task2_1 | GleichmannTNT2024 | 93 | 45.314372753290186 ± 0.0009577819435369494 | 49.30 | 49.37 | 49.06 | 49.26 | 48.12 | 48.63 | 33.24 | 48.32 | 29.82 | 50.42 | 48.21 | 53.37 | 48.73 | 50.37 | 40.46 | 50.95 | 55.87 | 55.37 | 57.34 | 50.05 | 59.56 | 52.68 | 62.16 | 52.32 | 54.56 | 51.74 | 59.38 | 53.16 | 73.42 | 57.74 | 58.48 | 49.95 | |
Gleichmann_TNT_task2_2 | GleichmannTNT2024 | 96 | 43.50109690586943 ± 0.0009591642875581004 | 49.29 | 49.79 | 35.96 | 47.68 | 48.40 | 49.68 | 38.16 | 48.95 | 28.01 | 50.68 | 55.30 | 51.42 | 29.58 | 48.21 | 60.15 | 52.58 | 47.03 | 52.00 | 55.36 | 52.32 | 55.26 | 53.00 | 52.46 | 52.05 | 50.64 | 49.37 | 59.96 | 52.79 | 66.54 | 55.74 | 60.90 | 50.26 | |
Gleichmann_TNT_task2_3 | GleichmannTNT2024 | 94 | 44.5547593776025 ± 0.000975265367338303 | 48.27 | 50.32 | 56.62 | 52.00 | 47.60 | 48.58 | 34.55 | 49.00 | 26.98 | 49.68 | 48.13 | 53.21 | 49.16 | 50.79 | 39.71 | 49.68 | 46.08 | 49.11 | 57.78 | 58.16 | 58.52 | 53.42 | 65.06 | 53.26 | 54.46 | 51.00 | 65.76 | 51.63 | 84.00 | 68.05 | 63.76 | 52.89 | |
Gleichmann_TNT_task2_4 | GleichmannTNT2024 | 95 | 44.2100722208319 ± 0.0009771254966150526 | 47.18 | 49.68 | 40.55 | 47.58 | 47.94 | 51.21 | 38.79 | 49.63 | 43.73 | 50.26 | 48.52 | 54.21 | 24.28 | 47.37 | 56.75 | 54.00 | 46.76 | 51.00 | 53.70 | 53.16 | 55.44 | 52.89 | 61.14 | 54.79 | 53.48 | 48.89 | 59.80 | 52.94 | 58.94 | 50.79 | 66.12 | 51.60 | |
Kim_CAU_task2_1 | KimCAU2024 | 89 | 46.45632996840251 ± 0.0010088781424119019 | 45.63 | 50.37 | 42.38 | 47.89 | 42.28 | 49.16 | 38.85 | 51.58 | 41.32 | 51.95 | 56.60 | 50.53 | 50.01 | 50.42 | 44.30 | 49.79 | 46.82 | 49.11 | 47.70 | 49.11 | 56.48 | 51.58 | 60.34 | 53.26 | 58.14 | 57.37 | 62.30 | 52.42 | 77.70 | 49.53 | 65.50 | 56.79 | |
Kim_CAU_task2_2 | KimCAU2024 | 91 | 46.3583243500304 ± 0.001018651141970712 | 45.17 | 50.89 | 42.42 | 47.89 | 42.42 | 49.11 | 39.08 | 50.32 | 41.00 | 51.53 | 56.29 | 50.53 | 49.25 | 50.37 | 43.40 | 49.89 | 48.27 | 49.11 | 47.82 | 49.37 | 56.36 | 51.53 | 60.04 | 52.79 | 58.10 | 57.32 | 62.30 | 52.05 | 77.78 | 49.74 | 64.96 | 57.11 | |
Kim_CAU_task2_3 | KimCAU2024 | 90 | 46.37806751968737 ± 0.0010220463678257583 | 45.02 | 51.26 | 42.50 | 47.84 | 42.72 | 49.16 | 39.50 | 52.11 | 40.98 | 51.37 | 56.25 | 50.58 | 48.63 | 50.37 | 42.55 | 49.74 | 48.72 | 48.63 | 47.76 | 49.37 | 56.32 | 51.68 | 59.96 | 52.53 | 58.20 | 57.53 | 62.44 | 52.16 | 78.06 | 49.95 | 64.82 | 56.95 | |
Kim_CAU_task2_4 | KimCAU2024 | 92 | 46.02849005921025 ± 0.0010331697243746052 | 45.10 | 51.68 | 42.66 | 47.84 | 42.97 | 49.05 | 37.87 | 52.11 | 40.86 | 51.32 | 56.19 | 50.95 | 45.00 | 49.89 | 42.05 | 49.74 | 50.01 | 49.11 | 47.86 | 49.53 | 56.38 | 51.68 | 59.72 | 51.84 | 58.22 | 57.74 | 62.46 | 52.11 | 78.40 | 50.58 | 64.64 | 56.84 | |
Zhang_HEU_task2_1 | ZhangHEU2024 | 54 | 53.74623090811457 ± 0.001070067273571812 | 64.76 | 53.95 | 56.05 | 51.32 | 49.93 | 49.79 | 61.59 | 56.63 | 50.50 | 54.42 | 47.10 | 50.42 | 59.50 | 48.00 | 58.03 | 51.79 | 50.86 | 50.79 | 45.17 | 49.37 | 61.37 | 50.05 | 56.23 | 58.00 | 58.81 | 51.74 | 81.43 | 61.05 | 85.73 | 78.84 | 73.25 | 56.63 | |
Zhang_HEU_task2_2 | ZhangHEU2024 | 87 | 48.444106656538125 ± 0.0009694084162672815 | 65.14 | 53.58 | 56.64 | 52.95 | 48.60 | 50.11 | 40.24 | 51.21 | 40.21 | 49.79 | 49.56 | 50.95 | 61.88 | 48.21 | 47.95 | 52.37 | 33.11 | 51.63 | 45.55 | 49.11 | 61.97 | 50.37 | 59.14 | 58.95 | 55.93 | 52.74 | 81.66 | 60.79 | 87.80 | 80.26 | 72.36 | 53.74 | |
Zhang_HEU_task2_3 | ZhangHEU2024 | 64 | 52.20859790836647 ± 0.0009854397213407752 | 68.54 | 52.42 | 51.26 | 49.32 | 48.98 | 50.84 | 52.58 | 49.42 | 47.74 | 52.11 | 54.77 | 53.21 | 58.60 | 49.95 | 57.17 | 50.47 | 44.28 | 49.21 | 50.05 | 50.26 | 54.71 | 48.74 | 60.71 | 60.16 | 59.22 | 51.26 | 73.65 | 53.95 | 81.74 | 54.89 | 70.78 | 53.58 | |
Zhang_HEU_task2_4 | ZhangHEU2024 | 57 | 53.35929374681078 ± 0.0010469561116776395 | 64.76 | 53.89 | 56.06 | 51.53 | 49.87 | 49.68 | 60.70 | 56.63 | 50.23 | 54.47 | 47.31 | 50.53 | 59.62 | 48.00 | 57.40 | 51.84 | 47.55 | 50.42 | 45.16 | 49.37 | 61.41 | 50.05 | 56.45 | 58.16 | 58.67 | 51.84 | 81.47 | 61.00 | 85.82 | 79.05 | 73.24 | 56.58 | |
Liu_CXL_task2_1 | LiuCXL2024 | 13 | 60.52026046959108 ± 0.0011605372202239733 | 54.82 | 51.37 | 63.76 | 60.16 | 61.91 | 50.24 | 64.81 | 54.53 | 74.04 | 53.21 | 71.15 | 53.26 | 78.56 | 63.24 | 55.87 | 50.16 | 63.70 | 50.79 | 58.38 | 49.43 | 68.99 | 54.26 | 69.94 | 57.44 | 57.45 | 55.74 | 67.03 | 52.54 | 70.32 | 55.24 | 79.75 | 65.69 | |
Liu_CXL_task2_2 | LiuCXL2024 | 21 | 59.172117290004934 ± 0.0011168767660327198 | 54.82 | 51.37 | 52.47 | 49.89 | 61.91 | 50.24 | 64.81 | 54.53 | 74.04 | 53.21 | 71.15 | 53.26 | 78.56 | 63.24 | 55.87 | 50.16 | 63.70 | 50.79 | 58.38 | 49.43 | 68.99 | 54.26 | 69.94 | 57.44 | 57.45 | 55.74 | 67.03 | 52.54 | 70.32 | 55.24 | 79.75 | 65.69 | |
Liu_CXL_task2_3 | LiuCXL2024 | 24 | 59.0218070376167 ± 0.0010594661091307043 | 54.82 | 51.37 | 63.76 | 60.16 | 61.91 | 50.24 | 64.81 | 54.53 | 74.04 | 53.21 | 53.35 | 48.26 | 78.56 | 63.24 | 55.87 | 50.16 | 63.70 | 50.79 | 58.38 | 49.43 | 68.99 | 54.26 | 69.94 | 57.44 | 57.45 | 55.74 | 67.03 | 52.54 | 70.32 | 55.24 | 79.75 | 65.69 | |
Liu_CXL_task2_4 | LiuCXL2024 | 33 | 57.73888861092491 ± 0.001025927572057755 | 54.82 | 51.37 | 52.47 | 49.89 | 61.91 | 50.24 | 64.81 | 54.53 | 74.04 | 53.21 | 53.35 | 48.26 | 78.56 | 63.24 | 55.87 | 50.16 | 63.70 | 50.79 | 58.38 | 49.43 | 68.99 | 54.26 | 69.94 | 57.44 | 57.45 | 55.74 | 67.03 | 52.54 | 70.32 | 55.24 | 79.75 | 65.69 | |
Guan_HEU_task2_1 | GuanHEU2024 | 65 | 51.85888049113675 ± 0.0010537619556032335 | 55.73 | 53.11 | 56.32 | 50.47 | 79.00 | 59.21 | 48.13 | 48.47 | 63.68 | 54.26 | 42.75 | 52.37 | 48.94 | 50.68 | 42.32 | 48.32 | 47.95 | 49.42 | 52.85 | 49.53 | 60.29 | 48.47 | 71.32 | 57.00 | 60.63 | 57.74 | 68.67 | 53.53 | 64.20 | 59.39 | 61.56 | 51.79 | |
Guan_HEU_task2_2 | GuanHEU2024 | 56 | 53.477174180187916 ± 0.0009972393288512772 | 68.99 | 60.63 | 54.77 | 51.21 | 73.32 | 59.32 | 59.39 | 51.21 | 48.72 | 53.74 | 46.66 | 50.11 | 48.01 | 51.42 | 42.38 | 47.95 | 58.21 | 49.95 | 56.19 | 49.21 | 51.16 | 49.26 | 70.88 | 59.32 | 62.56 | 59.32 | 58.02 | 51.47 | 60.61 | 50.63 | 62.28 | 57.05 | |
Guan_HEU_task2_3 | GuanHEU2024 | 44 | 55.300089187318115 ± 0.0010532303526585441 | 59.60 | 50.95 | 60.97 | 50.58 | 59.64 | 52.74 | 58.08 | 49.32 | 60.01 | 55.05 | 59.27 | 55.95 | 60.57 | 52.05 | 53.97 | 53.95 | 45.76 | 48.47 | 52.20 | 49.95 | 71.00 | 52.42 | 62.38 | 53.05 | 60.65 | 55.53 | 70.11 | 51.11 | 89.25 | 76.26 | 82.26 | 67.05 | |
Guan_HEU_task2_4 | GuanHEU2024 | 43 | 55.56904711277052 ± 0.0010596716564482372 | 60.80 | 51.05 | 61.57 | 50.42 | 62.33 | 53.42 | 58.52 | 49.32 | 60.31 | 55.63 | 58.50 | 56.11 | 59.44 | 51.95 | 54.08 | 53.32 | 46.05 | 48.53 | 52.52 | 49.58 | 70.52 | 52.32 | 63.66 | 53.84 | 60.77 | 55.79 | 70.29 | 51.42 | 89.24 | 76.00 | 81.29 | 65.63 | |
Wang_iflytek_task2_1 | Wangiflytek2024 | 11 | 61.08842633062041 ± 0.0011747355735174372 | 54.87 | 51.37 | 63.72 | 60.16 | 78.59 | 61.05 | 64.76 | 54.53 | 74.08 | 53.21 | 71.11 | 53.26 | 71.52 | 51.21 | 55.83 | 50.16 | 63.75 | 50.79 | 60.37 | 51.13 | 69.31 | 55.32 | 71.55 | 58.90 | 60.14 | 57.35 | 68.38 | 53.86 | 72.44 | 55.67 | 80.31 | 67.34 | |
Wang_iflytek_task2_2 | Wangiflytek2024 | 18 | 59.712505571600985 ± 0.0011445157039559493 | 54.87 | 51.37 | 52.42 | 49.89 | 78.59 | 61.05 | 64.76 | 54.53 | 74.08 | 53.21 | 71.11 | 53.26 | 71.52 | 51.21 | 55.83 | 50.16 | 63.75 | 50.79 | 60.37 | 51.13 | 69.31 | 55.32 | 71.55 | 58.90 | 60.14 | 57.35 | 68.38 | 53.86 | 72.44 | 55.67 | 80.31 | 67.34 | |
Wang_iflytek_task2_3 | Wangiflytek2024 | 20 | 59.5589806638062 ± 0.0011764675312018005 | 54.87 | 51.37 | 63.72 | 60.16 | 78.59 | 61.05 | 64.76 | 54.53 | 74.08 | 53.21 | 53.29 | 48.26 | 71.52 | 51.21 | 55.83 | 50.16 | 63.75 | 50.79 | 60.37 | 51.13 | 69.31 | 55.32 | 71.55 | 58.90 | 60.14 | 57.35 | 68.38 | 53.86 | 72.44 | 55.67 | 80.31 | 67.34 | |
Wang_iflytek_task2_4 | Wangiflytek2024 | 31 | 58.250356207440255 ± 0.001053694692944958 | 54.87 | 51.37 | 52.42 | 49.89 | 78.59 | 61.05 | 64.76 | 54.53 | 74.08 | 53.21 | 53.29 | 48.26 | 71.52 | 51.21 | 55.83 | 50.16 | 63.75 | 50.79 | 60.37 | 51.13 | 69.31 | 55.32 | 71.55 | 58.90 | 60.14 | 57.35 | 68.38 | 53.86 | 72.44 | 55.67 | 80.31 | 67.34 | |
Yang_IND_task2_1 | YangIND2024 | 10 | 61.35410342629337 ± 0.001148839259798822 | 54.91 | 51.37 | 63.77 | 60.16 | 73.30 | 53.00 | 64.81 | 54.53 | 74.03 | 53.21 | 71.16 | 53.26 | 78.56 | 63.24 | 55.78 | 50.16 | 63.70 | 50.79 | 55.63 | 47.28 | 55.48 | 47.79 | 52.98 | 57.09 | 64.15 | 54.98 | 76.33 | 60.04 | 75.31 | 55.65 | 53.61 | 49.98 | |
Yang_IND_task2_2 | YangIND2024 | 16 | 59.96914851321136 ± 0.0011043973012666275 | 54.91 | 51.37 | 52.48 | 49.89 | 73.30 | 53.00 | 64.81 | 54.53 | 74.03 | 53.21 | 71.16 | 53.26 | 78.56 | 63.24 | 55.78 | 50.16 | 63.70 | 50.79 | 55.63 | 47.28 | 55.48 | 47.79 | 52.98 | 57.09 | 64.15 | 54.98 | 76.33 | 60.04 | 75.31 | 55.65 | 53.61 | 49.98 | |
Yang_IND_task2_3 | YangIND2024 | 17 | 59.80546802276297 ± 0.0011182031973053974 | 54.91 | 51.37 | 63.77 | 60.16 | 73.30 | 53.00 | 64.81 | 54.53 | 74.03 | 53.21 | 53.25 | 48.26 | 78.56 | 63.24 | 55.78 | 50.16 | 63.70 | 50.79 | 55.63 | 47.28 | 55.48 | 47.79 | 52.98 | 57.09 | 64.15 | 54.98 | 76.33 | 60.04 | 75.31 | 55.65 | 53.61 | 49.98 | |
Yang_IND_task2_4 | YangIND2024 | 29 | 58.48879568572292 ± 0.001063436501114148 | 54.91 | 51.37 | 52.48 | 49.89 | 73.30 | 53.00 | 64.81 | 54.53 | 74.03 | 53.21 | 53.25 | 48.26 | 78.56 | 63.24 | 55.78 | 50.16 | 63.70 | 50.79 | 55.63 | 47.28 | 55.48 | 47.79 | 52.98 | 57.09 | 64.15 | 54.98 | 76.33 | 60.04 | 75.31 | 55.65 | 53.61 | 49.98 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
3DPrinter (F1 score) |
3DPrinter (Recall) |
3DPrinter (Precision) |
AirCompressor (F1 score) |
AirCompressor (Recall) |
AirCompressor (Precision) |
BrushlessMotor (F1 score) |
BrushlessMotor (Recall) |
BrushlessMotor (Precision) |
HairDryer (F1 score) |
HairDryer (Recall) |
HairDryer (Precision) |
HoveringDrone (F1 score) |
HoveringDrone (Recall) |
HoveringDrone (Precision) |
RoboticArm (F1 score) |
RoboticArm (Recall) |
RoboticArm (Precision) |
Scanner (F1 score) |
Scanner (Recall) |
Scanner (Precision) |
ToothBrush (F1 score) |
ToothBrush (Recall) |
ToothBrush (Precision) |
ToyCircuit (F1 score) |
ToyCircuit (Recall) |
ToyCircuit (Precision) |
|
DCASE2024_baseline_task2_MAHALA | DCASE2024baseline2024 | 41 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 21.71 | 14.00 | 48.28 | |
DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | 39 | 66.64 | 74.68 | 60.17 | 53.49 | 54.11 | 52.88 | 66.67 | 100.00 | 50.00 | 62.65 | 82.02 | 50.68 | 61.92 | 64.86 | 59.23 | 66.43 | 97.96 | 50.25 | 65.89 | 75.34 | 58.55 | 66.67 | 100.00 | 50.00 | 70.50 | 95.83 | 55.76 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | 62 | 64.52 | 71.11 | 59.04 | 15.86 | 10.18 | 35.90 | 61.35 | 80.40 | 49.60 | 65.16 | 83.72 | 53.33 | 36.36 | 27.59 | 53.33 | 70.19 | 97.96 | 54.68 | 11.15 | 7.11 | 25.81 | 58.14 | 66.67 | 51.55 | 18.22 | 11.22 | 48.50 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2024 | 67 | 67.80 | 78.68 | 59.56 | 11.21 | 6.55 | 39.13 | 61.85 | 84.05 | 48.92 | 64.15 | 80.95 | 53.12 | 34.15 | 24.56 | 56.00 | 68.82 | 96.99 | 53.33 | 15.46 | 9.75 | 37.32 | 48.00 | 46.15 | 50.00 | 7.18 | 3.92 | 42.92 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2024 | 69 | 66.67 | 77.54 | 58.47 | 15.24 | 9.60 | 36.92 | 63.07 | 82.70 | 50.97 | 64.15 | 80.95 | 53.12 | 39.56 | 30.51 | 56.25 | 68.66 | 92.73 | 54.51 | 15.03 | 9.43 | 37.08 | 55.07 | 55.07 | 55.07 | 13.43 | 7.68 | 53.33 | |
Fujimura_NU_task2_1 | FujimuraNU2024 | 26 | 64.46 | 58.17 | 72.28 | 11.76 | 6.86 | 41.38 | 59.68 | 68.64 | 52.80 | 40.92 | 29.76 | 65.46 | 23.92 | 14.40 | 70.59 | 67.34 | 100.00 | 50.76 | 6.26 | 3.60 | 24.00 | 67.03 | 69.92 | 64.38 | 7.29 | 3.90 | 55.71 | |
Fujimura_NU_task2_2 | FujimuraNU2024 | 35 | 68.54 | 62.86 | 75.34 | 9.58 | 5.33 | 47.06 | 64.86 | 75.43 | 56.90 | 40.55 | 29.33 | 65.67 | 7.15 | 3.90 | 43.18 | 67.56 | 98.99 | 51.28 | 6.36 | 3.60 | 27.27 | 59.96 | 64.86 | 55.74 | 7.16 | 3.90 | 43.33 | |
Fujimura_NU_task2_3 | FujimuraNU2024 | 28 | 60.31 | 52.81 | 70.28 | 13.45 | 8.00 | 42.11 | 56.17 | 59.68 | 53.05 | 44.24 | 32.00 | 71.64 | 31.84 | 20.65 | 69.48 | 67.57 | 98.99 | 51.29 | 6.10 | 3.50 | 23.73 | 65.66 | 60.42 | 71.90 | 7.27 | 3.89 | 54.96 | |
Fujimura_NU_task2_4 | FujimuraNU2024 | 27 | 66.07 | 60.59 | 72.64 | 11.51 | 6.86 | 35.82 | 59.41 | 64.62 | 54.97 | 40.92 | 29.76 | 65.46 | 22.74 | 13.54 | 70.97 | 67.34 | 100.00 | 50.76 | 6.16 | 3.60 | 21.43 | 57.46 | 47.92 | 71.74 | 7.27 | 3.89 | 54.81 | |
Zhao_CUMT_task2_1 | ZhaoCUMT2024 | 9 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 70.06 | 69.94 | 70.18 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 78.59 | 78.38 | 78.80 | 53.90 | 53.70 | 54.10 | 63.62 | 63.44 | 63.80 | |
Zhao_CUMT_task2_2 | ZhaoCUMT2024 | 12 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 70.06 | 69.94 | 70.18 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 78.59 | 78.38 | 78.80 | 53.90 | 53.70 | 54.10 | 63.62 | 63.44 | 63.80 | |
Zhao_CUMT_task2_3 | ZhaoCUMT2024 | 15 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 70.06 | 69.94 | 70.18 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 78.59 | 78.38 | 78.80 | 53.90 | 53.70 | 54.10 | 63.62 | 63.44 | 63.80 | |
Zhao_CUMT_task2_4 | ZhaoCUMT2024 | 23 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 70.06 | 69.94 | 70.18 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 78.59 | 78.38 | 78.80 | 53.90 | 53.70 | 54.10 | 63.62 | 63.44 | 63.80 | |
Wang_USTC_task2_1 | WangUSTC2024 | 19 | 52.14 | 52.08 | 52.21 | 54.51 | 53.53 | 55.53 | 57.53 | 56.14 | 59.00 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 63.62 | 63.44 | 63.80 | |
Wang_USTC_task2_2 | WangUSTC2024 | 30 | 52.14 | 52.08 | 52.21 | 54.51 | 53.53 | 55.53 | 57.53 | 56.14 | 59.00 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 63.62 | 63.44 | 63.80 | |
Wang_USTC_task2_3 | WangUSTC2024 | 32 | 52.14 | 52.08 | 52.21 | 54.51 | 53.53 | 55.53 | 57.53 | 56.14 | 59.00 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 63.62 | 63.44 | 63.80 | |
Wang_USTC_task2_4 | WangUSTC2024 | 36 | 52.14 | 52.08 | 52.21 | 54.51 | 53.53 | 55.53 | 57.53 | 56.14 | 59.00 | 56.28 | 56.14 | 56.42 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 63.62 | 63.44 | 63.80 | |
Lee_KNU_task2_1 | LeeKNU2024 | 75 | 57.11 | 56.84 | 57.39 | 56.00 | 56.00 | 56.00 | 60.24 | 59.40 | 61.11 | 12.68 | 7.67 | 36.50 | 7.27 | 3.92 | 50.00 | 45.39 | 42.67 | 48.48 | 53.70 | 51.10 | 56.56 | 41.47 | 30.21 | 66.09 | 22.77 | 14.81 | 49.14 | |
Lee_KNU_task2_2 | LeeKNU2024 | 79 | 50.04 | 49.92 | 50.16 | 56.69 | 56.84 | 56.54 | 64.22 | 63.94 | 64.50 | 12.85 | 7.67 | 39.66 | 0.00 | 0.00 | 0.00 | 45.39 | 42.67 | 48.48 | 55.17 | 51.93 | 58.84 | 42.84 | 32.59 | 62.50 | 22.61 | 14.77 | 48.24 | |
Lee_KNU_task2_3 | LeeKNU2024 | 73 | 53.93 | 53.33 | 54.55 | 58.00 | 58.00 | 58.00 | 60.00 | 60.00 | 60.00 | 18.09 | 11.27 | 45.92 | 0.00 | 0.00 | 0.00 | 46.14 | 43.10 | 49.65 | 57.46 | 54.19 | 61.14 | 48.23 | 37.89 | 66.30 | 22.40 | 14.79 | 46.12 | |
Lee_KNU_task2_4 | LeeKNU2024 | 77 | 50.94 | 50.98 | 50.90 | 57.64 | 57.72 | 57.57 | 63.28 | 62.86 | 63.71 | 6.76 | 3.91 | 24.86 | 0.00 | 0.00 | 0.00 | 45.39 | 42.67 | 48.48 | 56.14 | 53.33 | 59.26 | 43.53 | 32.73 | 64.98 | 23.30 | 14.79 | 54.83 | |
Qian_NIVIC_task2_1 | QianNIVIC2024 | 14 | 53.33 | 53.33 | 53.33 | 54.51 | 53.53 | 55.53 | 67.14 | 67.06 | 67.22 | 55.84 | 55.58 | 56.11 | 70.97 | 70.99 | 70.95 | 66.00 | 66.00 | 66.00 | 63.44 | 61.54 | 65.47 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Qian_NIVIC_task2_2 | QianNIVIC2024 | 22 | 53.33 | 53.33 | 53.33 | 54.51 | 53.53 | 55.53 | 67.14 | 67.06 | 67.22 | 55.84 | 55.58 | 56.11 | 70.97 | 70.99 | 70.95 | 66.00 | 66.00 | 66.00 | 63.44 | 61.54 | 65.47 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Qian_NIVIC_task2_3 | QianNIVIC2024 | 25 | 53.33 | 53.33 | 53.33 | 54.51 | 53.53 | 55.53 | 67.14 | 67.06 | 67.22 | 55.84 | 55.58 | 56.11 | 70.97 | 70.99 | 70.95 | 66.00 | 66.00 | 66.00 | 63.44 | 61.54 | 65.47 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Qian_NIVIC_task2_4 | QianNIVIC2024 | 34 | 53.33 | 53.33 | 53.33 | 54.51 | 53.53 | 55.53 | 67.14 | 67.06 | 67.22 | 55.84 | 55.58 | 56.11 | 70.97 | 70.99 | 70.95 | 66.00 | 66.00 | 66.00 | 63.44 | 61.54 | 65.47 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Jiang_CUP_task2_1 | JiangCUP2024 | 81 | 31.30 | 21.76 | 55.74 | 0.00 | 0.00 | 0.00 | 46.87 | 42.42 | 52.35 | 47.11 | 41.73 | 54.10 | 37.35 | 27.43 | 58.54 | 60.32 | 68.64 | 53.81 | 19.98 | 12.86 | 44.78 | 40.53 | 30.51 | 60.36 | 12.92 | 7.38 | 51.61 | |
Jiang_CUP_task2_2 | JiangCUP2024 | 80 | 32.75 | 21.91 | 64.78 | 10.24 | 6.22 | 28.87 | 46.07 | 40.98 | 52.60 | 40.00 | 32.00 | 53.33 | 26.32 | 18.11 | 48.10 | 61.25 | 74.99 | 51.77 | 10.26 | 6.22 | 29.17 | 23.24 | 14.81 | 53.91 | 17.84 | 10.71 | 53.19 | |
Jiang_CUP_task2_3 | JiangCUP2024 | 84 | 29.55 | 19.81 | 58.10 | 5.80 | 3.20 | 30.77 | 42.75 | 37.74 | 49.30 | 49.51 | 47.08 | 52.22 | 31.17 | 21.43 | 57.14 | 64.43 | 85.81 | 51.57 | 14.18 | 8.73 | 37.80 | 25.72 | 17.96 | 45.27 | 7.04 | 3.85 | 41.32 | |
Jiang_CUP_task2_4 | JiangCUP2024 | 82 | 35.24 | 24.62 | 62.02 | 10.43 | 6.00 | 40.00 | 51.35 | 50.51 | 52.21 | 47.10 | 44.31 | 50.26 | 26.59 | 18.15 | 49.75 | 63.95 | 77.79 | 54.29 | 18.46 | 12.00 | 40.00 | 36.92 | 27.59 | 55.79 | 7.07 | 3.86 | 42.19 | |
Jiang_THUEE_task2_1 | JiangTHUEE2024 | 4 | 56.33 | 55.52 | 57.17 | 60.79 | 60.59 | 60.99 | 63.02 | 62.98 | 63.06 | 61.98 | 61.71 | 62.25 | 68.44 | 68.64 | 68.24 | 64.37 | 64.62 | 64.12 | 86.06 | 85.58 | 86.55 | 61.18 | 60.39 | 61.99 | 62.86 | 62.86 | 62.86 | |
Jiang_THUEE_task2_2 | JiangTHUEE2024 | 6 | 59.77 | 59.02 | 60.54 | 62.00 | 61.94 | 62.06 | 60.99 | 60.98 | 61.00 | 64.38 | 64.25 | 64.52 | 65.09 | 65.19 | 64.98 | 62.64 | 57.75 | 68.44 | 86.06 | 85.58 | 86.55 | 61.33 | 60.32 | 62.38 | 66.93 | 66.87 | 66.99 | |
Jiang_THUEE_task2_3 | JiangTHUEE2024 | 7 | 57.70 | 56.95 | 58.48 | 59.99 | 59.93 | 60.05 | 55.25 | 54.86 | 55.65 | 64.38 | 64.25 | 64.52 | 68.39 | 68.64 | 68.14 | 63.51 | 63.75 | 63.28 | 81.74 | 81.56 | 81.92 | 62.58 | 60.94 | 64.31 | 63.87 | 63.75 | 63.99 | |
Jiang_THUEE_task2_4 | JiangTHUEE2024 | 8 | 57.70 | 56.95 | 58.48 | 59.99 | 59.93 | 60.05 | 55.25 | 54.86 | 55.65 | 64.38 | 64.25 | 64.52 | 68.39 | 68.64 | 68.14 | 67.40 | 66.27 | 68.56 | 81.74 | 81.56 | 81.92 | 62.58 | 60.94 | 64.31 | 63.87 | 63.75 | 63.99 | |
Lv_AITHU_task2_1 | LvAITHU2024 | 3 | 59.11 | 58.23 | 60.02 | 57.80 | 57.72 | 57.88 | 65.57 | 65.45 | 65.69 | 64.62 | 64.62 | 64.62 | 67.65 | 67.83 | 67.47 | 66.38 | 66.63 | 66.13 | 85.01 | 84.71 | 85.31 | 62.05 | 61.08 | 63.06 | 64.00 | 63.94 | 64.06 | |
Lv_AITHU_task2_2 | LvAITHU2024 | 5 | 59.77 | 59.02 | 60.54 | 62.00 | 61.94 | 62.06 | 60.99 | 60.98 | 61.00 | 64.38 | 64.25 | 64.52 | 65.09 | 65.19 | 64.98 | 61.95 | 62.22 | 61.67 | 86.06 | 85.58 | 86.55 | 61.33 | 60.32 | 62.38 | 66.93 | 66.87 | 66.99 | |
Lv_AITHU_task2_3 | LvAITHU2024 | 2 | 59.37 | 58.23 | 60.55 | 59.99 | 59.93 | 60.05 | 66.68 | 66.63 | 66.73 | 65.52 | 65.19 | 65.84 | 66.63 | 66.53 | 66.73 | 64.79 | 65.03 | 64.56 | 91.99 | 91.83 | 92.15 | 57.81 | 56.73 | 58.93 | 63.00 | 62.98 | 63.02 | |
Lv_AITHU_task2_4 | LvAITHU2024 | 1 | 58.46 | 57.31 | 59.66 | 59.97 | 59.93 | 60.01 | 64.86 | 64.86 | 64.86 | 66.41 | 66.27 | 66.55 | 65.88 | 65.88 | 65.88 | 67.17 | 67.47 | 66.88 | 90.02 | 89.60 | 90.44 | 62.44 | 60.94 | 64.02 | 63.98 | 63.94 | 64.02 | |
Yin_Midea_task2_1 | YinMidea2024 | 68 | 40.16 | 31.87 | 54.26 | 27.81 | 17.68 | 65.12 | 47.14 | 44.68 | 49.89 | 62.84 | 69.49 | 57.36 | 26.67 | 18.18 | 50.00 | 66.89 | 100.00 | 50.25 | 14.34 | 9.00 | 35.29 | 41.67 | 33.33 | 55.56 | 18.36 | 11.20 | 50.91 | |
Yin_Midea_task2_2 | YinMidea2024 | 63 | 57.25 | 50.04 | 66.88 | 12.97 | 8.00 | 34.29 | 43.64 | 38.40 | 50.53 | 36.89 | 27.69 | 55.21 | 32.94 | 24.56 | 50.00 | 67.34 | 100.00 | 50.76 | 11.15 | 7.06 | 26.55 | 44.21 | 37.33 | 54.19 | 13.18 | 7.56 | 51.52 | |
Yin_Midea_task2_3 | YinMidea2024 | 83 | 28.21 | 18.53 | 59.06 | 0.00 | 0.00 | 0.00 | 12.98 | 7.36 | 54.76 | 44.98 | 41.62 | 48.94 | 35.56 | 27.59 | 50.00 | 66.44 | 98.99 | 50.00 | 14.12 | 9.23 | 30.00 | 32.34 | 24.56 | 47.33 | 7.08 | 3.87 | 41.10 | |
Yin_Midea_task2_4 | YinMidea2024 | 70 | 32.55 | 22.50 | 58.82 | 5.90 | 3.33 | 25.64 | 23.87 | 17.06 | 39.73 | 40.22 | 32.20 | 53.57 | 30.77 | 21.43 | 54.55 | 66.67 | 100.00 | 50.00 | 15.58 | 10.00 | 35.29 | 40.40 | 33.33 | 51.28 | 7.09 | 3.88 | 41.29 | |
Perez_UPV_task2_1 | PerezUPV2024 | 85 | 67.59 | 98.00 | 51.58 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 63.32 | 89.29 | 49.05 | 66.67 | 100.00 | 50.00 | 42.75 | 39.07 | 47.19 | 16.11 | 9.60 | 50.00 | 66.67 | 100.00 | 50.00 | 65.45 | 70.87 | 60.80 | |
Wu_IACAS_task2_1 | WuIACAS2024 | 61 | 60.12 | 57.38 | 63.13 | 15.38 | 9.60 | 38.71 | 66.60 | 87.64 | 53.71 | 55.84 | 58.22 | 53.64 | 32.94 | 24.56 | 50.00 | 66.69 | 93.83 | 51.72 | 16.09 | 10.00 | 41.10 | 53.69 | 50.75 | 56.99 | 65.48 | 75.79 | 57.65 | |
Wu_IACAS_task2_2 | WuIACAS2024 | 50 | 60.12 | 57.38 | 63.13 | 15.38 | 9.60 | 38.71 | 66.60 | 87.64 | 53.71 | 55.84 | 58.22 | 53.64 | 32.94 | 24.56 | 50.00 | 66.69 | 93.83 | 51.72 | 16.09 | 10.00 | 41.10 | 53.69 | 50.75 | 56.99 | 65.48 | 75.79 | 57.65 | |
Wu_IACAS_task2_3 | WuIACAS2024 | 47 | 60.12 | 57.38 | 63.13 | 15.38 | 9.60 | 38.71 | 66.60 | 87.64 | 53.71 | 55.84 | 58.22 | 53.64 | 32.94 | 24.56 | 50.00 | 66.69 | 93.83 | 51.72 | 16.09 | 10.00 | 41.10 | 53.69 | 50.75 | 56.99 | 65.48 | 75.79 | 57.65 | |
Wu_IACAS_task2_4 | WuIACAS2024 | 66 | 60.12 | 57.38 | 63.13 | 15.38 | 9.60 | 38.71 | 66.60 | 87.64 | 53.71 | 55.84 | 58.22 | 53.64 | 32.94 | 24.56 | 50.00 | 66.69 | 93.83 | 51.72 | 16.09 | 10.00 | 41.10 | 53.69 | 50.75 | 56.99 | 65.48 | 75.79 | 57.65 | |
Li_SMALLRICE_task2_1 | LiSMALLRICE2024 | 58 | 66.61 | 80.96 | 56.58 | 14.04 | 8.73 | 35.82 | 47.90 | 43.92 | 52.67 | 12.55 | 7.30 | 44.44 | 30.77 | 21.43 | 54.55 | 63.68 | 58.85 | 69.38 | 84.64 | 98.99 | 73.93 | 65.82 | 68.42 | 63.41 | 27.45 | 17.83 | 59.68 | |
Li_SMALLRICE_task2_2 | LiSMALLRICE2024 | 59 | 66.44 | 81.67 | 56.00 | 14.10 | 8.73 | 36.64 | 49.05 | 45.00 | 53.89 | 17.66 | 10.56 | 53.88 | 33.73 | 24.56 | 53.85 | 61.63 | 58.58 | 65.01 | 85.37 | 98.99 | 75.04 | 67.07 | 71.79 | 62.92 | 27.53 | 17.73 | 61.61 | |
Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | 53 | 63.38 | 74.72 | 55.02 | 14.10 | 8.73 | 36.64 | 56.93 | 57.75 | 56.14 | 25.42 | 16.97 | 50.63 | 30.77 | 21.43 | 54.55 | 69.46 | 84.05 | 59.19 | 84.07 | 96.91 | 74.24 | 63.69 | 66.67 | 60.98 | 35.29 | 24.08 | 66.01 | |
Li_SMALLRICE_task2_4 | LiSMALLRICE2024 | 60 | 65.17 | 80.29 | 54.84 | 13.59 | 8.40 | 35.59 | 47.91 | 43.52 | 53.28 | 12.41 | 7.24 | 43.43 | 30.77 | 21.43 | 54.55 | 53.60 | 45.96 | 64.29 | 85.35 | 98.99 | 75.02 | 64.43 | 64.86 | 64.00 | 18.71 | 11.16 | 57.69 | |
Huang_Xju_task2_1 | HuangXju2024 | 46 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Huang_Xju_task2_2 | HuangXju2024 | 55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 66.89 | 100.00 | 50.25 | 0.00 | 0.00 | 0.00 | |
Guo_BIT_task2_1 | GuoBIT2024 | 88 | 46.93 | 46.81 | 47.05 | 46.00 | 46.00 | 46.00 | 47.85 | 47.25 | 48.46 | 22.17 | 14.72 | 44.88 | 34.52 | 26.55 | 49.33 | 53.86 | 53.70 | 54.02 | 62.85 | 63.44 | 62.27 | 46.74 | 45.33 | 48.23 | 32.10 | 23.92 | 48.81 | |
Guo_BIT_task2_2 | GuoBIT2024 | 76 | 55.38 | 49.26 | 63.24 | 45.28 | 45.22 | 45.34 | 46.82 | 46.47 | 47.17 | 49.64 | 49.68 | 49.60 | 32.86 | 26.43 | 43.43 | 46.97 | 41.21 | 54.60 | 47.02 | 44.31 | 50.09 | 51.01 | 47.72 | 54.79 | 25.20 | 18.08 | 41.59 | |
Guo_BIT_task2_3 | GuoBIT2024 | 48 | 64.22 | 64.62 | 63.83 | 56.08 | 55.36 | 56.82 | 54.72 | 53.43 | 56.07 | 51.62 | 47.36 | 56.72 | 7.28 | 3.92 | 50.51 | 50.00 | 50.00 | 50.00 | 50.71 | 48.44 | 53.22 | 56.52 | 52.88 | 60.70 | 51.72 | 46.98 | 57.52 | |
Guo_BIT_task2_4 | GuoBIT2024 | 86 | 48.79 | 48.49 | 49.09 | 48.76 | 48.82 | 48.70 | 44.89 | 43.40 | 46.49 | 29.53 | 21.18 | 48.78 | 32.62 | 24.00 | 50.91 | 55.40 | 54.21 | 56.64 | 61.76 | 62.44 | 61.10 | 46.72 | 44.68 | 48.95 | 25.00 | 18.00 | 40.91 | |
Wan_HFUU_task2_1 | WanHFUU2024 | 37 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Wan_HFUU_task2_2 | WanHFUU2024 | 51 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Wan_HFUU_task2_3 | WanHFUU2024 | 49 | 66.89 | 100.00 | 50.25 | 66.22 | 98.99 | 49.75 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 58.03 | 63.01 | 53.78 | 66.67 | 100.00 | 50.00 | 47.90 | 47.92 | 47.88 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Wan_HFUU_task2_4 | WanHFUU2024 | 38 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 14.29 | 8.00 | 66.67 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Kong_IMECAS_task2_1 | KongIMECAS2024 | 42 | 66.89 | 98.99 | 50.52 | 65.98 | 96.00 | 50.26 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.90 | 97.96 | 50.79 | 66.67 | 98.99 | 50.26 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 20.00 | 12.00 | 60.00 | |
Kong_IMECAS_task2_2 | KongIMECAS2024 | 40 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Kong_IMECAS_task2_3 | KongIMECAS2024 | 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.92 | 46.47 | 61.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Kong_IMECAS_task2_4 | KongIMECAS2024 | 52 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | |
Hai_SCU_task2_1 | HaiSCU2024 | 72 | 58.01 | 57.93 | 58.09 | 41.13 | 40.19 | 42.13 | 61.03 | 60.85 | 61.21 | 49.52 | 49.28 | 49.76 | 38.54 | 29.89 | 54.25 | 56.00 | 56.00 | 56.00 | 49.06 | 47.69 | 50.52 | 48.51 | 47.35 | 49.72 | 46.33 | 39.25 | 56.52 | |
Kim_DAU_task2_1 | KimDAU2024 | 71 | 65.60 | 60.98 | 70.97 | 26.37 | 19.09 | 42.60 | 56.29 | 58.41 | 54.31 | 40.39 | 36.71 | 44.89 | 53.33 | 48.48 | 59.26 | 57.14 | 64.86 | 51.06 | 16.75 | 10.67 | 39.02 | 47.06 | 48.48 | 45.71 | 48.92 | 50.75 | 47.22 | |
Bian_NR_task2_1 | BianNR2024 | 78 | 46.75 | 32.24 | 84.98 | 0.00 | 0.00 | 0.00 | 32.08 | 22.61 | 55.20 | 11.54 | 6.55 | 48.65 | 12.76 | 7.27 | 51.95 | 32.02 | 23.74 | 49.19 | 21.98 | 14.44 | 45.94 | 43.24 | 38.71 | 48.98 | 48.82 | 43.56 | 55.52 | |
Bian_NR_task2_2 | BianNR2024 | 74 | 46.09 | 32.94 | 76.71 | 16.65 | 9.43 | 70.97 | 25.51 | 16.42 | 57.14 | 16.05 | 9.60 | 48.98 | 21.05 | 13.33 | 50.00 | 41.90 | 34.32 | 53.79 | 40.17 | 31.54 | 55.31 | 50.00 | 48.48 | 51.61 | 58.03 | 62.61 | 54.08 | |
Gleichmann_TNT_task2_1 | GleichmannTNT2024 | 93 | 55.53 | 65.76 | 48.06 | 52.53 | 54.86 | 50.39 | 39.72 | 30.91 | 55.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 38.30 | 36.00 | 40.91 | 20.40 | 13.22 | 44.71 | 66.67 | 100.00 | 50.00 | 0.00 | 0.00 | 0.00 | |
Gleichmann_TNT_task2_2 | GleichmannTNT2024 | 96 | 50.57 | 49.41 | 51.79 | 38.10 | 35.56 | 41.03 | 54.68 | 60.32 | 50.00 | 48.98 | 48.00 | 50.00 | 30.56 | 22.24 | 48.84 | 55.48 | 57.27 | 53.80 | 35.61 | 34.29 | 37.04 | 51.30 | 45.28 | 59.18 | 35.97 | 26.78 | 54.80 | |
Gleichmann_TNT_task2_3 | GleichmannTNT2024 | 94 | 53.44 | 59.40 | 48.57 | 56.93 | 58.17 | 55.75 | 25.97 | 16.67 | 58.82 | 0.00 | 0.00 | 0.00 | 68.92 | 85.61 | 57.67 | 37.38 | 33.48 | 42.31 | 32.22 | 25.44 | 43.93 | 36.09 | 33.22 | 39.50 | 56.13 | 63.55 | 50.27 | |
Gleichmann_TNT_task2_4 | GleichmannTNT2024 | 95 | 41.97 | 38.05 | 46.79 | 33.21 | 27.24 | 42.53 | 57.89 | 67.83 | 50.49 | 30.00 | 21.43 | 50.00 | 43.14 | 39.80 | 47.09 | 52.98 | 57.14 | 49.38 | 31.10 | 28.80 | 33.80 | 53.65 | 50.72 | 56.95 | 36.23 | 26.88 | 55.54 | |
Kim_CAU_task2_1 | KimCAU2024 | 89 | 31.19 | 23.04 | 48.24 | 9.88 | 6.00 | 27.91 | 6.59 | 3.50 | 56.00 | 0.00 | 0.00 | 0.00 | 33.23 | 26.98 | 43.24 | 0.00 | 0.00 | 0.00 | 29.82 | 22.61 | 43.77 | 48.89 | 45.04 | 53.47 | 0.00 | 0.00 | 0.00 | |
Kim_CAU_task2_2 | KimCAU2024 | 91 | 30.41 | 22.50 | 46.88 | 10.00 | 6.00 | 30.00 | 6.69 | 3.56 | 57.14 | 0.00 | 0.00 | 0.00 | 33.36 | 27.08 | 43.46 | 0.00 | 0.00 | 0.00 | 29.82 | 22.61 | 43.77 | 47.95 | 43.64 | 53.22 | 0.00 | 0.00 | 0.00 | |
Kim_CAU_task2_3 | KimCAU2024 | 90 | 33.71 | 25.71 | 48.91 | 10.04 | 6.00 | 30.77 | 6.68 | 3.56 | 55.17 | 0.00 | 0.00 | 0.00 | 33.36 | 27.08 | 43.46 | 0.00 | 0.00 | 0.00 | 29.65 | 22.61 | 43.05 | 48.13 | 43.93 | 53.22 | 0.00 | 0.00 | 0.00 | |
Kim_CAU_task2_4 | KimCAU2024 | 92 | 33.40 | 25.71 | 47.62 | 10.04 | 6.00 | 30.77 | 6.79 | 3.60 | 60.00 | 0.00 | 0.00 | 0.00 | 33.30 | 27.08 | 43.24 | 0.00 | 0.00 | 0.00 | 30.27 | 22.61 | 45.77 | 47.99 | 43.93 | 52.88 | 0.00 | 0.00 | 0.00 | |
Zhang_HEU_task2_1 | ZhangHEU2024 | 54 | 57.70 | 52.08 | 64.70 | 51.67 | 45.96 | 59.02 | 36.56 | 28.96 | 49.59 | 46.50 | 36.71 | 63.41 | 0.00 | 0.00 | 0.00 | 35.85 | 29.47 | 45.75 | 20.95 | 14.44 | 38.12 | 56.33 | 50.08 | 64.36 | 28.99 | 19.64 | 55.38 | |
Zhang_HEU_task2_2 | ZhangHEU2024 | 87 | 57.77 | 52.80 | 63.77 | 51.41 | 45.22 | 59.56 | 38.84 | 29.25 | 57.78 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 49.15 | 44.98 | 54.18 | 20.95 | 14.44 | 38.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Zhang_HEU_task2_3 | ZhangHEU2024 | 64 | 58.32 | 50.98 | 68.13 | 30.00 | 23.04 | 42.99 | 45.40 | 42.31 | 48.97 | 43.48 | 36.71 | 53.33 | 7.14 | 3.91 | 40.72 | 43.75 | 39.10 | 49.65 | 47.10 | 40.43 | 56.40 | 56.89 | 51.93 | 62.90 | 23.85 | 15.24 | 54.79 | |
Zhang_HEU_task2_4 | ZhangHEU2024 | 57 | 64.09 | 66.27 | 62.05 | 54.82 | 54.00 | 55.67 | 45.36 | 39.25 | 53.72 | 52.48 | 45.00 | 62.94 | 18.73 | 11.31 | 54.55 | 48.27 | 43.52 | 54.18 | 54.97 | 51.47 | 58.97 | 58.71 | 54.62 | 63.46 | 37.38 | 29.52 | 50.93 | |
Liu_CXL_task2_1 | LiuCXL2024 | 13 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 57.53 | 56.14 | 59.00 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 66.98 | 66.99 | 66.97 | 78.59 | 78.38 | 78.80 | 54.79 | 54.55 | 55.05 | 62.75 | 62.60 | 62.90 | |
Liu_CXL_task2_2 | LiuCXL2024 | 21 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 57.53 | 56.14 | 59.00 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 66.98 | 66.99 | 66.97 | 78.59 | 78.38 | 78.80 | 54.79 | 54.55 | 55.05 | 62.75 | 62.60 | 62.90 | |
Liu_CXL_task2_3 | LiuCXL2024 | 24 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 57.53 | 56.14 | 59.00 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 66.98 | 66.99 | 66.97 | 78.59 | 78.38 | 78.80 | 54.79 | 54.55 | 55.05 | 62.75 | 62.60 | 62.90 | |
Liu_CXL_task2_4 | LiuCXL2024 | 33 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 57.53 | 56.14 | 59.00 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 66.98 | 66.99 | 66.97 | 78.59 | 78.38 | 78.80 | 54.79 | 54.55 | 55.05 | 62.75 | 62.60 | 62.90 | |
Guan_HEU_task2_1 | GuanHEU2024 | 65 | 55.02 | 54.84 | 55.20 | 53.03 | 52.98 | 53.08 | 68.89 | 67.94 | 69.86 | 49.19 | 46.59 | 52.11 | 56.71 | 56.56 | 56.86 | 43.59 | 42.31 | 44.95 | 48.04 | 47.92 | 48.16 | 28.50 | 23.74 | 35.64 | 36.21 | 29.65 | 46.49 | |
Guan_HEU_task2_2 | GuanHEU2024 | 56 | 63.32 | 63.44 | 63.20 | 52.93 | 52.53 | 53.33 | 71.79 | 68.05 | 75.96 | 55.95 | 55.93 | 55.97 | 35.00 | 24.37 | 62.08 | 46.72 | 46.47 | 46.97 | 42.50 | 39.67 | 45.77 | 33.89 | 24.23 | 56.35 | 56.00 | 56.00 | 56.00 | |
Guan_HEU_task2_3 | GuanHEU2024 | 44 | 60.48 | 64.62 | 56.83 | 57.87 | 56.14 | 59.70 | 53.60 | 52.81 | 54.41 | 49.08 | 45.71 | 52.98 | 51.28 | 45.00 | 59.60 | 50.62 | 47.08 | 54.74 | 49.69 | 44.41 | 56.40 | 41.24 | 32.16 | 57.46 | 30.72 | 21.33 | 54.86 | |
Guan_HEU_task2_4 | GuanHEU2024 | 43 | 59.94 | 63.44 | 56.82 | 58.99 | 57.38 | 60.69 | 55.65 | 54.86 | 56.47 | 50.79 | 47.72 | 54.29 | 54.56 | 49.35 | 61.00 | 50.43 | 47.08 | 54.30 | 48.94 | 43.52 | 55.91 | 43.68 | 34.69 | 58.95 | 34.04 | 24.37 | 56.43 | |
Wang_iflytek_task2_1 | Wangiflytek2024 | 11 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 69.08 | 68.87 | 69.29 | 55.01 | 54.86 | 55.17 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 62.75 | 62.60 | 62.90 | |
Wang_iflytek_task2_2 | Wangiflytek2024 | 18 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 69.08 | 68.87 | 69.29 | 55.01 | 54.86 | 55.17 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 62.75 | 62.60 | 62.90 | |
Wang_iflytek_task2_3 | Wangiflytek2024 | 20 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 69.08 | 68.87 | 69.29 | 55.01 | 54.86 | 55.17 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 62.75 | 62.60 | 62.90 | |
Wang_iflytek_task2_4 | Wangiflytek2024 | 31 | 52.14 | 52.08 | 52.21 | 55.65 | 54.86 | 56.47 | 69.08 | 68.87 | 69.29 | 55.01 | 54.86 | 55.17 | 70.00 | 70.00 | 70.00 | 66.00 | 66.00 | 66.00 | 62.86 | 60.55 | 65.34 | 54.96 | 54.84 | 55.08 | 62.75 | 62.60 | 62.90 | |
Yang_IND_task2_1 | YangIND2024 | 10 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 65.97 | 65.79 | 66.15 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 67.01 | 66.99 | 67.03 | 78.59 | 78.38 | 78.80 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Yang_IND_task2_2 | YangIND2024 | 16 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 65.97 | 65.79 | 66.15 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 67.01 | 66.99 | 67.03 | 78.59 | 78.38 | 78.80 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Yang_IND_task2_3 | YangIND2024 | 17 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 65.97 | 65.79 | 66.15 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 67.01 | 66.99 | 67.03 | 78.59 | 78.38 | 78.80 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 | |
Yang_IND_task2_4 | YangIND2024 | 29 | 52.89 | 52.81 | 52.97 | 55.65 | 54.86 | 56.47 | 65.97 | 65.79 | 66.15 | 55.84 | 55.58 | 56.11 | 70.00 | 70.00 | 70.00 | 67.01 | 66.99 | 67.03 | 78.59 | 78.38 | 78.80 | 53.86 | 53.70 | 54.02 | 62.70 | 62.60 | 62.80 |
Domain-wise performance
Rank | Submission Information | Ranking | Eveluation Dataset in Source Domain | Eveluation Dataset in Target Domain | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
Harmonic mean (AUC, source) |
3DPrinter (AUC, source) |
3DPrinter (pAUC, source) |
AirCompressor (AUC, source) |
AirCompressor (pAUC, source) |
BrushlessMotor (AUC, source) |
BrushlessMotor (pAUC, source) |
HairDryer (AUC, source) |
HairDryer (pAUC, source) |
HoveringDrone (AUC, source) |
HoveringDrone (pAUC, source) |
RoboticArm (AUC, source) |
RoboticArm (pAUC, source) |
Scanner (AUC, source) |
Scanner (pAUC, source) |
ToothBrush (AUC, source) |
ToothBrush (pAUC, source) |
ToyCircuit (AUC, source) |
ToyCircuit (pAUC, source) |
Harmonic mean (AUC, target) |
3DPrinter (AUC, target) |
3DPrinter (pAUC, target) |
AirCompressor (AUC, target) |
AirCompressor (pAUC, target) |
BrushlessMotor (AUC, target) |
BrushlessMotor (pAUC, target) |
HairDryer (AUC, target) |
HairDryer (pAUC, target) |
HoveringDrone (AUC, target) |
HoveringDrone (pAUC, target) |
RoboticArm (AUC, target) |
RoboticArm (pAUC, target) |
Scanner (AUC, target) |
Scanner (pAUC, target) |
ToothBrush (AUC, target) |
ToothBrush (pAUC, target) |
ToyCircuit (AUC, target) |
ToyCircuit (pAUC, target) |
|
DCASE2024_baseline_task2_MAHALA | DCASE2024baseline2024 | 41 | 56.489 | 67.18 | 75.44 | 50.84 | 66.10 | 60.79 | 80.32 | 59.05 | 60.60 | 55.11 | 83.88 | 58.00 | 58.34 | 51.79 | 56.84 | 49.26 | 65.56 | 48.37 | 67.94 | 49.21 | 51.44 | 42.40 | 50.84 | 55.50 | 60.79 | 73.38 | 59.05 | 58.98 | 55.11 | 46.40 | 58.00 | 42.50 | 51.79 | 55.50 | 49.26 | 57.90 | 48.37 | 44.64 | 49.21 | |
DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | 39 | 56.508 | 71.51 | 79.12 | 49.42 | 65.00 | 55.47 | 70.70 | 55.58 | 62.24 | 51.63 | 86.02 | 50.21 | 65.96 | 51.16 | 69.16 | 50.11 | 75.04 | 52.74 | 76.58 | 50.00 | 50.58 | 47.96 | 49.42 | 48.24 | 55.47 | 63.52 | 55.58 | 45.98 | 51.63 | 43.88 | 50.21 | 41.52 | 51.16 | 53.74 | 50.11 | 69.48 | 52.74 | 52.66 | 50.00 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | 62 | 52.463 | 63.25 | 81.38 | 58.74 | 47.36 | 48.63 | 64.54 | 50.68 | 81.52 | 56.32 | 81.62 | 53.26 | 78.88 | 58.11 | 68.20 | 49.16 | 75.52 | 52.00 | 35.34 | 48.00 | 44.80 | 57.10 | 58.74 | 61.64 | 48.63 | 37.90 | 50.68 | 43.84 | 56.32 | 29.32 | 53.26 | 59.46 | 58.11 | 51.48 | 49.16 | 28.78 | 52.00 | 77.74 | 48.00 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2024 | 67 | 51.458 | 57.30 | 83.64 | 54.42 | 44.18 | 48.84 | 50.24 | 50.84 | 73.54 | 56.11 | 80.06 | 49.63 | 76.14 | 54.32 | 47.78 | 49.05 | 75.82 | 55.95 | 34.20 | 48.05 | 46.47 | 54.00 | 54.42 | 59.22 | 48.84 | 46.00 | 50.84 | 48.06 | 56.11 | 28.14 | 49.63 | 54.18 | 54.32 | 51.84 | 49.05 | 33.32 | 55.95 | 80.60 | 48.05 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2024 | 69 | 51.238 | 58.27 | 82.84 | 58.47 | 43.76 | 48.79 | 57.86 | 51.95 | 73.96 | 57.42 | 81.12 | 48.95 | 70.36 | 53.63 | 50.88 | 48.63 | 81.16 | 54.37 | 33.10 | 48.32 | 45.11 | 54.28 | 58.47 | 55.78 | 48.79 | 45.08 | 51.95 | 50.10 | 57.42 | 26.12 | 48.95 | 51.90 | 53.63 | 53.16 | 48.63 | 30.94 | 54.37 | 81.10 | 48.32 | |
Fujimura_NU_task2_1 | FujimuraNU2024 | 26 | 58.899 | 61.13 | 83.92 | 59.79 | 57.16 | 49.05 | 64.48 | 50.53 | 58.28 | 52.68 | 84.34 | 53.16 | 63.38 | 57.68 | 66.24 | 50.37 | 81.24 | 56.11 | 33.22 | 48.68 | 63.86 | 64.86 | 59.79 | 64.22 | 49.05 | 50.42 | 50.53 | 74.76 | 52.68 | 54.74 | 53.16 | 79.62 | 57.68 | 56.28 | 50.37 | 63.34 | 56.11 | 80.90 | 48.68 | |
Fujimura_NU_task2_2 | FujimuraNU2024 | 35 | 57.532 | 62.09 | 84.62 | 60.32 | 58.94 | 49.53 | 69.38 | 50.21 | 56.96 | 51.84 | 85.72 | 54.05 | 64.64 | 58.16 | 66.82 | 50.16 | 79.18 | 54.11 | 33.94 | 48.47 | 58.58 | 64.88 | 60.32 | 67.98 | 49.53 | 42.90 | 50.21 | 75.92 | 51.84 | 46.22 | 54.05 | 78.08 | 58.16 | 57.08 | 50.16 | 43.70 | 54.11 | 82.08 | 48.47 | |
Fujimura_NU_task2_3 | FujimuraNU2024 | 28 | 58.530 | 59.85 | 82.50 | 59.11 | 55.04 | 49.05 | 60.62 | 50.79 | 59.62 | 54.05 | 82.26 | 51.21 | 57.88 | 55.53 | 65.06 | 50.32 | 83.02 | 56.68 | 33.38 | 49.11 | 64.28 | 65.62 | 59.11 | 63.24 | 49.05 | 52.92 | 50.79 | 74.32 | 54.05 | 52.12 | 51.21 | 81.68 | 55.53 | 56.20 | 50.32 | 66.64 | 56.68 | 80.72 | 49.11 | |
Fujimura_NU_task2_4 | FujimuraNU2024 | 27 | 58.874 | 59.57 | 83.96 | 59.21 | 56.62 | 49.05 | 62.08 | 51.00 | 56.66 | 51.89 | 81.82 | 54.79 | 66.50 | 58.95 | 66.38 | 50.11 | 67.80 | 55.84 | 32.60 | 48.74 | 65.32 | 64.34 | 59.21 | 60.36 | 49.05 | 50.00 | 51.00 | 74.06 | 51.89 | 62.66 | 54.79 | 77.34 | 58.95 | 55.54 | 50.11 | 78.20 | 55.84 | 80.10 | 48.74 | |
Zhao_CUMT_task2_1 | ZhaoCUMT2024 | 9 | 61.965 | 68.65 | 60.20 | 51.37 | 71.34 | 60.16 | 83.26 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 73.57 | 53.26 | 76.59 | 63.24 | 51.33 | 50.16 | 65.86 | 50.79 | 63.91 | 50.48 | 51.37 | 57.62 | 60.16 | 74.48 | 61.05 | 61.06 | 54.53 | 69.71 | 53.21 | 68.72 | 53.26 | 80.65 | 63.24 | 61.02 | 50.16 | 61.88 | 50.79 | |
Zhao_CUMT_task2_2 | ZhaoCUMT2024 | 12 | 60.552 | 65.62 | 60.20 | 51.37 | 49.80 | 49.89 | 83.26 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 73.57 | 53.26 | 76.59 | 63.24 | 51.33 | 50.16 | 65.86 | 50.79 | 63.60 | 50.48 | 51.37 | 55.43 | 49.89 | 74.48 | 61.05 | 61.06 | 54.53 | 69.71 | 53.21 | 68.72 | 53.26 | 80.65 | 63.24 | 61.02 | 50.16 | 61.88 | 50.79 | |
Zhao_CUMT_task2_3 | ZhaoCUMT2024 | 15 | 60.399 | 66.16 | 60.20 | 51.37 | 71.34 | 60.16 | 83.26 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 53.96 | 48.26 | 76.59 | 63.24 | 51.33 | 50.16 | 65.86 | 50.79 | 61.97 | 50.48 | 51.37 | 57.62 | 60.16 | 74.48 | 61.05 | 61.06 | 54.53 | 69.71 | 53.21 | 52.73 | 48.26 | 80.65 | 63.24 | 61.02 | 50.16 | 61.88 | 50.79 | |
Zhao_CUMT_task2_4 | ZhaoCUMT2024 | 23 | 59.056 | 63.34 | 60.20 | 51.37 | 49.80 | 49.89 | 83.26 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 53.96 | 48.26 | 76.59 | 63.24 | 51.33 | 50.16 | 65.86 | 50.79 | 61.68 | 50.48 | 51.37 | 55.43 | 49.89 | 74.48 | 61.05 | 61.06 | 54.53 | 69.71 | 53.21 | 52.73 | 48.26 | 80.65 | 63.24 | 61.02 | 50.16 | 61.88 | 50.79 | |
Wang_USTC_task2_1 | WangUSTC2024 | 19 | 59.684 | 65.73 | 60.04 | 51.37 | 71.32 | 60.16 | 54.67 | 50.24 | 69.06 | 54.53 | 78.92 | 53.21 | 73.68 | 53.26 | 79.10 | 51.21 | 51.52 | 50.16 | 65.86 | 50.79 | 62.33 | 50.44 | 51.37 | 57.45 | 60.16 | 71.33 | 50.24 | 61.05 | 54.53 | 69.76 | 53.21 | 68.63 | 53.26 | 65.28 | 51.21 | 61.04 | 50.16 | 61.87 | 50.79 | |
Wang_USTC_task2_2 | WangUSTC2024 | 30 | 58.378 | 62.94 | 60.04 | 51.37 | 49.80 | 49.89 | 54.67 | 50.24 | 69.06 | 54.53 | 78.92 | 53.21 | 73.68 | 53.26 | 79.10 | 51.21 | 51.52 | 50.16 | 65.86 | 50.79 | 62.05 | 50.44 | 51.37 | 55.42 | 49.89 | 71.33 | 50.24 | 61.05 | 54.53 | 69.76 | 53.21 | 68.63 | 53.26 | 65.28 | 51.21 | 61.04 | 50.16 | 61.87 | 50.79 | |
Wang_USTC_task2_3 | WangUSTC2024 | 32 | 58.229 | 63.43 | 60.04 | 51.37 | 71.32 | 60.16 | 54.67 | 50.24 | 69.06 | 54.53 | 78.92 | 53.21 | 53.96 | 48.26 | 79.10 | 51.21 | 51.52 | 50.16 | 65.86 | 50.79 | 60.48 | 50.44 | 51.37 | 57.45 | 60.16 | 71.33 | 50.24 | 61.05 | 54.53 | 69.76 | 53.21 | 52.72 | 48.26 | 65.28 | 51.21 | 61.04 | 50.16 | 61.87 | 50.79 | |
Wang_USTC_task2_4 | WangUSTC2024 | 36 | 56.986 | 60.83 | 60.04 | 51.37 | 49.80 | 49.89 | 54.67 | 50.24 | 69.06 | 54.53 | 78.92 | 53.21 | 53.96 | 48.26 | 79.10 | 51.21 | 51.52 | 50.16 | 65.86 | 50.79 | 60.23 | 50.44 | 51.37 | 55.42 | 49.89 | 71.33 | 50.24 | 61.05 | 54.53 | 69.76 | 53.21 | 52.72 | 48.26 | 65.28 | 51.21 | 61.04 | 50.16 | 61.87 | 50.79 | |
Lee_KNU_task2_1 | LeeKNU2024 | 75 | 50.244 | 60.63 | 72.14 | 52.53 | 55.22 | 48.74 | 46.70 | 51.11 | 73.02 | 49.68 | 81.18 | 48.42 | 34.00 | 50.79 | 61.02 | 48.89 | 87.48 | 57.21 | 84.70 | 51.53 | 42.45 | 49.70 | 52.53 | 56.00 | 48.74 | 74.98 | 51.11 | 28.26 | 49.68 | 30.48 | 48.42 | 61.72 | 50.79 | 54.00 | 48.89 | 39.34 | 57.21 | 30.90 | 51.53 | |
Lee_KNU_task2_2 | LeeKNU2024 | 79 | 49.690 | 61.44 | 66.08 | 49.68 | 60.54 | 48.21 | 47.80 | 50.79 | 69.64 | 49.21 | 80.68 | 48.79 | 33.98 | 51.26 | 69.74 | 49.53 | 87.36 | 54.79 | 83.74 | 51.84 | 41.23 | 47.20 | 49.68 | 48.72 | 48.21 | 77.84 | 50.79 | 25.70 | 49.21 | 29.56 | 48.79 | 61.86 | 51.26 | 56.50 | 49.53 | 36.62 | 54.79 | 33.56 | 51.84 | |
Lee_KNU_task2_3 | LeeKNU2024 | 73 | 50.316 | 63.12 | 68.52 | 49.68 | 61.04 | 48.11 | 58.38 | 50.95 | 70.10 | 49.74 | 81.68 | 49.00 | 33.08 | 51.05 | 69.70 | 49.32 | 87.06 | 55.16 | 83.94 | 50.63 | 41.82 | 45.28 | 49.68 | 49.28 | 48.11 | 69.78 | 50.95 | 28.10 | 49.74 | 29.32 | 49.00 | 61.80 | 51.05 | 59.36 | 49.32 | 38.56 | 55.16 | 33.50 | 50.63 | |
Lee_KNU_task2_4 | LeeKNU2024 | 77 | 49.759 | 61.20 | 64.56 | 49.47 | 60.14 | 48.37 | 49.02 | 50.84 | 69.64 | 49.21 | 79.50 | 49.11 | 33.54 | 51.26 | 69.32 | 49.47 | 87.20 | 55.63 | 84.08 | 51.74 | 41.42 | 47.42 | 49.47 | 49.00 | 48.37 | 77.58 | 50.84 | 25.02 | 49.21 | 30.14 | 49.11 | 61.78 | 51.26 | 56.06 | 49.47 | 37.74 | 55.63 | 34.20 | 51.74 | |
Qian_NIVIC_task2_1 | QianNIVIC2024 | 14 | 60.498 | 68.27 | 60.22 | 51.37 | 71.32 | 60.16 | 75.84 | 53.00 | 69.06 | 54.53 | 79.02 | 53.21 | 73.60 | 53.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.73 | 50.79 | 62.30 | 50.46 | 51.37 | 57.46 | 60.16 | 71.12 | 53.00 | 61.03 | 54.53 | 69.86 | 53.21 | 68.72 | 53.26 | 65.28 | 51.21 | 60.90 | 50.16 | 61.80 | 50.79 | |
Qian_NIVIC_task2_2 | QianNIVIC2024 | 22 | 59.147 | 65.24 | 60.22 | 51.37 | 49.64 | 49.89 | 75.84 | 53.00 | 69.06 | 54.53 | 79.02 | 53.21 | 73.60 | 53.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.73 | 50.79 | 62.02 | 50.46 | 51.37 | 55.38 | 49.89 | 71.12 | 53.00 | 61.03 | 54.53 | 69.86 | 53.21 | 68.72 | 53.26 | 65.28 | 51.21 | 60.90 | 50.16 | 61.80 | 50.79 | |
Qian_NIVIC_task2_3 | QianNIVIC2024 | 25 | 59.003 | 65.80 | 60.22 | 51.37 | 71.32 | 60.16 | 75.84 | 53.00 | 69.06 | 54.53 | 79.02 | 53.21 | 53.96 | 48.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.73 | 50.79 | 60.46 | 50.46 | 51.37 | 57.46 | 60.16 | 71.12 | 53.00 | 61.03 | 54.53 | 69.86 | 53.21 | 52.72 | 48.26 | 65.28 | 51.21 | 60.90 | 50.16 | 61.80 | 50.79 | |
Qian_NIVIC_task2_4 | QianNIVIC2024 | 34 | 57.717 | 62.98 | 60.22 | 51.37 | 49.64 | 49.89 | 75.84 | 53.00 | 69.06 | 54.53 | 79.02 | 53.21 | 53.96 | 48.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.73 | 50.79 | 60.19 | 50.46 | 51.37 | 55.38 | 49.89 | 71.12 | 53.00 | 61.03 | 54.53 | 69.86 | 53.21 | 52.72 | 48.26 | 65.28 | 51.21 | 60.90 | 50.16 | 61.80 | 50.79 | |
Jiang_CUP_task2_1 | JiangCUP2024 | 81 | 49.490 | 54.57 | 60.70 | 51.84 | 45.04 | 48.11 | 58.70 | 51.00 | 64.74 | 49.84 | 75.10 | 48.32 | 64.78 | 51.53 | 55.30 | 48.32 | 80.50 | 50.05 | 28.98 | 48.21 | 45.14 | 68.40 | 51.84 | 58.92 | 48.11 | 48.66 | 51.00 | 44.38 | 49.84 | 27.20 | 48.32 | 52.38 | 51.53 | 52.28 | 48.32 | 26.76 | 50.05 | 81.00 | 48.21 | |
Jiang_CUP_task2_2 | JiangCUP2024 | 80 | 49.542 | 53.22 | 51.52 | 53.32 | 44.22 | 48.68 | 54.62 | 49.53 | 63.20 | 49.32 | 74.74 | 48.21 | 59.08 | 51.00 | 50.88 | 48.32 | 79.28 | 49.37 | 32.92 | 47.89 | 46.41 | 60.44 | 53.32 | 57.50 | 48.68 | 49.40 | 49.53 | 47.76 | 49.32 | 29.66 | 48.21 | 44.24 | 51.00 | 52.12 | 48.32 | 33.14 | 49.37 | 76.08 | 47.89 | |
Jiang_CUP_task2_3 | JiangCUP2024 | 84 | 49.000 | 51.40 | 51.90 | 49.21 | 46.06 | 48.42 | 49.42 | 50.79 | 66.44 | 49.95 | 81.64 | 47.37 | 64.14 | 51.32 | 48.54 | 48.16 | 75.54 | 51.53 | 26.92 | 48.32 | 46.44 | 68.86 | 49.21 | 58.24 | 48.42 | 53.64 | 50.79 | 39.14 | 49.95 | 27.32 | 47.37 | 49.64 | 51.32 | 49.70 | 48.16 | 35.72 | 51.53 | 76.72 | 48.32 | |
Jiang_CUP_task2_4 | JiangCUP2024 | 82 | 49.222 | 54.03 | 53.66 | 51.05 | 46.04 | 48.89 | 61.78 | 48.79 | 64.94 | 49.00 | 75.24 | 50.84 | 66.40 | 51.63 | 56.19 | 48.47 | 83.28 | 51.42 | 27.42 | 47.84 | 44.78 | 67.24 | 51.05 | 57.56 | 48.89 | 40.96 | 48.79 | 39.18 | 49.00 | 28.56 | 50.84 | 50.74 | 51.63 | 45.00 | 48.47 | 33.86 | 51.42 | 81.02 | 47.84 | |
Jiang_THUEE_task2_1 | JiangTHUEE2024 | 4 | 65.369 | 69.56 | 62.52 | 53.53 | 69.88 | 53.37 | 63.56 | 53.79 | 73.32 | 54.63 | 66.84 | 57.74 | 64.82 | 57.16 | 96.74 | 76.89 | 70.96 | 54.89 | 67.16 | 52.95 | 72.34 | 67.18 | 53.53 | 66.80 | 53.37 | 72.70 | 53.79 | 66.62 | 54.63 | 80.92 | 57.74 | 82.76 | 57.16 | 89.66 | 76.89 | 64.28 | 54.89 | 68.28 | 52.95 | |
Jiang_THUEE_task2_2 | JiangTHUEE2024 | 6 | 64.542 | 67.00 | 64.44 | 53.63 | 64.62 | 52.89 | 66.50 | 54.63 | 74.46 | 54.16 | 66.18 | 59.63 | 49.28 | 53.63 | 96.74 | 76.89 | 69.50 | 56.16 | 67.84 | 52.47 | 72.35 | 64.04 | 53.63 | 64.92 | 52.89 | 67.70 | 54.63 | 70.56 | 54.16 | 82.08 | 59.63 | 85.76 | 53.63 | 89.66 | 76.89 | 67.10 | 56.16 | 68.78 | 52.47 | |
Jiang_THUEE_task2_3 | JiangTHUEE2024 | 7 | 64.165 | 68.65 | 62.54 | 53.32 | 68.24 | 53.16 | 61.00 | 53.68 | 73.72 | 54.21 | 66.92 | 57.68 | 62.50 | 54.68 | 90.20 | 58.26 | 73.20 | 55.53 | 67.50 | 51.95 | 72.00 | 66.04 | 53.32 | 66.36 | 53.16 | 68.72 | 53.68 | 67.62 | 54.21 | 82.24 | 57.68 | 83.06 | 54.68 | 86.84 | 58.26 | 66.20 | 55.53 | 68.40 | 51.95 | |
Jiang_THUEE_task2_4 | JiangTHUEE2024 | 8 | 63.967 | 67.69 | 62.54 | 53.32 | 68.24 | 53.16 | 61.00 | 53.68 | 73.72 | 54.21 | 66.92 | 57.68 | 56.00 | 54.68 | 90.20 | 58.26 | 73.20 | 55.53 | 67.50 | 51.95 | 72.32 | 66.04 | 53.32 | 66.36 | 53.16 | 68.72 | 53.68 | 67.62 | 54.21 | 82.24 | 57.68 | 87.06 | 54.68 | 86.84 | 58.26 | 66.20 | 55.53 | 68.40 | 51.95 | |
Lv_AITHU_task2_1 | LvAITHU2024 | 3 | 65.974 | 70.29 | 65.50 | 55.74 | 67.14 | 54.21 | 70.56 | 56.11 | 74.88 | 54.95 | 68.04 | 57.95 | 62.44 | 54.68 | 96.82 | 76.26 | 68.88 | 55.79 | 67.60 | 53.26 | 72.91 | 67.72 | 55.74 | 64.96 | 54.21 | 71.88 | 56.11 | 70.28 | 54.95 | 81.76 | 57.95 | 82.42 | 54.68 | 89.86 | 76.26 | 66.20 | 55.79 | 68.76 | 53.26 | |
Lv_AITHU_task2_2 | LvAITHU2024 | 5 | 64.958 | 68.72 | 64.44 | 53.63 | 64.62 | 52.89 | 66.50 | 54.63 | 74.46 | 54.16 | 66.18 | 59.63 | 59.08 | 53.68 | 96.74 | 76.89 | 69.50 | 56.16 | 67.84 | 52.47 | 71.94 | 64.04 | 53.63 | 64.92 | 52.89 | 67.70 | 54.63 | 70.56 | 54.16 | 82.08 | 59.63 | 80.90 | 53.68 | 89.66 | 76.89 | 67.10 | 56.16 | 68.78 | 52.47 | |
Lv_AITHU_task2_3 | LvAITHU2024 | 2 | 66.169 | 70.77 | 66.40 | 57.32 | 67.16 | 50.63 | 71.76 | 54.05 | 75.38 | 56.21 | 69.38 | 56.58 | 63.68 | 55.53 | 96.64 | 82.26 | 70.04 | 57.42 | 65.42 | 51.89 | 73.26 | 68.74 | 57.32 | 63.30 | 50.63 | 75.50 | 54.05 | 70.20 | 56.21 | 79.24 | 56.58 | 83.62 | 55.53 | 93.18 | 82.26 | 67.94 | 57.42 | 66.72 | 51.89 | |
Lv_AITHU_task2_4 | LvAITHU2024 | 1 | 66.241 | 71.03 | 67.80 | 56.11 | 65.66 | 50.84 | 67.46 | 54.05 | 74.82 | 54.79 | 69.54 | 56.84 | 63.60 | 54.58 | 98.10 | 79.26 | 74.44 | 59.74 | 67.54 | 52.11 | 73.66 | 68.34 | 56.11 | 64.12 | 50.84 | 71.16 | 54.05 | 71.54 | 54.79 | 80.76 | 56.84 | 85.36 | 54.58 | 91.88 | 79.26 | 70.38 | 59.74 | 67.84 | 52.11 | |
Yin_Midea_task2_1 | YinMidea2024 | 68 | 51.364 | 55.02 | 56.68 | 51.95 | 59.72 | 50.47 | 41.82 | 50.32 | 57.34 | 51.58 | 77.12 | 51.79 | 75.72 | 51.74 | 53.53 | 48.74 | 79.17 | 50.79 | 32.94 | 51.58 | 48.51 | 48.38 | 51.95 | 64.88 | 50.47 | 60.02 | 50.32 | 58.04 | 51.58 | 31.34 | 51.79 | 53.56 | 51.74 | 51.76 | 48.74 | 30.26 | 50.79 | 79.38 | 51.58 | |
Yin_Midea_task2_2 | YinMidea2024 | 63 | 52.236 | 52.54 | 69.26 | 50.68 | 47.56 | 48.32 | 43.51 | 51.21 | 55.74 | 51.95 | 76.32 | 54.42 | 67.52 | 60.21 | 51.94 | 48.79 | 73.90 | 48.79 | 29.22 | 51.47 | 52.64 | 56.54 | 50.68 | 61.96 | 48.32 | 61.66 | 51.21 | 69.36 | 51.95 | 33.80 | 54.42 | 67.80 | 60.21 | 51.78 | 48.79 | 32.98 | 48.79 | 79.74 | 51.47 | |
Yin_Midea_task2_3 | YinMidea2024 | 83 | 49.081 | 48.54 | 60.12 | 51.00 | 45.46 | 48.58 | 37.96 | 53.47 | 53.04 | 49.89 | 74.32 | 53.16 | 61.74 | 52.05 | 49.46 | 48.68 | 77.38 | 51.79 | 25.78 | 48.95 | 48.01 | 56.18 | 51.00 | 60.80 | 48.58 | 70.70 | 53.47 | 46.30 | 49.89 | 31.42 | 53.16 | 52.56 | 52.05 | 45.82 | 48.68 | 31.12 | 51.79 | 78.96 | 48.95 | |
Yin_Midea_task2_4 | YinMidea2024 | 70 | 50.606 | 50.73 | 55.46 | 50.63 | 45.54 | 48.79 | 33.86 | 52.58 | 58.06 | 52.95 | 77.42 | 53.58 | 69.46 | 56.74 | 57.82 | 49.32 | 80.86 | 50.00 | 29.68 | 48.58 | 49.77 | 52.10 | 50.63 | 64.48 | 48.79 | 64.20 | 52.58 | 61.02 | 52.95 | 32.58 | 53.58 | 62.42 | 56.74 | 60.26 | 49.32 | 26.12 | 50.00 | 79.66 | 48.58 | |
Perez_UPV_task2_1 | PerezUPV2024 | 85 | 48.984 | 56.91 | 56.91 | 51.13 | 45.68 | 49.16 | 53.85 | 49.74 | 58.09 | 48.23 | 66.43 | 49.83 | 45.23 | 49.66 | 52.08 | 50.01 | 68.53 | 51.63 | 83.67 | 54.98 | 41.95 | 50.66 | 51.13 | 49.70 | 49.16 | 47.91 | 49.74 | 31.27 | 48.23 | 30.46 | 49.83 | 53.85 | 49.66 | 47.23 | 50.01 | 32.67 | 51.63 | 53.61 | 54.98 | |
Wu_IACAS_task2_1 | WuIACAS2024 | 61 | 52.501 | 67.33 | 79.34 | 54.37 | 49.72 | 48.37 | 81.58 | 50.37 | 67.12 | 49.37 | 85.68 | 52.00 | 84.28 | 52.63 | 50.02 | 49.05 | 85.36 | 50.32 | 53.88 | 47.89 | 44.54 | 50.78 | 54.37 | 64.74 | 48.37 | 31.96 | 50.37 | 43.64 | 49.37 | 38.30 | 52.00 | 52.04 | 52.63 | 50.10 | 49.05 | 29.50 | 50.32 | 73.92 | 47.89 | |
Wu_IACAS_task2_2 | WuIACAS2024 | 50 | 54.024 | 69.09 | 76.14 | 52.32 | 48.38 | 48.47 | 83.56 | 51.79 | 67.72 | 49.16 | 84.74 | 50.79 | 82.20 | 54.32 | 77.60 | 50.95 | 82.62 | 51.95 | 48.14 | 48.26 | 46.77 | 51.28 | 52.32 | 64.76 | 48.47 | 37.22 | 51.79 | 42.26 | 49.16 | 36.94 | 50.79 | 54.30 | 54.32 | 66.36 | 50.95 | 29.58 | 51.95 | 79.48 | 48.26 | |
Wu_IACAS_task2_3 | WuIACAS2024 | 47 | 54.169 | 67.76 | 76.30 | 53.47 | 49.12 | 48.47 | 81.62 | 51.21 | 65.66 | 48.63 | 84.96 | 51.95 | 79.96 | 55.00 | 67.62 | 49.68 | 83.28 | 50.89 | 48.08 | 47.89 | 47.84 | 51.78 | 53.47 | 64.86 | 48.47 | 38.24 | 51.21 | 45.44 | 48.63 | 38.02 | 51.95 | 57.04 | 55.00 | 66.20 | 49.68 | 29.58 | 50.89 | 80.12 | 47.89 | |
Wu_IACAS_task2_4 | WuIACAS2024 | 66 | 51.777 | 64.68 | 77.60 | 54.68 | 47.56 | 49.32 | 82.52 | 52.16 | 71.26 | 49.53 | 74.72 | 50.21 | 71.34 | 53.79 | 44.76 | 49.05 | 80.62 | 54.84 | 59.02 | 48.53 | 43.55 | 51.00 | 54.68 | 61.48 | 49.32 | 39.02 | 52.16 | 36.14 | 49.53 | 34.38 | 50.21 | 50.36 | 53.79 | 43.66 | 49.05 | 34.62 | 54.84 | 59.72 | 48.53 | |
Li_SMALLRICE_task2_1 | LiSMALLRICE2024 | 58 | 53.340 | 56.95 | 73.54 | 49.74 | 45.58 | 48.53 | 65.40 | 51.74 | 36.04 | 48.47 | 81.10 | 53.79 | 54.58 | 51.95 | 98.16 | 82.58 | 88.56 | 50.32 | 36.58 | 52.63 | 50.38 | 41.22 | 49.74 | 57.72 | 48.53 | 44.84 | 51.74 | 70.78 | 48.47 | 31.06 | 53.79 | 87.34 | 51.95 | 93.56 | 82.58 | 28.78 | 50.32 | 86.56 | 52.63 | |
Li_SMALLRICE_task2_2 | LiSMALLRICE2024 | 59 | 53.219 | 56.85 | 73.52 | 48.74 | 44.22 | 48.47 | 63.70 | 51.00 | 36.76 | 48.68 | 81.00 | 53.26 | 53.28 | 50.26 | 97.78 | 84.00 | 87.80 | 50.37 | 37.78 | 53.58 | 50.38 | 40.46 | 48.74 | 54.84 | 48.47 | 46.06 | 51.00 | 71.64 | 48.68 | 31.46 | 53.26 | 86.26 | 50.26 | 94.44 | 84.00 | 29.00 | 50.37 | 86.54 | 53.58 | |
Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | 53 | 53.819 | 62.45 | 77.66 | 50.00 | 47.00 | 48.37 | 70.00 | 53.74 | 47.70 | 49.11 | 79.84 | 53.63 | 58.22 | 50.16 | 96.88 | 74.63 | 87.44 | 51.16 | 43.02 | 54.68 | 47.84 | 38.48 | 50.00 | 51.26 | 48.37 | 44.82 | 53.74 | 66.86 | 49.11 | 32.10 | 53.63 | 74.44 | 50.16 | 91.08 | 74.63 | 26.56 | 51.16 | 82.42 | 54.68 | |
Li_SMALLRICE_task2_4 | LiSMALLRICE2024 | 60 | 52.895 | 55.88 | 73.50 | 49.53 | 45.32 | 48.32 | 66.10 | 51.47 | 34.68 | 48.47 | 80.88 | 52.84 | 52.12 | 50.16 | 97.72 | 81.79 | 88.00 | 50.11 | 35.36 | 51.89 | 50.53 | 45.76 | 49.53 | 56.82 | 48.32 | 43.80 | 51.47 | 70.66 | 48.47 | 30.02 | 52.84 | 85.94 | 50.16 | 93.46 | 81.79 | 29.12 | 50.11 | 85.48 | 51.89 | |
Huang_Xju_task2_1 | HuangXju2024 | 46 | 54.386 | 65.02 | 61.82 | 49.84 | 60.00 | 58.63 | 78.00 | 52.21 | 55.24 | 48.53 | 84.30 | 55.00 | 75.40 | 50.16 | 55.16 | 49.79 | 66.22 | 52.89 | 61.38 | 49.32 | 48.97 | 48.02 | 49.84 | 57.50 | 58.63 | 60.14 | 52.21 | 52.20 | 48.53 | 43.16 | 55.00 | 32.18 | 50.16 | 54.06 | 49.79 | 58.84 | 52.89 | 49.92 | 49.32 | |
Huang_Xju_task2_2 | HuangXju2024 | 55 | 53.660 | 70.18 | 68.26 | 48.74 | 62.58 | 50.05 | 64.56 | 51.16 | 56.62 | 48.32 | 85.20 | 49.32 | 73.22 | 50.11 | 70.58 | 50.58 | 83.28 | 57.42 | 77.54 | 50.79 | 45.67 | 49.68 | 48.74 | 43.48 | 50.05 | 56.74 | 51.16 | 36.50 | 48.32 | 41.12 | 49.32 | 31.08 | 50.11 | 51.02 | 50.58 | 65.26 | 57.42 | 57.14 | 50.79 | |
Guo_BIT_task2_1 | GuoBIT2024 | 88 | 46.969 | 55.04 | 51.98 | 49.26 | 48.52 | 48.53 | 39.52 | 50.32 | 66.58 | 47.89 | 70.44 | 53.11 | 53.14 | 49.63 | 53.40 | 55.21 | 53.90 | 51.58 | 76.66 | 48.95 | 38.67 | 42.36 | 49.26 | 41.16 | 48.53 | 54.86 | 50.32 | 22.08 | 47.89 | 30.90 | 53.11 | 48.48 | 49.63 | 84.34 | 55.21 | 53.54 | 51.58 | 26.44 | 48.95 | |
Guo_BIT_task2_2 | GuoBIT2024 | 76 | 50.047 | 62.08 | 83.66 | 57.32 | 43.78 | 49.95 | 55.72 | 49.42 | 55.43 | 49.00 | 67.52 | 51.79 | 75.28 | 51.21 | 60.50 | 51.47 | 61.50 | 51.84 | 75.10 | 48.79 | 41.22 | 46.48 | 57.32 | 39.88 | 49.95 | 37.86 | 49.42 | 46.08 | 49.00 | 33.40 | 51.79 | 38.37 | 51.21 | 44.84 | 51.47 | 55.02 | 51.84 | 36.80 | 48.79 | |
Guo_BIT_task2_3 | GuoBIT2024 | 48 | 54.084 | 70.22 | 84.46 | 51.26 | 70.74 | 53.84 | 66.96 | 50.47 | 75.00 | 55.32 | 84.44 | 56.79 | 54.80 | 52.32 | 56.78 | 48.42 | 74.80 | 50.16 | 77.78 | 49.32 | 45.57 | 53.70 | 51.26 | 51.88 | 53.84 | 49.88 | 50.47 | 49.34 | 55.32 | 38.36 | 56.79 | 49.66 | 52.32 | 53.22 | 48.42 | 42.00 | 50.16 | 32.82 | 49.32 | |
Guo_BIT_task2_4 | GuoBIT2024 | 86 | 48.483 | 59.91 | 59.94 | 49.58 | 48.54 | 48.53 | 49.46 | 49.74 | 67.36 | 48.37 | 72.34 | 52.53 | 67.64 | 49.95 | 54.14 | 54.53 | 56.24 | 53.16 | 76.76 | 49.53 | 39.35 | 42.76 | 49.58 | 41.90 | 48.53 | 47.36 | 49.74 | 22.92 | 48.37 | 30.74 | 52.53 | 44.16 | 49.95 | 83.98 | 54.53 | 53.28 | 53.16 | 32.42 | 49.53 | |
Wan_HFUU_task2_1 | WanHFUU2024 | 37 | 56.957 | 67.34 | 70.90 | 51.63 | 60.40 | 51.53 | 57.64 | 53.58 | 73.20 | 51.26 | 83.92 | 55.16 | 56.88 | 55.63 | 74.56 | 51.89 | 79.66 | 53.84 | 60.52 | 47.89 | 53.38 | 55.56 | 51.63 | 66.54 | 51.53 | 53.92 | 53.58 | 44.80 | 51.26 | 36.54 | 55.16 | 64.40 | 55.63 | 56.76 | 51.89 | 49.48 | 53.84 | 71.48 | 47.89 | |
Wan_HFUU_task2_2 | WanHFUU2024 | 51 | 54.004 | 65.55 | 69.12 | 50.79 | 47.80 | 48.74 | 55.36 | 51.58 | 76.72 | 51.68 | 82.48 | 56.05 | 67.96 | 62.26 | 67.40 | 51.63 | 76.98 | 49.32 | 61.96 | 48.32 | 47.50 | 54.18 | 50.79 | 57.34 | 48.74 | 48.90 | 51.58 | 44.30 | 51.68 | 39.42 | 56.05 | 68.36 | 62.26 | 47.10 | 51.63 | 27.84 | 49.32 | 74.54 | 48.32 | |
Wan_HFUU_task2_3 | WanHFUU2024 | 49 | 54.040 | 65.03 | 69.46 | 49.84 | 69.46 | 56.05 | 88.64 | 69.00 | 71.26 | 49.47 | 79.12 | 51.11 | 62.48 | 51.16 | 41.12 | 50.37 | 71.64 | 49.26 | 57.60 | 50.74 | 47.46 | 40.70 | 49.84 | 50.38 | 56.05 | 76.62 | 69.00 | 44.38 | 49.47 | 33.18 | 51.11 | 43.84 | 51.16 | 51.46 | 50.37 | 49.76 | 49.26 | 58.24 | 50.74 | |
Wan_HFUU_task2_4 | WanHFUU2024 | 38 | 56.865 | 61.25 | 65.86 | 51.42 | 57.58 | 57.63 | 79.40 | 55.47 | 53.04 | 51.84 | 80.00 | 53.11 | 47.54 | 52.37 | 60.98 | 49.32 | 59.54 | 53.11 | 61.72 | 49.58 | 57.49 | 50.84 | 51.42 | 66.28 | 57.63 | 75.00 | 55.47 | 62.44 | 51.84 | 49.30 | 53.11 | 57.74 | 52.37 | 52.92 | 49.32 | 63.34 | 53.11 | 49.58 | 49.58 | |
Kong_IMECAS_task2_1 | KongIMECAS2024 | 42 | 56.024 | 71.10 | 78.36 | 49.16 | 60.62 | 53.47 | 76.84 | 56.84 | 75.98 | 50.42 | 87.42 | 50.26 | 55.14 | 51.47 | 70.78 | 50.16 | 72.46 | 57.21 | 73.30 | 50.42 | 49.36 | 46.52 | 49.16 | 58.50 | 53.47 | 60.56 | 56.84 | 28.30 | 50.42 | 37.64 | 50.26 | 52.14 | 51.47 | 58.12 | 50.16 | 75.66 | 57.21 | 63.66 | 50.42 | |
Kong_IMECAS_task2_2 | KongIMECAS2024 | 40 | 56.504 | 65.62 | 73.68 | 51.16 | 64.10 | 60.68 | 81.10 | 60.16 | 68.76 | 52.05 | 87.40 | 53.95 | 49.48 | 51.05 | 54.18 | 48.47 | 64.90 | 53.84 | 64.18 | 49.16 | 52.58 | 45.04 | 51.16 | 64.42 | 60.68 | 74.46 | 60.16 | 52.22 | 52.05 | 38.70 | 53.95 | 53.52 | 51.05 | 50.28 | 48.47 | 66.42 | 53.84 | 46.74 | 49.16 | |
Kong_IMECAS_task2_3 | KongIMECAS2024 | 45 | 55.210 | 71.15 | 74.54 | 49.16 | 63.90 | 51.32 | 70.22 | 55.53 | 63.68 | 51.79 | 83.30 | 50.95 | 62.84 | 50.16 | 68.82 | 50.53 | 76.34 | 56.26 | 83.74 | 51.74 | 47.64 | 49.58 | 49.16 | 47.16 | 51.32 | 63.44 | 55.53 | 41.44 | 51.79 | 41.68 | 50.95 | 47.60 | 50.16 | 48.78 | 50.53 | 67.98 | 56.26 | 36.42 | 51.74 | |
Kong_IMECAS_task2_4 | KongIMECAS2024 | 52 | 53.843 | 66.47 | 75.06 | 49.11 | 63.58 | 57.26 | 82.20 | 59.37 | 61.28 | 53.63 | 77.18 | 58.42 | 58.32 | 51.84 | 48.78 | 47.79 | 69.26 | 51.53 | 78.00 | 49.32 | 45.98 | 43.80 | 49.11 | 56.14 | 57.26 | 72.64 | 59.37 | 50.98 | 53.63 | 40.18 | 58.42 | 44.30 | 51.84 | 50.82 | 47.79 | 55.76 | 51.53 | 27.30 | 49.32 | |
Hai_SCU_task2_1 | HaiSCU2024 | 72 | 50.342 | 56.72 | 54.42 | 51.00 | 36.20 | 47.84 | 59.18 | 57.16 | 54.52 | 54.53 | 73.46 | 47.84 | 62.42 | 55.74 | 53.80 | 48.58 | 63.24 | 49.53 | 74.68 | 50.53 | 44.57 | 60.52 | 51.00 | 48.80 | 47.84 | 72.90 | 57.16 | 53.50 | 54.53 | 28.56 | 47.84 | 54.00 | 55.74 | 45.32 | 48.58 | 37.10 | 49.53 | 33.40 | 50.53 | |
Kim_DAU_task2_1 | KimDAU2024 | 71 | 50.433 | 54.64 | 70.18 | 52.05 | 41.25 | 48.32 | 57.74 | 49.68 | 52.04 | 49.63 | 73.08 | 54.21 | 58.70 | 50.11 | 47.64 | 49.05 | 50.38 | 49.42 | 55.16 | 50.00 | 47.01 | 67.96 | 52.05 | 53.80 | 48.32 | 45.32 | 49.68 | 47.36 | 49.63 | 47.43 | 54.21 | 46.00 | 50.11 | 43.67 | 49.05 | 43.40 | 49.42 | 38.18 | 50.00 | |
Bian_NR_task2_1 | BianNR2024 | 78 | 49.754 | 53.40 | 59.90 | 62.89 | 50.40 | 49.79 | 61.08 | 51.26 | 30.52 | 49.00 | 42.06 | 52.00 | 69.46 | 50.89 | 57.00 | 48.95 | 68.90 | 49.84 | 79.10 | 52.05 | 45.08 | 59.14 | 62.89 | 55.84 | 49.79 | 56.26 | 51.26 | 70.66 | 49.00 | 63.10 | 52.00 | 38.12 | 50.89 | 43.92 | 48.95 | 26.30 | 49.84 | 33.30 | 52.05 | |
Bian_NR_task2_2 | BianNR2024 | 74 | 50.303 | 54.13 | 59.28 | 62.84 | 50.40 | 49.74 | 59.30 | 51.74 | 31.48 | 48.89 | 44.76 | 51.68 | 67.82 | 50.53 | 58.86 | 49.00 | 70.48 | 49.95 | 79.00 | 51.84 | 45.96 | 59.38 | 62.84 | 55.62 | 49.74 | 58.20 | 51.74 | 71.12 | 48.89 | 61.26 | 51.68 | 41.14 | 50.53 | 47.40 | 49.00 | 26.20 | 49.95 | 33.48 | 51.84 | |
Gleichmann_TNT_task2_1 | GleichmannTNT2024 | 93 | 45.314 | 37.58 | 47.04 | 49.37 | 41.48 | 49.26 | 70.60 | 48.63 | 21.72 | 48.32 | 18.36 | 50.42 | 59.46 | 53.37 | 53.86 | 50.37 | 41.82 | 50.95 | 49.62 | 55.37 | 50.44 | 51.78 | 49.37 | 60.04 | 49.26 | 36.50 | 48.63 | 70.74 | 48.32 | 79.28 | 50.42 | 40.54 | 53.37 | 44.50 | 50.37 | 39.18 | 50.95 | 63.92 | 55.37 | |
Gleichmann_TNT_task2_2 | GleichmannTNT2024 | 96 | 43.501 | 32.71 | 48.16 | 49.79 | 27.84 | 47.68 | 41.30 | 49.68 | 26.14 | 48.95 | 17.00 | 50.68 | 45.30 | 51.42 | 23.00 | 48.21 | 55.70 | 52.58 | 73.40 | 52.00 | 54.29 | 50.48 | 49.79 | 50.78 | 47.68 | 58.46 | 49.68 | 70.64 | 48.95 | 79.44 | 50.68 | 70.96 | 51.42 | 41.42 | 48.21 | 65.38 | 52.58 | 34.60 | 52.00 | |
Gleichmann_TNT_task2_3 | GleichmannTNT2024 | 94 | 44.555 | 37.60 | 47.04 | 50.32 | 54.50 | 52.00 | 67.16 | 48.58 | 22.26 | 49.00 | 16.02 | 49.68 | 59.30 | 53.21 | 47.00 | 50.79 | 39.14 | 49.68 | 72.18 | 49.11 | 48.02 | 49.56 | 50.32 | 58.92 | 52.00 | 36.86 | 48.58 | 77.14 | 49.00 | 85.46 | 49.68 | 40.50 | 53.21 | 51.52 | 50.79 | 40.30 | 49.68 | 33.84 | 49.11 | |
Gleichmann_TNT_task2_4 | GleichmannTNT2024 | 95 | 44.210 | 38.90 | 45.78 | 49.68 | 31.94 | 47.58 | 36.44 | 51.21 | 73.70 | 49.63 | 51.80 | 50.26 | 37.22 | 54.21 | 17.52 | 47.37 | 50.00 | 54.00 | 71.68 | 51.00 | 44.79 | 48.66 | 49.68 | 55.52 | 47.58 | 70.04 | 51.21 | 26.32 | 49.63 | 37.84 | 50.26 | 69.66 | 54.21 | 39.56 | 47.37 | 65.60 | 54.00 | 34.70 | 51.00 | |
Kim_CAU_task2_1 | KimCAU2024 | 89 | 46.456 | 43.52 | 60.04 | 50.37 | 49.16 | 47.89 | 31.88 | 49.16 | 26.48 | 51.58 | 61.78 | 51.95 | 46.90 | 50.53 | 47.30 | 50.42 | 68.82 | 49.79 | 36.38 | 49.11 | 46.25 | 36.80 | 50.37 | 37.24 | 47.89 | 62.76 | 49.16 | 72.92 | 51.58 | 31.04 | 51.95 | 71.36 | 50.53 | 53.04 | 50.42 | 32.66 | 49.79 | 65.66 | 49.11 | |
Kim_CAU_task2_2 | KimCAU2024 | 91 | 46.358 | 43.83 | 60.38 | 50.89 | 49.00 | 47.89 | 32.00 | 49.11 | 26.74 | 50.32 | 61.86 | 51.53 | 46.46 | 50.53 | 46.46 | 50.37 | 70.54 | 49.89 | 37.96 | 49.11 | 45.72 | 36.08 | 50.89 | 37.40 | 47.89 | 62.90 | 49.11 | 72.54 | 50.32 | 30.66 | 51.53 | 71.40 | 50.53 | 52.40 | 50.37 | 31.34 | 49.89 | 66.26 | 49.11 | |
Kim_CAU_task2_3 | KimCAU2024 | 90 | 46.378 | 44.08 | 60.76 | 51.26 | 49.08 | 47.84 | 32.30 | 49.16 | 27.18 | 52.11 | 62.08 | 51.37 | 46.38 | 50.58 | 45.70 | 50.37 | 71.22 | 49.74 | 38.46 | 48.63 | 45.39 | 35.76 | 51.26 | 37.48 | 47.84 | 63.06 | 49.16 | 72.28 | 52.11 | 30.58 | 51.37 | 71.46 | 50.58 | 51.96 | 50.37 | 30.34 | 49.74 | 66.44 | 48.63 | |
Kim_CAU_task2_4 | KimCAU2024 | 92 | 46.028 | 43.49 | 61.80 | 51.68 | 49.02 | 47.84 | 32.48 | 49.05 | 25.70 | 52.11 | 62.22 | 51.32 | 46.28 | 50.95 | 41.70 | 49.89 | 71.26 | 49.74 | 40.02 | 49.11 | 44.96 | 35.50 | 51.68 | 37.76 | 47.84 | 63.46 | 49.05 | 71.92 | 52.11 | 30.42 | 51.32 | 71.50 | 50.95 | 48.86 | 49.89 | 29.82 | 49.74 | 66.66 | 49.11 | |
Zhang_HEU_task2_1 | ZhangHEU2024 | 54 | 53.746 | 72.32 | 77.62 | 53.95 | 65.48 | 51.32 | 69.80 | 49.79 | 75.14 | 56.63 | 83.92 | 54.42 | 65.36 | 50.42 | 69.08 | 48.00 | 73.98 | 51.79 | 74.38 | 50.79 | 44.09 | 55.56 | 53.95 | 49.00 | 51.32 | 38.86 | 49.79 | 52.18 | 56.63 | 36.12 | 54.42 | 36.82 | 50.42 | 52.26 | 48.00 | 47.74 | 51.79 | 38.64 | 50.79 | |
Zhang_HEU_task2_2 | ZhangHEU2024 | 87 | 48.444 | 71.86 | 76.16 | 53.58 | 64.20 | 52.95 | 70.20 | 50.11 | 79.66 | 51.21 | 86.22 | 49.79 | 52.04 | 50.95 | 67.60 | 48.21 | 85.36 | 52.37 | 80.56 | 51.63 | 35.14 | 56.90 | 53.58 | 50.68 | 52.95 | 37.16 | 50.11 | 26.92 | 51.21 | 26.22 | 49.79 | 47.30 | 50.95 | 57.06 | 48.21 | 33.34 | 52.37 | 20.84 | 51.63 | |
Zhang_HEU_task2_3 | ZhangHEU2024 | 64 | 52.209 | 61.65 | 80.24 | 52.42 | 52.58 | 49.32 | 40.48 | 50.84 | 66.30 | 49.42 | 78.92 | 52.11 | 51.56 | 53.21 | 62.70 | 49.95 | 73.90 | 50.47 | 75.90 | 49.21 | 46.45 | 59.82 | 52.42 | 50.00 | 49.32 | 62.00 | 50.84 | 43.56 | 49.42 | 34.22 | 52.11 | 58.40 | 53.21 | 55.00 | 49.95 | 46.62 | 50.47 | 31.26 | 49.21 | |
Zhang_HEU_task2_4 | ZhangHEU2024 | 57 | 53.359 | 72.66 | 77.50 | 53.89 | 65.32 | 51.53 | 69.78 | 49.68 | 75.54 | 56.63 | 84.02 | 54.47 | 64.74 | 50.53 | 69.00 | 48.00 | 75.56 | 51.84 | 76.86 | 50.42 | 43.21 | 55.62 | 53.89 | 49.10 | 51.53 | 38.80 | 49.68 | 50.74 | 56.63 | 35.82 | 54.47 | 37.28 | 50.53 | 52.48 | 48.00 | 46.28 | 51.84 | 34.42 | 50.42 | |
Liu_CXL_task2_1 | LiuCXL2024 | 13 | 60.520 | 65.53 | 60.04 | 51.37 | 71.34 | 60.16 | 54.68 | 50.24 | 69.06 | 54.53 | 78.96 | 53.21 | 73.72 | 53.26 | 76.58 | 63.24 | 51.50 | 50.16 | 65.82 | 50.79 | 63.63 | 50.44 | 51.37 | 57.63 | 60.16 | 71.35 | 50.24 | 61.06 | 54.53 | 69.69 | 53.21 | 68.76 | 53.26 | 80.65 | 63.24 | 61.04 | 50.16 | 61.71 | 50.79 | |
Liu_CXL_task2_2 | LiuCXL2024 | 21 | 59.172 | 62.76 | 60.04 | 51.37 | 49.80 | 49.89 | 54.68 | 50.24 | 69.06 | 54.53 | 78.96 | 53.21 | 73.72 | 53.26 | 76.58 | 63.24 | 51.50 | 50.16 | 65.82 | 50.79 | 63.32 | 50.44 | 51.37 | 55.45 | 49.89 | 71.35 | 50.24 | 61.06 | 54.53 | 69.69 | 53.21 | 68.76 | 53.26 | 80.65 | 63.24 | 61.04 | 50.16 | 61.71 | 50.79 | |
Liu_CXL_task2_3 | LiuCXL2024 | 24 | 59.022 | 63.24 | 60.04 | 51.37 | 71.34 | 60.16 | 54.68 | 50.24 | 69.06 | 54.53 | 78.96 | 53.21 | 53.96 | 48.26 | 76.58 | 63.24 | 51.50 | 50.16 | 65.82 | 50.79 | 61.70 | 50.44 | 51.37 | 57.63 | 60.16 | 71.35 | 50.24 | 61.06 | 54.53 | 69.69 | 53.21 | 52.75 | 48.26 | 80.65 | 63.24 | 61.04 | 50.16 | 61.71 | 50.79 | |
Liu_CXL_task2_4 | LiuCXL2024 | 33 | 57.739 | 60.66 | 60.04 | 51.37 | 49.80 | 49.89 | 54.68 | 50.24 | 69.06 | 54.53 | 78.96 | 53.21 | 53.96 | 48.26 | 76.58 | 63.24 | 51.50 | 50.16 | 65.82 | 50.79 | 61.41 | 50.44 | 51.37 | 55.45 | 49.89 | 71.35 | 50.24 | 61.06 | 54.53 | 69.69 | 53.21 | 52.75 | 48.26 | 80.65 | 63.24 | 61.04 | 50.16 | 61.71 | 50.79 | |
Guan_HEU_task2_1 | GuanHEU2024 | 65 | 51.859 | 47.35 | 53.34 | 53.11 | 59.78 | 50.47 | 76.24 | 59.21 | 38.26 | 48.47 | 62.32 | 54.26 | 39.24 | 52.37 | 56.54 | 50.68 | 33.66 | 48.32 | 37.84 | 49.42 | 57.61 | 58.34 | 53.11 | 53.24 | 50.47 | 81.96 | 59.21 | 64.86 | 48.47 | 65.10 | 54.26 | 46.96 | 52.37 | 43.14 | 50.68 | 56.98 | 48.32 | 65.42 | 49.42 | |
Guan_HEU_task2_2 | GuanHEU2024 | 56 | 53.477 | 64.76 | 77.38 | 60.63 | 59.66 | 51.21 | 88.30 | 59.32 | 60.58 | 51.21 | 79.84 | 53.74 | 44.28 | 50.11 | 57.05 | 51.42 | 80.64 | 47.95 | 60.94 | 49.95 | 46.24 | 62.24 | 60.63 | 50.62 | 51.21 | 62.68 | 59.32 | 58.24 | 51.21 | 35.06 | 53.74 | 49.30 | 50.11 | 41.44 | 51.42 | 28.74 | 47.95 | 55.72 | 49.95 | |
Guan_HEU_task2_3 | GuanHEU2024 | 44 | 55.300 | 52.43 | 66.58 | 50.95 | 53.34 | 50.58 | 58.08 | 52.74 | 51.30 | 49.32 | 83.60 | 55.05 | 52.22 | 55.95 | 66.92 | 52.05 | 41.16 | 53.95 | 32.42 | 48.47 | 62.71 | 53.94 | 50.95 | 71.16 | 50.58 | 61.28 | 52.74 | 66.92 | 49.32 | 46.80 | 55.05 | 68.52 | 55.95 | 55.32 | 52.05 | 78.34 | 53.95 | 77.76 | 48.47 | |
Guan_HEU_task2_4 | GuanHEU2024 | 43 | 55.569 | 53.07 | 67.64 | 51.05 | 54.58 | 50.42 | 61.40 | 53.42 | 51.84 | 49.32 | 84.22 | 55.63 | 51.30 | 56.11 | 66.82 | 51.95 | 41.64 | 53.32 | 32.74 | 48.53 | 62.73 | 55.22 | 51.05 | 70.62 | 50.42 | 63.28 | 53.42 | 67.18 | 49.32 | 46.98 | 55.63 | 68.06 | 56.11 | 53.52 | 51.95 | 77.12 | 53.32 | 77.58 | 48.53 | |
Wang_iflytek_task2_1 | Wangiflytek2024 | 11 | 61.088 | 68.89 | 60.16 | 51.37 | 71.32 | 60.16 | 83.24 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 73.68 | 53.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.82 | 50.79 | 62.58 | 50.44 | 51.37 | 57.58 | 60.16 | 74.44 | 61.05 | 60.96 | 54.53 | 69.76 | 53.21 | 68.72 | 53.26 | 65.26 | 51.21 | 61.02 | 50.16 | 61.80 | 50.79 | |
Wang_iflytek_task2_2 | Wangiflytek2024 | 18 | 59.713 | 65.83 | 60.16 | 51.37 | 49.76 | 49.89 | 83.24 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 73.68 | 53.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.82 | 50.79 | 62.28 | 50.44 | 51.37 | 55.38 | 49.89 | 74.44 | 61.05 | 60.96 | 54.53 | 69.76 | 53.21 | 68.72 | 53.26 | 65.26 | 51.21 | 61.02 | 50.16 | 61.80 | 50.79 | |
Wang_iflytek_task2_3 | Wangiflytek2024 | 20 | 59.559 | 66.37 | 60.16 | 51.37 | 71.32 | 60.16 | 83.24 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 53.94 | 48.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.82 | 50.79 | 60.71 | 50.44 | 51.37 | 57.58 | 60.16 | 74.44 | 61.05 | 60.96 | 54.53 | 69.76 | 53.21 | 52.66 | 48.26 | 65.26 | 51.21 | 61.02 | 50.16 | 61.80 | 50.79 | |
Wang_iflytek_task2_4 | Wangiflytek2024 | 31 | 58.250 | 63.52 | 60.16 | 51.37 | 49.76 | 49.89 | 83.24 | 61.05 | 69.06 | 54.53 | 78.96 | 53.21 | 53.94 | 48.26 | 79.10 | 51.21 | 51.46 | 50.16 | 65.82 | 50.79 | 60.43 | 50.44 | 51.37 | 55.38 | 49.89 | 74.44 | 61.05 | 60.96 | 54.53 | 69.76 | 53.21 | 52.66 | 48.26 | 65.26 | 51.21 | 61.02 | 50.16 | 61.80 | 50.79 | |
Yang_IND_task2_1 | YangIND2024 | 10 | 61.354 | 68.05 | 60.20 | 51.37 | 71.34 | 60.16 | 75.67 | 53.00 | 69.06 | 54.53 | 78.96 | 53.21 | 73.72 | 53.26 | 76.57 | 63.24 | 51.46 | 50.16 | 65.72 | 50.79 | 63.60 | 50.48 | 51.37 | 57.65 | 60.16 | 71.08 | 53.00 | 61.06 | 54.53 | 69.68 | 53.21 | 68.77 | 53.26 | 80.65 | 63.24 | 60.88 | 50.16 | 61.80 | 50.79 | |
Yang_IND_task2_2 | YangIND2024 | 16 | 59.969 | 65.07 | 60.20 | 51.37 | 49.81 | 49.89 | 75.67 | 53.00 | 69.06 | 54.53 | 78.96 | 53.21 | 73.72 | 53.26 | 76.57 | 63.24 | 51.46 | 50.16 | 65.72 | 50.79 | 63.30 | 50.48 | 51.37 | 55.46 | 49.89 | 71.08 | 53.00 | 61.06 | 54.53 | 69.68 | 53.21 | 68.77 | 53.26 | 80.65 | 63.24 | 60.88 | 50.16 | 61.80 | 50.79 | |
Yang_IND_task2_3 | YangIND2024 | 17 | 59.805 | 65.57 | 60.20 | 51.37 | 71.34 | 60.16 | 75.67 | 53.00 | 69.06 | 54.53 | 78.96 | 53.21 | 53.86 | 48.26 | 76.57 | 63.24 | 51.46 | 50.16 | 65.72 | 50.79 | 61.67 | 50.48 | 51.37 | 57.65 | 60.16 | 71.08 | 53.00 | 61.06 | 54.53 | 69.68 | 53.21 | 52.66 | 48.26 | 80.65 | 63.24 | 60.88 | 50.16 | 61.80 | 50.79 | |
Yang_IND_task2_4 | YangIND2024 | 29 | 58.489 | 62.80 | 60.20 | 51.37 | 49.81 | 49.89 | 75.67 | 53.00 | 69.06 | 54.53 | 78.96 | 53.21 | 53.86 | 48.26 | 76.57 | 63.24 | 51.46 | 50.16 | 65.72 | 50.79 | 61.38 | 50.48 | 51.37 | 55.46 | 49.89 | 71.08 | 53.00 | 61.06 | 54.53 | 69.68 | 53.21 | 52.66 | 48.26 | 80.65 | 63.24 | 60.88 | 50.16 | 61.80 | 50.79 |
System characteristics
Summary of the submitted system characteristics.
Rank |
Submission Code |
Technical Report |
Classifier |
System Complexity |
Acoustic Feature |
Data Augmentation |
Decision Making |
System Embeddings |
Subsystem Conut |
External Data Usage |
Front End System |
---|---|---|---|---|---|---|---|---|---|---|---|
41 | DCASE2024_baseline_task2_MAHALA | DCASE2024baseline2024 | AE | 267928 | log-mel energies | ||||||
39 | DCASE2024_baseline_task2_MSE | DCASE2024baseline2024 | AE | 267928 | log-mel energies | ||||||
62 | Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2024 | CNN, k-means, ensemble | 127724380 | FFT, STFT | mixup, feature exchange | average | 10 | high-pass filtering, zero-padding | ||
67 | Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2024 | CNN, k-means, ensemble | 127724380 | FFT, STFT | mixup, feature exchange | average | 10 | high-pass filtering, zero-padding | ||
69 | Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2024 | CNN, k-means, ensemble | 127724380 | FFT, STFT | mixup, feature exchange | average | 10 | high-pass filtering, zero-padding | ||
26 | Fujimura_NU_task2_1 | FujimuraNU2024 | CNN, k-means | 518844040 | spectrogram, spectrum | mixup, cutmix, resize | 97th percentile | 90 | external training data | ||
35 | Fujimura_NU_task2_2 | FujimuraNU2024 | CNN | 160329360 | spectrogram, spectrum | mixup, cutmix | 97th percentile | 30 | external training data | ||
28 | Fujimura_NU_task2_3 | FujimuraNU2024 | CNN, k-means | 185835880 | mel spectrogram, spectrum | mixup,cutmix,resize | 97th percentile | external training data | |||
27 | Fujimura_NU_task2_4 | FujimuraNU2024 | CNN, k-means | 177541480 | spectrogram, spectrum | mixup, cutmix, resize | 97th percentile | 30 | |||
9 | Zhao_CUMT_task2_1 | ZhaoCUMT2024 | conditional AE | log-mel energies | |||||||
12 | Zhao_CUMT_task2_2 | ZhaoCUMT2024 | conditional AE | log-mel energies | |||||||
15 | Zhao_CUMT_task2_3 | ZhaoCUMT2024 | conditional AE | log-mel energies | |||||||
23 | Zhao_CUMT_task2_4 | ZhaoCUMT2024 | conditional AE | log-mel energies | |||||||
19 | Wang_USTC_task2_1 | WangUSTC2024 | AE | log-mel spectrogram | mixup | average | OpenL3 | 2 | embeddings | ||
30 | Wang_USTC_task2_2 | WangUSTC2024 | AE | log-mel spectrogram | mixup | average | OpenL3 | 2 | embeddings | ||
32 | Wang_USTC_task2_3 | WangUSTC2024 | AE | log-mel spectrogram | mixup | average | OpenL3 | 2 | embeddings | ||
36 | Wang_USTC_task2_4 | WangUSTC2024 | AE | log-mel spectrogram | mixup | average | OpenL3 | 2 | embeddings | ||
75 | Lee_KNU_task2_1 | LeeKNU2024 | source separation | 1834833 | STFT | ||||||
79 | Lee_KNU_task2_2 | LeeKNU2024 | source separation | 1834833 | STFT | ||||||
73 | Lee_KNU_task2_3 | LeeKNU2024 | source separation | 1834833 | STFT | ||||||
77 | Lee_KNU_task2_4 | LeeKNU2024 | source separation | 1834833 | STFT | ||||||
14 | Qian_NIVIC_task2_1 | QianNIVIC2024 | k-means | log-mel energies, spectrogram | mixup | ||||||
22 | Qian_NIVIC_task2_2 | QianNIVIC2024 | k-means | log-mel energies, spectrogram | mixup | ||||||
25 | Qian_NIVIC_task2_3 | QianNIVIC2024 | k-means | log-mel energies, spectrogram | mixup | ||||||
34 | Qian_NIVIC_task2_4 | QianNIVIC2024 | k-means | log-mel energies, spectrogram | mixup | ||||||
81 | Jiang_CUP_task2_1 | JiangCUP2024 | k-means, CNN, ensemble | 59676914 | spectrogram | mixup | maximum | 10 | pre-trained model | ||
80 | Jiang_CUP_task2_2 | JiangCUP2024 | k-means, CNN, ensemble | 59676914 | spectrogram | mixup | maximum | 10 | pre-trained model | ||
84 | Jiang_CUP_task2_3 | JiangCUP2024 | k-means, CNN, ensemble | 59676914 | spectrogram | mixup | maximum | 10 | pre-trained model | ||
82 | Jiang_CUP_task2_4 | JiangCUP2024 | k-means, CNN, ensemble | 59676914 | spectrogram | mixup | maximum | 10 | pre-trained model | ||
4 | Jiang_THUEE_task2_1 | JiangTHUEE2024 | pre-trained models, CNN, ensemble | 360M | spectrogram, raw waveform | specaug | median | 4 | |||
6 | Jiang_THUEE_task2_2 | JiangTHUEE2024 | pre-trained models, flow model, ensemble | 360M | spectrogram | specaug | median | 4 | |||
7 | Jiang_THUEE_task2_3 | JiangTHUEE2024 | pre-trained models, CNN, flow model, ensemble | 360M | spectrogram | specaug | median | 5 | |||
8 | Jiang_THUEE_task2_4 | JiangTHUEE2024 | pre-trained models, CNN, flow model, ensemble | 360M | spectrogram | specaug | median | 5 | classification | ||
3 | Lv_AITHU_task2_1 | LvAITHU2024 | pre-trained models, ensemble | 360M | spectrogram | specaug | median | 3 | |||
5 | Lv_AITHU_task2_2 | LvAITHU2024 | pre-trained models, ensemble | 360M | spectrogram | specaug | median | 3 | |||
2 | Lv_AITHU_task2_3 | LvAITHU2024 | pre-trained models, ensemble | 700M | spectrogram | specaug | median | 7 | |||
1 | Lv_AITHU_task2_4 | LvAITHU2024 | pre-trained models, ensemble | 700M | spectrogram | specaug | median | 7 | |||
68 | Yin_Midea_task2_1 | YinMidea2024 | CNN | 3376606 | spectrum | ||||||
63 | Yin_Midea_task2_2 | YinMidea2024 | CNN, k-means | 3376606 | spectrum | ||||||
83 | Yin_Midea_task2_3 | YinMidea2024 | CNN | 3376606 | spectrum | mixup | |||||
70 | Yin_Midea_task2_4 | YinMidea2024 | CNN | 3376606 | spectrum | mixup, time warping, SMOTE | |||||
85 | Perez_UPV_task2_1 | PerezUPV2024 | normalizing flow | 236000 | log-mel energies, CQT | wide_resnet_50 | |||||
61 | Wu_IACAS_task2_1 | WuIACAS2024 | CNN, ensemble | 28592295 | STFT, raw waveform, spectrogram | mixup | average | HuBert, BEATs, UniSpeech, WavLM, Wav2Vec | |||
50 | Wu_IACAS_task2_2 | WuIACAS2024 | CNN, ensemble | 28592295 | STFT, raw waveform, spectrogram | mixup | average | HuBert, BEATs, UniSpeech, WavLM, Wav2Vec | |||
47 | Wu_IACAS_task2_3 | WuIACAS2024 | CNN, ensemble | 28592295 | STFT, raw waveform, spectrogram | mixup | average | HuBert, BEATs, UniSpeech, WavLM, Wav2Vec | |||
66 | Wu_IACAS_task2_4 | WuIACAS2024 | CNN, ensemble | 28592295 | STFT, raw waveform, spectrogram | mixup | average | HuBert, BEATs, UniSpeech, WavLM, Wav2Vec | |||
58 | Li_SMALLRICE_task2_1 | LiSMALLRICE2024 | Transformer | 759830926 | mel spectrogram | time shift, mixup, manifold mixup | average | 7 | pre-trained model | ||
59 | Li_SMALLRICE_task2_2 | LiSMALLRICE2024 | Transformer | 576931952 | mel spectrogram | time shift, mixup, manifold mixup | average | 7 | pre-trained model | ||
53 | Li_SMALLRICE_task2_3 | LiSMALLRICE2024 | Transformer | 93282703 | mel spectrogram | time shift, mixup, manifold mixup | pre-trained model | ||||
60 | Li_SMALLRICE_task2_4 | LiSMALLRICE2024 | Transformer | 750369166 | mel spectrogram | time shift, mixup, manifold mixup | average | 8 | pre-trained model | ||
46 | Huang_Xju_task2_1 | HuangXju2024 | VAE | 301712 | log-mel energies | ||||||
55 | Huang_Xju_task2_2 | HuangXju2024 | VAE | 301712 | log-mel energies | ||||||
88 | Guo_BIT_task2_1 | GuoBIT2024 | Transformer | 9679503 | log-mel energies | CED-Mini | pre-trained model, embeddings | ||||
76 | Guo_BIT_task2_2 | GuoBIT2024 | CNN, denoising diffusion probability model | 35704705 | log-mel energies | ||||||
48 | Guo_BIT_task2_3 | GuoBIT2024 | GMM | 33000 | log-mel energies | SMOTE | |||||
86 | Guo_BIT_task2_4 | GuoBIT2024 | Transformer, CNN, denoising diffusion probability model, GMM, ensemble | 45417208 | log-mel energies | SMOTE | weighted average | CED-Mini | 3 | pre-trained model, embeddings | |
37 | Wan_HFUU_task2_1 | WanHFUU2024 | self-supervised learning | log-mel energies | mixup | ||||||
51 | Wan_HFUU_task2_2 | WanHFUU2024 | self-supervised learning | log-mel energies | mixup | ||||||
49 | Wan_HFUU_task2_3 | WanHFUU2024 | self-supervised learning | log-mel energies | mixup | ||||||
38 | Wan_HFUU_task2_4 | WanHFUU2024 | self-supervised learning | log-mel energies | mixup | ||||||
42 | Kong_IMECAS_task2_1 | KongIMECAS2024 | Barlowtwins | 541008 | log-mel energies | ||||||
40 | Kong_IMECAS_task2_2 | KongIMECAS2024 | Barlowtwins | 541008 | log-mel energies | ||||||
45 | Kong_IMECAS_task2_3 | KongIMECAS2024 | Barlowtwins | 541008 | log-mel energies | ||||||
52 | Kong_IMECAS_task2_4 | KongIMECAS2024 | Barlowtwins | 541008 | log-mel energies | ||||||
72 | Hai_SCU_task2_1 | HaiSCU2024 | VAE, k-means, CNN | 11722382 | log-mel energies, fft | mixup, SMOTE, statistics exchange, feature exchange | |||||
71 | Kim_DAU_task2_1 | KimDAU2024 | AE, LTC | 253207275 | STFT | multi-view | |||||
78 | Bian_NR_task2_1 | BianNR2024 | AE,CNN | 229249 | spectrogram | time stretching | |||||
74 | Bian_NR_task2_2 | BianNR2024 | AE,CNN | 262017 | spectrogram | time stretching | |||||
93 | Gleichmann_TNT_task2_1 | GleichmannTNT2024 | CNN-VAE | 627335 | LPC | multiple sampling | none | ||||
96 | Gleichmann_TNT_task2_2 | GleichmannTNT2024 | CNN-VAE | 204000 | LPC | multiple sampling | none | ||||
94 | Gleichmann_TNT_task2_3 | GleichmannTNT2024 | CNN-VAE | 447143 | LPC | multiple sampling | none | ||||
95 | Gleichmann_TNT_task2_4 | GleichmannTNT2024 | CNN-VAE | 203153 | LPC | multiple sampling | none | ||||
89 | Kim_CAU_task2_1 | KimCAU2024 | CNN, k-means | 180952716 | spectrogram, raw waveform | speed perturbation | Wav2Vec2.0, AST | pre-trained model | |||
91 | Kim_CAU_task2_2 | KimCAU2024 | CNN, k-means | 180952716 | spectrogram, raw waveform | speed perturbation | Wav2Vec2.0, AST | pre-trained model | |||
90 | Kim_CAU_task2_3 | KimCAU2024 | CNN, k-means | 180952716 | spectrogram, raw waveform | speed perturbation | Wav2Vec2.0, AST | pre-trained model | |||
92 | Kim_CAU_task2_4 | KimCAU2024 | CNN, k-means | 180952716 | spectrogram, raw waveform | speed perturbation | Wav2Vec2.0, AST | pre-trained model | |||
54 | Zhang_HEU_task2_1 | ZhangHEU2024 | GMM | 33024 | log-mel energies | ||||||
87 | Zhang_HEU_task2_2 | ZhangHEU2024 | GMM | 33024 | log-mel energies | SMOTE | |||||
64 | Zhang_HEU_task2_3 | ZhangHEU2024 | GMM | 33024 | log-mel energies | SMOTE | |||||
57 | Zhang_HEU_task2_4 | ZhangHEU2024 | GMM | 33024 | log-mel energies | SMOTE | |||||
13 | Liu_CXL_task2_1 | LiuCXL2024 | k-means | log-mel spectrogram | mixup, time stretching, block mixing, pitch shifting | average | AST, SSAST, BATS | 5 | |||
21 | Liu_CXL_task2_2 | LiuCXL2024 | k-means | log-mel spectrogram | mixup, time stretching, block mixing, pitch shifting | average | AST, SSAST, BATS | 5 | |||
24 | Liu_CXL_task2_3 | LiuCXL2024 | k-means | log-mel spectrogram | mixup, time stretching, block mixing, pitch shifting | average | AST, SSAST, BATS | 5 | |||
33 | Liu_CXL_task2_4 | LiuCXL2024 | k-means | log-mel spectrogram | mixup, time stretching, block mixing, pitch shifting | average | AST, SSAST, BATS | 5 | |||
65 | Guan_HEU_task2_1 | GuanHEU2024 | CNN, k-means | 12337152 | log-mel energies | ||||||
56 | Guan_HEU_task2_2 | GuanHEU2024 | CNN, k-means | 12337152 | log-mel energies | ||||||
44 | Guan_HEU_task2_3 | GuanHEU2024 | CNN, k-means | 11307772 | log-mel energies | ||||||
43 | Guan_HEU_task2_4 | GuanHEU2024 | CNN, k-means | 23644924 | log-mel energies | 2 | |||||
11 | Wang_iflytek_task2_1 | Wangiflytek2024 | AE | log-mel spectrogram | mixup | average | 2 | ||||
18 | Wang_iflytek_task2_2 | Wangiflytek2024 | AE | log-mel spectrogram | mixup | average | 2 | ||||
20 | Wang_iflytek_task2_3 | Wangiflytek2024 | AE | log-mel spectrogram | mixup | average | 2 | ||||
31 | Wang_iflytek_task2_4 | Wangiflytek2024 | AE | log-mel spectrogram | mixup | average | 2 | ||||
10 | Yang_IND_task2_1 | YangIND2024 | VAE, k-means | MFCC | mixup | ||||||
16 | Yang_IND_task2_2 | YangIND2024 | VAE, k-means | MFCC | mixup | ||||||
17 | Yang_IND_task2_3 | YangIND2024 | VAE, k-means | MFCC | mixup | ||||||
29 | Yang_IND_task2_4 | YangIND2024 | VAE, k-means | MFCC | mixup |
Technical reports
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION BASED ON CONVOLUTIONAL AUTOENCODER
Yuren Bian, Jun Li, Jiayun Chen
Industrial AI Research and Development Group, New Rise Digital Technology Co., Ltd., Hangzhou, China and New Rise Digital Technology Co., Ltd., Hangzhou, China
Bian_NR_task2_1 Bian_NR_task2_2
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION BASED ON CONVOLUTIONAL AUTOENCODER
Yuren Bian, Jun Li, Jiayun Chen
Industrial AI Research and Development Group, New Rise Digital Technology Co., Ltd., Hangzhou, China and New Rise Digital Technology Co., Ltd., Hangzhou, China
Abstract
This technical report outlines our team's submission to DCASE 2024 Task 2. A novel challenge introduced by this year's DCASE is the concealment of attribute information, such as machine operation conditions, for several types of machines. This approach more closely emulates real-world factory settings. We propose an anomaly detection model based on a memory-augmented convolutional autoencoder that directly operates on spectrograms without attribute information. Experimental results demonstrate that our method outperforms the baseline model for certain types of machines.
System characteristics
Classifier | AE, CNN |
System complexity | 229249, 262017 |
Acoustic features | spectrogram |
Data augmentation | time stretching |
Description and Discussion on DCASE 2024 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, Yohei Kawaguchi
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and NTT Communication Science Labs, Kanagawa, Japan and STMicroelectronics, Italy and Doshisha University, Kyoto, Japan
DCASE2024_baseline_task2_MAHALA DCASE2024_baseline_task2_MSE
Description and Discussion on DCASE 2024 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Tomoya Nishida, Noboru Harada, Daisuke Niizumi, Davide Albertini, Roberto Sannino, Simone Pradolini, Filippo Augusti, Keisuke Imoto, Kota Dohi, Harsh Purohit, Takashi Endo, Yohei Kawaguchi
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and NTT Communication Science Labs, Kanagawa, Japan and STMicroelectronics, Italy and Doshisha University, Kyoto, Japan
Abstract
We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 Challenge Task 2: "First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring". Continuing from last year's DCASE 2023 Challenge Task 2, we organize the task as a first-shot problem under domain generalization required settings. The main goal of the first-shot problem is to enable rapid deployment of ASD systems for new kinds of machines without the need for machine-specific hyperparameter tunings. This problem setting was realized by (i) giving only one section for each machine type and (ii) having completely different machine types for the development and evaluation datasets. For the DCASE 2024 Challenge Task 2, data of completely new machine types were newly collected and provided as the evaluation dataset. In addition, attribute information such as the machine operation conditions were concealed for several machine types to mimic situations where such information are unavailable. We will add challenge results and analysis of the submissions after the challenge submission deadline.
System characteristics
Classifier | AE |
System complexity | 267928 |
Acoustic features | log-mel energies |
The NU systems for DCASE 2024 Challenge Task 2
Takuya Fujimura, Ibuki Kuroyanagi, Tomoki Toda
Nagoya University, Nagoya, Japan
Fujimura_NU_task2_1 Fujimura_NU_task2_2 Fujimura_NU_task2_3 Fujimura_NU_task2_4
The NU systems for DCASE 2024 Challenge Task 2
Takuya Fujimura, Ibuki Kuroyanagi, Tomoki Toda
Nagoya University, Nagoya, Japan
Abstract
In this report, we present our developed anomalous sound detection (ASD) systems for DCASE 2024 Challenge Task 2. We propose three methods to improve ASD systems based on a discriminative approach. First, we enhance a discriminative feature extractor by using multi-resolution spectrograms as input and implementing new training strategy and data augmentation for its training. Second, we generate pseudo-attribute labels to effectively train the discriminative feature extractor even for some machines without any attribute labels, where the pseudo-attribute labels are obtained by self-supervised learning using artificially processed data as negative samples. Third, we utilize Audioset as an external training dataset to further improve ASD performance, where we carefully extract useful samples from it using a pre-trained feature extractor. Our developed ensemble system has achieved 67.26% in the official scores calculated as a harmonic mean of the area under the curve (AUC) and partial AUC (p = 0.1) over all machine types and domains in the development set.
System characteristics
Classifier | CNN, k-means |
System complexity | 160329360, 177541480, 185835880, 518844040 |
Acoustic features | mel spectrogram, spectrogram, spectrum |
Data augmentation | mixup, cutmix, mixup, cutmix, resize, mixup,cutmix,resize |
Decision making | 97th percentile |
Subsystem count | 30, 90 |
External data usage | external training data |
Anomaly Sound Detector Based on Variational Autoencoder with Hyperparameter Optimization Strategy
Lars C. Gleichmann, Yeremia G. Adhisantoso, Alexander Lange, Quy Le Xuan
Predictive Maintenance, Institute for Information Processing (TNT), Hanover, Germany and Institute for Information Processing (TNT), Hanover, Germany and Structural Health Monitoring, Institute for Information Processing (TNT), Hanover, Germany
Gleichmann_TNT_task2_1 Gleichmann_TNT_task2_2 Gleichmann_TNT_task2_3 Gleichmann_TNT_task2_4
Anomaly Sound Detector Based on Variational Autoencoder with Hyperparameter Optimization Strategy
Lars C. Gleichmann, Yeremia G. Adhisantoso, Alexander Lange, Quy Le Xuan
Predictive Maintenance, Institute for Information Processing (TNT), Hanover, Germany and Institute for Information Processing (TNT), Hanover, Germany and Structural Health Monitoring, Institute for Information Processing (TNT), Hanover, Germany
Abstract
The second task of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 challenge addresses the difficulties of domain adaptation and generalization in Anomalous Sound Detection (ASD). We present two types of Variational Autoencoders (VAEs) to overcome these challenges. Linear prediction coefficients provide a sparse and meaningful representation of the original raw audio clips for our models. This report also introduces two optimization strategies for setting reasonable hyperparameters for anomalous sound detectors.
System characteristics
Classifier | CNN-VAE |
System complexity | 203153, 204000, 447143, 627335 |
Acoustic features | LPC |
Data augmentation | Multiple sampling |
External data usage | none |
Self-supervised Anomalous Sound Detection with Statistical Clustering and Contrastive Learning
Jiantong Tian, Hejing Zhang, Shiheng Zhang, Feiyang Xiao, Qiaoxi Zhu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
Guan_HEU_task2_1 Guan_HEU_task2_2 Guan_HEU_task2_3 Guan_HEU_task2_4
Self-supervised Anomalous Sound Detection with Statistical Clustering and Contrastive Learning
Jiantong Tian, Hejing Zhang, Shiheng Zhang, Feiyang Xiao, Qiaoxi Zhu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
Abstract
This report describes our submission for DCASE 2024 Challenge Task 2. The task aims for first-shot anomalous sound detection and further restricts the use of attribute information (metadata) accompanied by audio signals. This requires the anomaly detection system to function correctly for machine types with and without attribute information. We introduce a statistical clustering strategy to obtain statistical information on audio signals as pseudo-labels to address this issue. In addition, we propose a contrastive learning strategy to enhance audio feature representation by using statistical information, further improving anomaly detection performance. Experiments demonstrate the effectiveness of our proposed strategies, and the results show that all our systems outperform the baseline methods, enabling the model to adapt to the first-shot scenarios without attribute information. Our best system can achieve 71.4% in the harmonic mean of AUC in the source domain, 63.6% in AUC in the target domain, and 56.6% in pAUC.
System characteristics
Classifier | CNN, k-means |
System complexity | 11307772, 12337152, 23644924 |
Acoustic features | log-mel energies |
Subsystem count | 2 |
Anomalous Sound Detection Based on Unsupervised Learning and Ensemble Method
Kai Guo, Fengrun Zhang
School of Information and Electronics, Beijing Institute of Technology, Beijing, China
Guo_BIT_task2_1 Guo_BIT_task2_2 Guo_BIT_task2_3 Guo_BIT_task2_4
Anomalous Sound Detection Based on Unsupervised Learning and Ensemble Method
Kai Guo, Fengrun Zhang
School of Information and Electronics, Beijing Institute of Technology, Beijing, China
Abstract
Over the past few years, self-supervised methods have significantly advanced the field of Anomalous sound detection. However, the real-world application of these methods is often hampered by the lack of available prior knowledge and auxiliary labels, which restricts the models’ ability to generalize. In the DCASE 2024 Challenge Task 2, attribute information for several machine types is absent from both the development and evaluation datasets, reflecting the realities of practical scenarios. To solve the above problems, we design two unsupervised machine anomalous sound detection models and an ensemble system that achieves better performance than the baseline model.
System characteristics
Classifier | CNN, Denoising Diffusion Probability Model, GMM, Transformer, ensemble |
System complexity | 33000, 35704705, 45417208, 9679503 |
Acoustic features | log-mel energies |
Data augmentation | SMOTE |
Decision making | weighted average |
System embeddings | CED-Mini |
Subsystem count | 3 |
External data usage | pre-trained model, embeddings |
ANOMALOUS SOUND DETECTION BY SELF-SUPERVISED LEARNING OF Variational Auto-Encoder WITH DOMAIN SHIFT TECHNIQUES
Jianghan Hai, Dengjian Zhou, Ruihang Liu, Yue Ivan Wu
School of Software Engineering, Sichuan Uninversity., Chengdu, China and School of Computer Science, Sichuan Uninversity., Chengdu, China and School of Electronics and Information Engineering, Sichuan Uninversity., Chengdu, China
Hai_SCU_task2_1
ANOMALOUS SOUND DETECTION BY SELF-SUPERVISED LEARNING OF Variational Auto-Encoder WITH DOMAIN SHIFT TECHNIQUES
Jianghan Hai, Dengjian Zhou, Ruihang Liu, Yue Ivan Wu
School of Software Engineering, Sichuan Uninversity., Chengdu, China and School of Computer Science, Sichuan Uninversity., Chengdu, China and School of Electronics and Information Engineering, Sichuan Uninversity., Chengdu, China
Abstract
In this paper, we introduce an advanced abnormal sound detection (ASD) system that integrates two innovative approaches to improve detection performance. Firstly, we utilize a self-supervised learning method known as Feature Exchange (FeatEx) to map raw data to meta data and obtain robust feature embeddings for enhanced discrimination of non-target sound events. Secondly, we expand a serial approach by employing an outlier-exposed feature extractor and an anomaly detector based on ResNet18 inlier modeling. The model undertake end-to-end joint optimization utilizing a variational autoencoder (VAE) feature extractor based on the intermediate inner-layer model vectors. Additionally, domain generalization techniques such as domain-invariant latent space modeling in normalized and hybrid streams are introduced to address the domain drift problem by resolving ”transfer entanglement”. To further enhance performance, our data is augmented using Mixup and Smote methods respectively. Furthermore, our system employs an ensemble learning strategy that combines anomaly scores calculated directly through normalization process with earlier models trained using optimized feature embeddings. Ultimately, our system achieves state-of-the-art performance on the DCASE 2024 ASD dataset for two machine types through weighted anomaly scores on the development set. Through the integration of self-supervised learning and domain generalization techniques, our ASD system not only reduces reliance on manual annotation but also enhances adaptability and robustness across different sound environments. This research outcome offers a novel perspective and solution for abnormal sound detection field.
System characteristics
Classifier | CNN, VAE, k-means |
System complexity | 11722382 |
Acoustic features | fft, log-mel energies |
Data augmentation | mixup, SMOTE, statistics exchange, feature exchange |
Unsupervised Anomaly Sound Detection Based on GammaVAE
Shun Huang, Yunxiang Zhang
School of Computer Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Huang_Xju_task2_1 Huang_Xju_task2_2
Unsupervised Anomaly Sound Detection Based on GammaVAE
Shun Huang, Yunxiang Zhang
School of Computer Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Abstract
This technical report describes the submission to Task 2 of the DCASE 2024 challenge. Assuming the data follows a Gamma distribution, we employed a Gamma Variational Autoencoder (GammaVAE) for modeling, and utilized Mean Squared Error (MSE) scores and Mahalanobis distance for evaluation. Experimental results revealed that our system outperformed the baseline in the target domain on certain machines.
System characteristics
Classifier | VAE |
System complexity | 301712 |
Acoustic features | log-mel energies |
ANOMALOUS SOUND DETECTION BASED ON PSEUDO LABELS FROM GUIDED CLUSTERING
Yaocong Wang, Xinlong Deng, Jie Jiang, Qiuqiang Kong
China University of Petroleum (Beijing), Beijing, China and The Chinese University of Hong Kong, HongKong, China
Jiang_CUP_task2_1 Jiang_CUP_task2_2 Jiang_CUP_task2_3 Jiang_CUP_task2_4
ANOMALOUS SOUND DETECTION BASED ON PSEUDO LABELS FROM GUIDED CLUSTERING
Yaocong Wang, Xinlong Deng, Jie Jiang, Qiuqiang Kong
China University of Petroleum (Beijing), Beijing, China and The Chinese University of Hong Kong, HongKong, China
Abstract
This technical report presents a description of the CUP submission for Task 2 “first-shot unsupervised anomalous sound detection for machine condition monitoring” of the DCASE 2024 Challenge. The submitted system is an adaptation of a previously proposed model which utilizes static and dynamic frequency information and is trained through an auxiliary classification task with sub-cluster AdaCos loss. In this work, we focus on the clustering of machine sound clips under attribute-unavailable conditions such that attribute classification based methods can be extended to machine sound clips without attribute information for detecting anomalous sounds.
System characteristics
Classifier | CNN, ensemble, k-means |
System complexity | 59676914 |
Acoustic features | spectrogram |
Data augmentation | mixup |
Decision making | maximum |
Subsystem count | 10 |
External data usage | pre-trained model |
THUEE System for First-Shot Unsupervised Anomalous Sound Detection
Anbai Jiang, Xinhu Zheng, Yihong Qiu, Weijia Zhang, Boyuan Chen, Pingyi Fan, Wei-Qiang Zhang, Cheng Lu, Jia Liu
Department of Electronic Engineering, Tsinghua University, Beijing, China and Schools of Economy, North China Electric Power University, Beijing, China and Xingjian College, Tsinghua University, Beijing, China
Jiang_THUEE_task2_1 Jiang_THUEE_task2_2 Jiang_THUEE_task2_3 Jiang_THUEE_task2_4
THUEE System for First-Shot Unsupervised Anomalous Sound Detection
Anbai Jiang, Xinhu Zheng, Yihong Qiu, Weijia Zhang, Boyuan Chen, Pingyi Fan, Wei-Qiang Zhang, Cheng Lu, Jia Liu
Department of Electronic Engineering, Tsinghua University, Beijing, China and Schools of Economy, North China Electric Power University, Beijing, China and Xingjian College, Tsinghua University, Beijing, China
Abstract
This report presents our work for DCASE 2024 Task 2: first shot unsupervised anomalous sound detection for machine condition monitoring. This year’s challenge is heightened by the introduction of additional machine types and the absence of training labels. To solve these problems, multiple pre-trained models are employed in the submission, along with a Dual Branch CNN model and a flow model. The pre-trained models are fine-tuned with Low-Rank Adaptation (LoRA). Finally, by fusing the systems above, we achieve the best hmean of 68.38% on the development set.
System characteristics
Classifier | CNN, Pre-trained models, ensemble, flow model |
System complexity | 360M |
Acoustic features | raw waveform, spectrogram |
Data augmentation | specaug |
Decision making | median |
Subsystem count | 4, 5 |
External data usage | classification |
Colligate embeddings from pretrained models based on different preprocessing methods
Hyun Jun Kim, Hyeon Gyu Bae, Min Jun Kim, Yun Seo Lee, Changwon Lim, Jaeheon Lee
Chung Ang University, Seoul, Korea
Abstract
DCASE 2024 challenge Task2 is about first-shot unsupervised anomalous sound detection. To solve this problem, we employed self-supervised learning with various methods to enable the model to achieve general and robust performance on diverse machine sounds with limited information. The methods include combining embeddings from pre-trained models based on different audio representations, attentive statistics pooling, and a memory bank. By applying these methods, we successfully achieved a higher score on development dataset compared to the baseline.
System characteristics
Classifier | CNN, k-means |
System complexity | 180952716 |
Acoustic features | raw waveform, spectrogram |
Data augmentation | Speed perturbation |
System embeddings | Wav2Vec2.0, AST |
External data usage | pre-trained model |
Unsupervised Multi-View Reconstruction Autoencoder and Liquid Time Constant Model-Based First-Shot Anomaly Detection For Machine Condition Monitoring
JeongSik Kim, YoungHoon Jo, DongMin Lee, Ji Heon Kim, GeonYong Jeong, Jeongil Seo, Suk-Hwan Lee
Department of Computer Engineering, Dong-A, University, South Korea, Busan
Kim_DAU_task2_1
Unsupervised Multi-View Reconstruction Autoencoder and Liquid Time Constant Model-Based First-Shot Anomaly Detection For Machine Condition Monitoring
JeongSik Kim, YoungHoon Jo, DongMin Lee, Ji Heon Kim, GeonYong Jeong, Jeongil Seo, Suk-Hwan Lee
Department of Computer Engineering, Dong-A, University, South Korea, Busan
Abstract
This technical report presents our approach for DCASE 2024 Task 2: first-shot unsupervised anomalous sound detection for machine condition monitoring. In this year task 2 focuses on first-shot challenge and also introduces real-world application that provides no additional information for some machine type. In order to tackle this challenges we have developed multi-view reconstruction based system to detect first-shot anomalous sounds more accurately and also without any additional attribute information. Our proposed system has been evaluated using DCASE 2024 Task 2 Development Dataset, and from the result we have achieved an average area under the curve detection result of 74.59%.
System characteristics
Classifier | AE, LTC |
System complexity | 253207275 |
Acoustic features | STFT |
Front end system | Multi-View |
Anomalous Sound Detection System Based on Similar-Pairs Contrastive Learning
Kong Dewei, Yu Hongjiang, Wang Shuai, Zhang Bo
Beijing, China
Abstract
This technical report presents our approach for Task 2 of the DCASE 2024 challenge, which focuses on unsupervised anomalous sound detection for machine condition monitoring. We constructed four subsystems based on similar-pairs contrastive learning, where the fisrt two are based on SMOTE, the third and the fourth subsystem are based on two augmentation method to get more generalizations. The difference between the first and second subsystem is which method is used to calculate the anomaly score, MSE or MAHALA. The same is true for the difference between the third and fourth systems.
System characteristics
Classifier | Barlowtwins |
System complexity | 541008 |
Acoustic features | log-mel energies |
Anomalous sound detection system with source separation model-based feature extractor
Seunghyeon Shin, Seokjin Lee
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
Lee_KNU_task2_1 Lee_KNU_task2_2 Lee_KNU_task2_3 Lee_KNU_task2_4
Anomalous sound detection system with source separation model-based feature extractor
Seunghyeon Shin, Seokjin Lee
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
Abstract
This technical report presents an anomalous detection system developed for DCASE 2024 Task 2. Our proposed system employs a neural network to extract relevant features and calculates anomaly scores using the Mahalanobis distance with a covariance estimator. Notably, our system does not rely on any attribute information from the machines, and only minor hyperparameter adjustments are required, regardless of the machine class. These characteristics align well with the intended objectives of the task. Our approach leverages signals from machines other than the training target and trains the neural network to separate these other signals. Consequently, we can train complex neural network models effectively, even with a limited number of samples. As a result, our method achieved similar result compared to the DCASE 2024 Task 2 baseline model despite the insufficient training.
System characteristics
Classifier | Source separation |
System complexity | 1834833 |
Acoustic features | STFT |
The SMALL RICE Submission for the DCASE 2024 Task 2: Anomalous Sound Detection Using Sub-Cluster Noisy-Arcmix
Chenyu Liu, Gang Li, Junbo Zhang, Jizhong Liu, Heinrich Dinkel, Yongqing Wang, Zhiyong Yan, Yujun Wang, Bin Wang
AI Lab, Xiaomi Corporation, China
Li_SMALLRICE_task2_1 Li_SMALLRICE_task2_2 Li_SMALLRICE_task2_3 Li_SMALLRICE_task2_4
The SMALL RICE Submission for the DCASE 2024 Task 2: Anomalous Sound Detection Using Sub-Cluster Noisy-Arcmix
Chenyu Liu, Gang Li, Junbo Zhang, Jizhong Liu, Heinrich Dinkel, Yongqing Wang, Zhiyong Yan, Yujun Wang, Bin Wang
AI Lab, Xiaomi Corporation, China
Abstract
This paper describes our submission for the DCASE 2024 task 2. The objective is identifying whether the sound emitted from a machine is normal or anomalous without having access to anomalous samples. The ASD model we designed to calculate the anomaly scores is a CED based supervised model. To alleviate the problem of domain shifts, we use sub-cluster noisy-arcmix combined with asymmetric focal loss to balance the data weights while learn more compact intra-class representations for normal samples. In addition, we explore data augmentation methods such as manifold mixup and FeatEx to further improve the model perfomance. Our best single model achieves a pAUC of 55.81%, a source domain AUC of 67.79%, and a target domain AUC of 65.88% on the development dataset.
System characteristics
Classifier | Transformer |
System complexity | 576931952, 750369166, 759830926, 93282703 |
Acoustic features | mel spectrogram |
Data augmentation | time shift, mixup, manifold mixup |
Decision making | average |
Subsystem count | 7, 8 |
External data usage | pre-trained model |
DUAL-MODE FRAMEWORK FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION IN MACHINE CONDITION MONITORING
Yihao Liu
ChaoXiLi, Hangzhou, China
Liu_CXL_task2_1 Liu_CXL_task2_2 Liu_CXL_task2_3 Liu_CXL_task2_4
DUAL-MODE FRAMEWORK FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION IN MACHINE CONDITION MONITORING
Yihao Liu
ChaoXiLi, Hangzhou, China
Abstract
This technical report presents our solution for the DCASE 2024 Challenge Task 2, which targets First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. This year’s task requires the development of a system that functions effectively both with and without attribute information, reflecting real-world scenarios where such data may not always be available. To address this challenge, we propose a dual-mode anomaly detection framework that adapts seamlessly to the availability of attribute information. Our approach leverages advanced pre-training techniques, sophisticated embedding extraction, and refined inlier modeling. In scenarios where attribute information is available, it enhances detection performance; when it is not, the system employs a robust, self-contained strategy to maintain high performance. Our dual-mode system achieves a harmonic mean of 61.598% across all machine types and domains for both the AUC and pAUC (p = 0.1) on the development set, demonstrating significant improvement and ensuring versatility under varying data conditions.
System characteristics
Classifier | k-means |
Acoustic features | log-mel spectrogram |
Data augmentation | mixup, time stretching, block mixing, pitch shifting |
Decision making | average |
System embeddings | AST, SSAST, BATS |
Subsystem count | 5 |
AITHU System for First-Shot Unsupervised Anomalous Sound Detection
Zhiqiang Lv, Anbai Jiang, Bing Han, Yuzhe Liang, Yanmin Qian, Xie Chen, Jia Liu, Pingyi Fan
Algorithm Group, Huakong AI Plus Company Limited, Beijing, China and Department of Electronic Engineering, Tsinghua University, Beijing, China and Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Lv_AITHU_task2_1 Lv_AITHU_task2_2 Lv_AITHU_task2_3 Lv_AITHU_task2_4
AITHU System for First-Shot Unsupervised Anomalous Sound Detection
Zhiqiang Lv, Anbai Jiang, Bing Han, Yuzhe Liang, Yanmin Qian, Xie Chen, Jia Liu, Pingyi Fan
Algorithm Group, Huakong AI Plus Company Limited, Beijing, China and Department of Electronic Engineering, Tsinghua University, Beijing, China and Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract
Unsupervised pre-trained models have demonstrated significant promise in anomaly detection with domain shifts. The DCASE 2024 Challenge Task 2 focuses on first-shot unsupervised anomalous sound detection. Compared with last year, this year’s challenge omit the attributes for some machine types. To solve this, we leverage large pre-trained models to generate robust representations for the audio. Novel usage of pseudo labeling and Low-Rank Adaptation (LoRA) are explored in the work. Additionally, we introduce SMOTE for domain equalization. Through the fusion of various models and methods, we have achieved a hmean of 68.02% on the development dataset.
System characteristics
Classifier | Pre-trained models, ensemble |
System complexity | 360M, 700M |
Acoustic features | spectrogram |
Data augmentation | specaug |
Decision making | median |
Subsystem count | 3, 7 |
ANOMALOUS SOUND DETECTION IN INDUSTRIAL MACHINERY USING NORMALIZING FLOW-BASED DEEP LEARNING
Natalia Pérez García de la Puente, Francisco Pastor Naranjo, Miguel López-Pérez, Gema Piñero, Valery Naranjo
HumanTech, Universitat Politècnica de València, Spain, Valencia, Spain and ITEAM, Universitat Polit`ecnica de València, Spain, Valencia, Spain
Perez_UPV_task2_1
ANOMALOUS SOUND DETECTION IN INDUSTRIAL MACHINERY USING NORMALIZING FLOW-BASED DEEP LEARNING
Natalia Pérez García de la Puente, Francisco Pastor Naranjo, Miguel López-Pérez, Gema Piñero, Valery Naranjo
HumanTech, Universitat Politècnica de València, Spain, Valencia, Spain and ITEAM, Universitat Polit`ecnica de València, Spain, Valencia, Spain
Abstract
This technical report describes our approach for Task 2 of the DCASE 2024 Challenge. This task aims to develop an anomalous sound detection (ASD) system to determine whether the sound emitted from a target machine is normal or anomalous. To tackle this task, we propose an unsupervised deep learning model based on a normalizing flow architecture. Our framework consists of a pre-trained encoder (WideResNet50) and a multi-scale generative decoder to estimate the log-likelihoods of feature vectors. The input to the model is an image comprising four different time-frequency representations of the sounds (Mel spectrogram, CQT-chroma, tonnetz, and spectral contrast) together with five 1D characteristics computed along the time index. All the 2D and 1D features are concatenated in the frequency dimension, resulting in an image 158 pixels high, with their width depending on the duration of the sounds.
System characteristics
Classifier | normalizing flow |
System complexity | 236000 |
Acoustic features | CQT, log-mel energies |
System embeddings | wide_resnet_50 |
Unified Anomaly Detection for Machine Condition Monitoring: Handling Attribute-Rich and Attribute-Free Scenarios
Fan Chu, Yuxuan Zhou, Mengui Qian
National Intelligent Voice Innovation Center, Hefei, China
Qian_NIVIC_task2_1 Qian_NIVIC_task2_2 Qian_NIVIC_task2_3 Qian_NIVIC_task2_4
Unified Anomaly Detection for Machine Condition Monitoring: Handling Attribute-Rich and Attribute-Free Scenarios
Fan Chu, Yuxuan Zhou, Mengui Qian
National Intelligent Voice Innovation Center, Hefei, China
Abstract
In this report, we present our solution to the DCASE 2024 Challenge Task 2, focusing on First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. The challenge this year involves handling machine types with varying levels of attribute and domain information. Our approach addresses this by categorizing the machines into two groups: those with attribute labels and those without. We respectively train two models that perform attribute classification for these two groups, both based on a pretrained model that performs domain classification. Our system achieves 62.001% in the harmonic mean of AUC and pAUC (p = 0.1) across all machine types and domains on the development set.
System characteristics
Classifier | k-means |
Acoustic features | log-mel energies, spectrogram |
Data augmentation | mixup |
TWO-STEP ANOMALY DETECTION: INTEGRATING ATTRIBUTE CLASSIFICATION AND GENERATIVE MODELING WITH ATTRIBUTE INFERENCE FOR DIVERSE MACHINE TYPES
Lei Wang, Mingqi Cai, Jia Pan, Tian Gao, Xin Fang
iFLYTEK, Hefei, China
Wang_iflytek_task2_1 Wang_iflytek_task2_2 Wang_iflytek_task2_3 Wang_iflytek_task2_4
TWO-STEP ANOMALY DETECTION: INTEGRATING ATTRIBUTE CLASSIFICATION AND GENERATIVE MODELING WITH ATTRIBUTE INFERENCE FOR DIVERSE MACHINE TYPES
Lei Wang, Mingqi Cai, Jia Pan, Tian Gao, Xin Fang
iFLYTEK, Hefei, China
Abstract
This study presents a novel approach to address the DCASE2024 Challenge Task2[1], focusing on First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. The task presents a unique challenge of training models with and without attribute information, necessitating robust performance under both scenarios. Our proposed method combines attribute classification and generative modeling to address the variability in attribute information across different machine types. Initially, we perform attribute prediction or clustering to infer labels for machines without explicit attribute information. Using these inferred labels, we then apply comprehensive attribute classification across all machine types. Concurrently, we integrate an Autoencoder (AE) to analyze reconstruction losses, enhancing anomaly detection. This two-step approach – first predicting or clustering attributes, and then merging attribute classification with generative model results – ensures robust and effective anomaly detection, maintaining high performance regardless of the presence or absence of attribute information across various scenarios. Experimental results demonstrate the effectiveness of our approach, achieving a competitive harmonic mean of AUC and PAUC(p = 0.1) of 63.09% on the development set. This innovative framework offers a versatile solution for anomaly detection in machine condition monitoring, accommodating real-world data variability and enhancing overall system robustness.
System characteristics
Classifier | AE |
Acoustic features | log-mel spectrogram |
Data augmentation | mixup |
Decision making | average |
Subsystem count | 2 |
Hybrid Anomaly Detection Approach for DCASE 2024 Task 2
Shuxian Wang, Guirui Zhong, Qing Wang, Jun Du
University of Science and Technology of China, Hefei, China
Wang_USTC_task2_1 Wang_USTC_task2_2 Wang_USTC_task2_3 Wang_USTC_task2_4
Hybrid Anomaly Detection Approach for DCASE 2024 Task 2
Shuxian Wang, Guirui Zhong, Qing Wang, Jun Du
University of Science and Technology of China, Hefei, China
Abstract
Addressing the unique challenge of the DCASE 2024 Task 2, where the availability of attribute information varies, we propose a hybrid anomaly detection approach that combines generative and discriminative techniques. Leveraging both autoencoder (AE) for unsupervised learning and attribute classification for supervised learning, our system is designed to perform effectively under diverse conditions. The AE is trained to reconstruct normal sound data and detect anomalies, providing robustness in scenarios where attribute information is unavailable. Simultaneously, the attribute classification component enhances detection performance when attribute information is present. By seamlessly integrating these approaches, our system achieves a balanced performance across different conditions, ensuring reliable anomaly detection in machine condition monitoring applications.
System characteristics
Classifier | AE |
Acoustic features | log-mel spectrogram |
Data augmentation | mixup |
Decision making | average |
System embeddings | OpenL3 |
Subsystem count | 2 |
External data usage | embeddings |
Abnormal Sound Detection Based on Domain Generalization
Mengyuan Wan, Yong Sun, Junjie Wang, Jiajun Wang, Shengbing Chen, Mengyuan Liu
Research and Development Group, Hefei University, Hefei, China and Hefei University, Hefei, China
Wan_HFUU_task2_1 Wan_HFUU_task2_2 Wan_HFUU_task2_3 Wan_HFUU_task2_4
Abnormal Sound Detection Based on Domain Generalization
Mengyuan Wan, Yong Sun, Junjie Wang, Jiajun Wang, Shengbing Chen, Mengyuan Liu
Research and Development Group, Hefei University, Hefei, China and Hefei University, Hefei, China
Abstract
This technical report describes the abnormal sound detection system we submitted for DCASE 2024 Task 2. Compared to previous challenges, this task not only focuses on the first shot issue in 2023, but also requires the system to run well when attribute information is available and unavailable. We submit four methods for machine state anomaly sound detection. The first and second methods are based on self-supervised learning, using the feature vector extracted from the convolutional neural network, using the outlier detection algorithm to identify abnormal sounds. The third method uses the mixup method for probability mixing, and the fourth method uses the combination of SMOTE and mixup. Experiments on the development set show that the performance of the four methods is better than that of the baseline model.
System characteristics
Classifier | Self-supervised learning |
Acoustic features | log-mel energies |
Data augmentation | mixup |
FKIE-VUB System for DCASE2024 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Kevin Wilkinghoff, Yacine Bel-Hadj
Fraunhofer FKIE, Wachtberg, Germany and Vrije Universiteit Brussel, Brussels, Belgium
Wilkinghoff_FKIE_task2_1 Wilkinghoff_FKIE_task2_2 Wilkinghoff_FKIE_task2_3
FKIE-VUB System for DCASE2024 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Kevin Wilkinghoff, Yacine Bel-Hadj
Fraunhofer FKIE, Wachtberg, Germany and Vrije Universiteit Brussel, Brussels, Belgium
Abstract
This report contains a description of the FKIE-VUB system submitted to task 2 “First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring” of the DCASE2024 Challenge. The submitted system is an adaptation of a previously proposed system based on an embedding model trained with an auxiliary classification task, which is imposed by self-supervised learning and provided meta information. The main modifications of the presented system are to replace the sub-cluster AdaCos loss with the AdaProj loss and to use balanced sample weights when training the embedding model. In experimental evaluations, it is shown that both modifications improve the resulting performance and that the proposed system significantly outperforms both baseline systems of the challenge as well as the model it is based on.
System characteristics
Classifier | CNN, ensemble, k-means |
System complexity | 127724380 |
Acoustic features | FFT, STFT |
Data augmentation | mixup, feature exchange |
Decision making | average |
Subsystem count | 10 |
Front end system | high-pass filtering, zero-padding |
Anomalous Sound Detection with Three-SubNetworks and Pre-Trained Models
Ting Wu, Jian Wen, Zhaoli Yan, Xiaobin Cheng
Key Laboratory of Noise and Vibration Research, The Institute of Acoustics of the Chinese Academy of Sciences, Beijing, China and The Institute of Acoustics of the Chinese Academy of Sciences, Beijing, China
Wu_IACAS_task2_1 Wu_IACAS_task2_2 Wu_IACAS_task2_3 Wu_IACAS_task2_4
Anomalous Sound Detection with Three-SubNetworks and Pre-Trained Models
Ting Wu, Jian Wen, Zhaoli Yan, Xiaobin Cheng
Key Laboratory of Noise and Vibration Research, The Institute of Acoustics of the Chinese Academy of Sciences, Beijing, China and The Institute of Acoustics of the Chinese Academy of Sciences, Beijing, China
Abstract
Unsupervised pretrained models have been used successfully in a wide range of scenarios. This report presents our work for DCASE 2024 Task 2: First-shot unsupervised anomalous sound detection for machine condition monitoring. To solve this problem, a three-subnetworks is designed specifically for outlier exposure. The sample information is fully exploited to extract its embedding using classification networks as an auxiliary task, and then anomaly scores are calculated using clustering. Several pre-trained large models are fine-tuned with datasets from the DCASE 2024 challenge Task2 to further improve the performance. The ensemble of the above methods achieves an official score of 65.56% on the development dataset, being significantly superior to the baseline model’s performance.
System characteristics
Classifier | CNN, ensemble |
System complexity | 28592295 |
Acoustic features | STFT, raw waveform, spectrogram |
Data augmentation | mixup |
Decision making | average |
System embeddings | HuBert, BEATs, UniSpeech, WavLM, Wav2Vec |
ADAPTIVE FRAMEWORK FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION IN INDUSTRIAL MACHINE MONITORING
Jie Yang
Independent, Shanghai, China
Yang_IND_task2_1 Yang_IND_task2_2 Yang_IND_task2_3 Yang_IND_task2_4
ADAPTIVE FRAMEWORK FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION IN INDUSTRIAL MACHINE MONITORING
Jie Yang
Independent, Shanghai, China
Abstract
This technical report details our approach to addressing Task 2 of the DCASE 2024 Challenge, which centers on First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. The objective of this year’s challenge is to create a system that functions efficiently regardless of the presence of attribute information, mirroring real-world situations where such data may be intermittently accessible. To tackle this challenge, we propose an adaptive anomaly detection framework that adjusts seamlessly to the availability of attribute information. Our method employs an attribute classification scheme for detecting anomalous sounds. In cases where attribute information is present, we perform detailed anomaly detection by subdividing all attributes. For situations lacking attribute information, we utilize domain-specific information for effective detection. The adaptive system achieved a harmonic mean of 57.75% across all machine types and domains for both AUC and pAUC (p= 0.1) on the development set. This result demonstrates significant improvement and ensures the system’s adaptability under varying data conditions. Moreover, the framework’s flexibility in handling different types of input data enhances its applicability in real-world industrial machine monitoring scenarios.
System characteristics
Classifier | VAE, k-means |
Acoustic features | MFCC |
Data augmentation | mixup |
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION BASED ON SELF-SUPERVISED LEARNING
Jiawei Yin, Yu Gao, Wenbin Zhang
AI Innovation Center, Midea Group., Shanghai, China and Midea Group, Shanghai, China
Yin_Midea_task2_1 Yin_Midea_task2_2 Yin_Midea_task2_3 Yin_Midea_task2_4
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION BASED ON SELF-SUPERVISED LEARNING
Jiawei Yin, Yu Gao, Wenbin Zhang
AI Innovation Center, Midea Group., Shanghai, China and Midea Group, Shanghai, China
Abstract
This technical report contains a description of Midea’s submission to Task 2 “First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring” of DCASE Challenge 2024. Compared with previous challenges, this task focuses on the first-shot problem, and some attribute information is unavailable, which brings many challenges. Our proposed system is based on a self-supervised learning approach by using a convolutional neural network to extract feature vectors from input sounds and an anomaly detection algorithm to detect abnormal sounds. The proposed method is evaluated using the DCASE 2024 Task 2 development dataset. The results show that the proposed method can effectively extract the sound features and significantly outperforms the baseline in detection performance.
System characteristics
Classifier | CNN, k-means |
System complexity | 3376606 |
Acoustic features | spectrum |
Data augmentation | mixup, mixup, time warping, SMOTE |
LIGHTWEIGHT SOLUTION USING STATISTICAL ESTIMATION FOR FIRST-SHOT ANOMALOUS SOUND DETECTION
Shiheng Zhang, Hejing Zhang, Feiyang Xiao, Qiaoxi Zhu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
Zhang_HEU_task2_1 Zhang_HEU_task2_2 Zhang_HEU_task2_3 Zhang_HEU_task2_4
LIGHTWEIGHT SOLUTION USING STATISTICAL ESTIMATION FOR FIRST-SHOT ANOMALOUS SOUND DETECTION
Shiheng Zhang, Hejing Zhang, Feiyang Xiao, Qiaoxi Zhu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
Abstract
This report presents our submission for Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 Challenge [1]. We introduce statistical strategies to build our lightweight non-deep learning anomalous sound detection (ASD) systems. We analyse the intrinsic statistical characteristics of machine sounds in the time-frequency domain. Then, different statistical information forms weights assigned to the frequency components or the time bins for frequency-weighted or time-weighted audio feature representation, resulting in frequency-weighted and time-weighted ASD systems, respectively. Additionally, the time-weighted system applies SMOTE for data augmentation to mitigate domain shift, which forms an SMOTE time-frequency-weighted ASD system. Finally, we use these systems to build an ensembled ASD system. Experiments show that all four systems achieve better performance than the baseline systems.
System characteristics
Classifier | GMM |
System complexity | 33024 |
Acoustic features | log-mel energies |
Data augmentation | SMOTE |
ENHANCED UNSUPERVISED ANOMALOUS SOUND DETECTION USING CONDITIONAL AUTOENCODER FOR MACHINE CONDITION MONITORING
Ronghuan Zhao, Kelong Ren, Liang Zou
China University of Mining and Technology, Xuzhou, China
Zhao_CUMT_task2_1 Zhao_CUMT_task2_2 Zhao_CUMT_task2_3 Zhao_CUMT_task2_4
ENHANCED UNSUPERVISED ANOMALOUS SOUND DETECTION USING CONDITIONAL AUTOENCODER FOR MACHINE CONDITION MONITORING
Ronghuan Zhao, Kelong Ren, Liang Zou
China University of Mining and Technology, Xuzhou, China
Abstract
This report outlines our approach to first-shot unsupervised anomalous sound detection for machine condition monitoring, developed for the DCASE 2024 Challenge Task 2. Given the constraint of only having normal operational data, our method focuses on leveraging generative models for anomaly detection by employing an Autoencoder (AE). Key components of our approach include training an AE model on normal sound data to use reconstruction loss for detecting anomalies, transforming sounds into log-mel spectrograms for better feature representation, incorporating attribute or domain labels in a conditional AE to enhance context-specific anomaly detection, normalizing reconstruction losses by domain to address machine variations, and inferring domain categories using classification or clustering when labels are absent. To further improve detection performance, we employ guided diffusion model for data augmentation, enhancing the diversity and robustness of the training data. We also implement custom filtering techniques tailored to sound signals, improving the quality and relevance of the input data. By integrating these advanced techniques, our approach significantly enhances the accuracy and reliability of anomaly detection, providing a robust tool for machine condition monitoring. Our approach achieved notable performance on the development set, demonstrating its effectiveness. The AUC for the target domain was 61.50% and for the source domain was 60.25%. Additionally, the Partial AUC values (p = 0.1) for the target and source domain was 53.26%. These results underscore the robustness and applicability of our methodology in detecting anomalous sounds in various operational contexts.
System characteristics
Classifier | Conditional AE |
Acoustic features | log-mel energies |