Task description
The goal of this task is to identify whether a machine is normal or anomalous using only normal sound data under domain shifted conditions. One major difference from DCASE 2022 Task 2 is that the set of machine types are completely different between the development dataset and evaluation dataset. Therefore, the participants are expected to develop a system that can handle completely new machine types.
More detailed task description can be found in the task description page
Teams ranking
Table including only the best performing system per submitting team.
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
ToyDrone (AUC) |
ToyDrone (pAUC) |
ToyNscale (AUC) |
ToyNscale (pAUC) |
ToyTank (AUC) |
ToyTank (pAUC) |
Vacuum (AUC) |
Vacuum (pAUC) |
Bandsaw (AUC) |
Bandsaw (pAUC) |
Grinder (AUC) |
Grinder (pAUC) |
Shaker (AUC) |
Shaker (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Bearing (AUC) |
Bearing (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | 24 | 61.05082186925268 ± 0.0015218757062443913 | 58.93 | 51.42 | 50.73 | 50.89 | 57.89 | 53.84 | 86.84 | 65.32 | 69.10 | 57.54 | 60.19 | 59.55 | 72.28 | 62.33 | 59.20 | 49.18 | 48.73 | 48.05 | 59.77 | 50.68 | 61.89 | 58.42 | 71.58 | 54.84 | 79.25 | 56.18 | 53.74 | 51.28 | |
Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | 19 | 61.765486226672074 ± 0.0017959994163787177 | 58.06 | 51.47 | 86.84 | 65.37 | 61.29 | 57.58 | 82.05 | 60.84 | 47.58 | 49.92 | 49.06 | 49.21 | 93.24 | 80.78 | 68.86 | 59.47 | 68.47 | 51.63 | 84.62 | 76.68 | 89.21 | 77.32 | 81.68 | 66.53 | 97.66 | 90.16 | 92.66 | 85.37 | |
He_XJU_task2_4 | HeXJU2023 | 74 | 48.17910227573888 ± 0.0014803390407048121 | 39.26 | 50.11 | 51.79 | 52.74 | 47.34 | 50.37 | 48.34 | 52.53 | 36.68 | 49.55 | 65.85 | 58.46 | 47.06 | 49.51 | 44.14 | 75.00 | 54.06 | 49.36 | 67.04 | 56.78 | 46.83 | 47.84 | 53.77 | 52.73 | 92.79 | 83.42 | 44.28 | 52.21 | |
Lv_HUAKONG_task2_4 | LvHUAKONG2023 | 2 | 66.38618902139308 ± 0.001763447255809211 | 54.84 | 49.37 | 82.71 | 57.00 | 74.80 | 63.79 | 93.66 | 87.42 | 58.48 | 50.30 | 66.69 | 61.22 | 74.24 | 65.24 | 65.47 | 49.47 | 64.82 | 49.32 | 78.80 | 62.26 | 65.97 | 56.32 | 82.28 | 62.47 | 94.74 | 76.68 | 73.66 | 53.68 | |
Jiang_THUEE_task2_1 | JiangTHUEE2023 | 4 | 65.40305914562828 ± 0.0016954969066200025 | 55.83 | 49.74 | 73.44 | 61.63 | 63.03 | 59.74 | 81.98 | 76.42 | 71.10 | 56.64 | 62.18 | 62.41 | 75.99 | 64.68 | 58.40 | 50.37 | 49.77 | 48.32 | 66.15 | 51.84 | 88.20 | 76.32 | 76.38 | 57.68 | 88.27 | 66.37 | 67.90 | 53.58 | |
JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | 27 | 59.539455870919 ± 0.0017136456379770644 | 43.91 | 48.79 | 83.60 | 64.53 | 53.54 | 55.63 | 79.38 | 73.95 | 71.25 | 57.83 | 59.03 | 55.84 | 55.92 | 49.32 | 48.90 | 48.68 | 51.28 | 49.10 | 68.18 | 52.00 | 80.58 | 61.89 | 84.92 | 65.31 | 95.10 | 89.57 | 81.82 | 55.84 | |
Zhang_DKU_task2_2 | ZhangDKU2023 | 57 | 53.943211217441004 ± 0.001648641037227489 | 58.31 | 52.37 | 75.26 | 64.11 | 37.34 | 52.68 | 43.69 | 56.00 | 55.42 | 55.05 | 63.06 | 57.10 | 58.23 | 50.72 | 52.78 | 51.79 | 55.46 | 54.74 | 61.64 | 56.84 | 68.82 | 58.11 | 74.70 | 65.89 | 92.64 | 69.89 | 67.48 | 49.26 | |
Zhou_SHNU_task2_3 | ZhouSHNU2023 | 10 | 63.64485714595981 ± 0.0017183511378647829 | 61.10 | 55.74 | 62.23 | 52.11 | 68.66 | 59.53 | 77.05 | 63.53 | 69.13 | 51.99 | 69.04 | 61.51 | 68.83 | 55.94 | 61.90 | 51.05 | 57.18 | 48.36 | 63.39 | 51.26 | 74.13 | 63.78 | 65.22 | 54.78 | 77.07 | 53.26 | 52.48 | 51.00 | |
Zhang_BIT_task2_1 | ZhangBIT2023 | 28 | 59.48866414964231 ± 0.001496880906985829 | 52.05 | 51.89 | 62.01 | 57.21 | 64.18 | 57.32 | 56.81 | 60.47 | 62.03 | 50.09 | 61.76 | 61.32 | 71.55 | 61.06 | 52.10 | 63.75 | 59.65 | 55.80 | 58.50 | 63.50 | 72.80 | ||||||||
Liu_CQUPT_task2_1 | LiuCQUPT2023 | 44 | 56.00318391857601 ± 0.0017690559303198009 | 48.33 | 48.79 | 63.51 | 55.53 | 55.68 | 57.84 | 43.63 | 57.74 | 55.53 | 51.54 | 69.44 | 62.70 | 65.54 | 60.40 | 58.54 | 48.47 | 62.40 | 49.74 | 70.68 | 61.68 | 59.66 | 51.73 | 74.24 | 56.89 | 92.02 | 68.11 | 68.34 | 53.36 | |
Atmaja_AIST_task2_4 | AtmajaAIST2023 | 50 | 55.0920471984782 ± 0.0013534875706585426 | 55.55 | 54.00 | 50.32 | 53.00 | 54.35 | 51.84 | 74.99 | 64.11 | 53.39 | 50.31 | 48.09 | 48.29 | 63.21 | 54.28 | 56.55 | 48.79 | 56.26 | 50.16 | 50.51 | 50.71 | 50.01 | 51.37 | 58.59 | 50.87 | 51.85 | 50.71 | 48.06 | 49.97 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | 5 | 64.91145175990695 ± 0.0017818544158040373 | 53.90 | 50.21 | 87.14 | 76.58 | 63.43 | 62.21 | 83.26 | 74.00 | 66.06 | 52.87 | 67.10 | 62.11 | 65.91 | 50.24 | 60.66 | 48.00 | 58.12 | 48.37 | 75.48 | 51.42 | 80.22 | 52.32 | 82.66 | 65.21 | 94.02 | 72.68 | 88.98 | 55.62 | |
Jiang_PSH_task2_2 | JiangPSH2023 | 47 | 55.61393665575548 ± 0.001453889360427255 | 57.66 | 50.68 | 58.27 | 56.11 | 48.60 | 57.05 | 70.54 | 66.74 | 47.05 | 48.24 | 63.93 | 56.18 | 54.66 | 49.72 | 52.97 | 51.68 | 55.25 | 52.42 | 64.03 | 51.79 | 51.17 | 55.37 | 78.20 | 54.00 | 96.37 | 83.26 | 61.39 | 54.47 | |
Wu_qdreamer_task2_3 | Wuqdreamer2023 | 29 | 59.262985023209346 ± 0.001379038594802009 | 45.85 | 52.53 | 79.02 | 60.26 | 69.46 | 57.89 | 56.76 | 65.26 | 55.48 | 50.81 | 60.25 | 54.21 | 69.44 | 58.87 | 67.49 | 49.89 | 61.95 | 53.53 | 74.63 | 52.11 | 73.19 | 63.21 | 75.79 | 65.58 | 83.87 | 62.53 | 67.40 | 57.68 | |
Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | 38 | 57.61233604271262 ± 0.00148382196939156 | 65.63 | 50.89 | 59.59 | 52.21 | 68.27 | 57.68 | 55.90 | 63.05 | 53.97 | 48.72 | 58.29 | 58.16 | 57.78 | 50.77 | 63.22 | 53.31 | 62.05 | 63.24 | 65.28 | 56.28 | 70.36 | 59.78 | 74.53 | 70.82 | 85.69 | 70.19 | 72.85 | 57.13 | |
Jie_IESEFPT_task2_2 | JieIESEFPT2023 | 1 | 66.96865050141963 ± 0.00180162797332972 | 58.03 | 51.58 | 89.03 | 77.74 | 60.33 | 61.53 | 96.18 | 85.32 | 65.66 | 53.35 | 66.63 | 62.45 | 68.08 | 55.97 | 57.68 | 42.73 | 56.56 | 47.47 | 73.84 | 51.31 | 86.96 | 61.22 | 82.13 | 63.43 | 97.12 | 82.81 | 93.38 | 73.02 | |
Gou_UESTC_task2_3 | GouUESTC2023 | 73 | 48.68995653342131 ± 0.0015180040461601286 | 42.32 | 48.47 | 56.72 | 50.11 | 43.96 | 54.47 | 41.29 | 49.42 | 55.72 | 52.61 | 48.24 | 49.51 | 51.59 | 49.14 | 50.82 | 51.00 | 51.48 | 49.68 | 54.94 | 51.26 | 62.13 | 49.84 | 56.42 | 54.11 | 72.76 | 75.63 | 47.36 | 52.26 | |
Tanaka_GU_task2_3 | TanakaGU2023 | 49 | 55.25265431943579 ± 0.0013817138477153071 | 37.89 | 48.21 | 60.97 | 52.74 | 69.38 | 59.11 | 59.42 | 62.84 | 52.13 | 51.25 | 60.02 | 55.39 | 60.33 | 58.62 | 56.44 | 49.58 | 60.98 | 50.11 | 63.36 | 54.42 | 47.60 | 58.32 | 58.96 | 51.58 | 57.50 | 58.95 | 47.26 | 50.11 | |
Fujimura_NU_task2_1 | FujimuraNU2023 | 54 | 54.70129260730897 ± 0.0017335695817680035 | 33.60 | 49.32 | 71.36 | 61.47 | 57.96 | 54.47 | 58.38 | 61.37 | 59.03 | 53.75 | 61.81 | 61.08 | 52.00 | 59.84 | 60.70 | 51.53 | 61.16 | 48.58 | 65.60 | 56.26 | 72.32 | 70.32 | 82.78 | 64.26 | 96.14 | 80.53 | 97.62 | 78.95 | |
Bai_JLESS_task2_3 | BaiJLESS2023 | 6 | 64.10430038433627 ± 0.0015312095360472697 | 51.44 | 50.89 | 59.85 | 51.16 | 70.05 | 59.58 | 81.46 | 69.47 | 74.51 | 55.65 | 67.07 | 63.03 | 78.30 | 63.37 | 62.47 | 49.96 | 53.89 | 48.16 | 62.95 | 51.79 | 84.85 | 68.30 | 75.31 | 56.21 | 83.31 | 55.11 | 53.97 | 50.95 | |
Guan_HEU_task2_4 | GuanHEU2023 | 14 | 63.50321347349609 ± 0.0016921801501565013 | 62.93 | 52.05 | 68.94 | 54.21 | 66.41 | 60.63 | 79.47 | 72.47 | 57.22 | 50.76 | 62.38 | 54.96 | 78.46 | 61.47 | 63.04 | 50.21 | 56.96 | 48.95 | 67.71 | 54.84 | 66.97 | 56.05 | 79.49 | 60.58 | 91.91 | 71.05 | 89.35 | 60.05 | |
Hauser_JKU_task2_1 | HauserJKU2023 | 86 | 41.40741259250251 ± 0.001374452454520565 | 40.70 | 48.47 | 36.58 | 48.74 | 37.85 | 50.32 | 25.95 | 47.89 | 52.84 | 51.26 | 41.91 | 49.08 | 44.11 | 48.23 | 46.18 | 48.91 | 49.33 | 49.53 | 40.02 | 49.34 | 48.18 | 58.11 | 43.10 | 49.76 | 52.08 | 51.57 | 64.38 | 58.85 | |
LEE_KNU_task2_2 | LEEKNU2023 | 84 | 44.231914616941665 ± 0.00130457675996216 | 40.03 | 50.21 | 42.70 | 51.58 | 38.82 | 51.68 | 35.20 | 49.53 | 43.53 | 47.37 | 46.42 | 48.50 | 49.01 | 52.08 | 46.38 | 51.47 | 47.74 | 48.27 | 70.84 | 50.58 | 65.31 | 52.16 | 78.20 | 51.58 | 82.07 | 51.90 | 97.06 | 97.57 | |
QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | 31 | 59.06204701591861 ± 0.0015102887361449933 | 57.76 | 53.00 | 46.69 | 51.53 | 64.75 | 59.42 | 72.73 | 62.58 | 63.37 | 53.03 | 57.77 | 59.02 | 69.93 | 55.41 | 59.69 | 51.16 | 60.55 | 48.84 | 59.66 | 51.21 | 71.96 | 64.32 | 73.46 | 58.89 | 78.89 | 59.42 | 65.05 | 55.00 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
ToyDrone (F1 score) |
ToyDrone (Recall) |
ToyDrone (Precision) |
ToyNscale (F1 score) |
ToyNscale (Recall) |
ToyNscale (Precision) |
ToyTank (F1 score) |
ToyTank (Recall) |
ToyTank (Precision) |
Vacuum (F1 score) |
Vacuum (Recall) |
Vacuum (Precision) |
Bandsaw (F1 score) |
Bandsaw (Recall) |
Bandsaw (Precision) |
Grinder (F1 score) |
Grinder (Recall) |
Grinder (Precision) |
Shaker (F1 score) |
Shaker (Recall) |
Shaker (Precision) |
|
DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | 24 | 15.56 | 8.89 | 62.50 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | 19 | 60.13 | 59.93 | 60.34 | 73.90 | 73.25 | 74.56 | 58.08 | 57.72 | 58.45 | 79.08 | 78.38 | 79.79 | 46.99 | 47.88 | 46.13 | 33.33 | 47.06 | 25.81 | 83.70 | 83.52 | 83.88 | |
He_XJU_task2_4 | HeXJU2023 | 74 | 21.65 | 14.81 | 40.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Lv_HUAKONG_task2_4 | LvHUAKONG2023 | 2 | 50.70 | 50.21 | 51.20 | 77.54 | 77.54 | 77.54 | 66.34 | 66.27 | 66.41 | 87.74 | 87.82 | 87.66 | 48.30 | 57.14 | 41.83 | 48.41 | 66.67 | 38.00 | 66.92 | 66.45 | 67.40 | |
Jiang_THUEE_task2_1 | JiangTHUEE2023 | 4 | 59.54 | 55.73 | 63.91 | 66.40 | 63.24 | 69.90 | 58.73 | 51.10 | 69.05 | 71.19 | 66.44 | 76.67 | 59.96 | 71.39 | 51.68 | 45.44 | 63.15 | 35.49 | 65.28 | 65.57 | 64.98 | |
JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | 27 | 11.80 | 6.55 | 60.00 | 38.52 | 25.08 | 83.01 | 0.00 | 0.00 | 0.00 | 38.71 | 24.00 | 100.00 | 44.28 | 32.26 | 70.59 | 39.77 | 32.23 | 51.92 | 24.91 | 16.85 | 47.78 | |
Zhang_DKU_task2_2 | ZhangDKU2023 | 57 | 0.00 | 0.00 | 0.00 | 7.47 | 3.89 | 92.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 35.79 | 28.64 | 47.71 | 10.26 | 5.80 | 44.44 | 12.96 | 7.44 | 50.00 | |
Zhou_SHNU_task2_3 | ZhouSHNU2023 | 10 | 41.16 | 31.49 | 59.39 | 49.26 | 42.42 | 58.73 | 58.23 | 51.31 | 67.31 | 62.19 | 50.51 | 80.90 | 54.93 | 56.48 | 53.46 | 50.10 | 54.24 | 46.56 | 57.52 | 51.28 | 65.49 | |
Zhang_BIT_task2_1 | ZhangBIT2023 | 28 | 53.82 | 46.34 | 64.18 | 56.96 | 56.28 | 57.67 | 57.38 | 57.38 | 57.38 | 32.27 | 21.28 | 66.67 | 52.75 | 63.06 | 45.34 | 45.51 | 63.15 | 35.57 | 59.37 | 60.38 | 58.38 | |
Liu_CQUPT_task2_1 | LiuCQUPT2023 | 44 | 48.11 | 47.12 | 49.14 | 54.62 | 51.53 | 58.10 | 23.97 | 14.79 | 63.12 | 19.19 | 11.27 | 64.79 | 47.50 | 55.47 | 41.53 | 52.73 | 71.79 | 41.67 | 58.26 | 58.39 | 58.14 | |
Atmaja_AIST_task2_4 | AtmajaAIST2023 | 50 | 0.00 | 0.00 | 0.00 | 62.42 | 73.85 | 54.05 | 0.00 | 0.00 | 0.00 | 67.57 | 100.00 | 51.02 | 38.61 | 40.22 | 37.11 | 38.46 | 47.21 | 32.44 | 58.72 | 62.47 | 55.40 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | 5 | 67.21 | 78.91 | 58.53 | 72.90 | 75.00 | 70.92 | 61.93 | 70.13 | 55.45 | 73.22 | 91.30 | 61.12 | 54.42 | 54.79 | 54.05 | 50.00 | 56.14 | 45.07 | 59.34 | 54.55 | 65.06 | |
Jiang_PSH_task2_2 | JiangPSH2023 | 47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Wu_qdreamer_task2_3 | Wuqdreamer2023 | 29 | 6.77 | 3.91 | 25.21 | 71.57 | 94.74 | 57.51 | 66.37 | 85.06 | 54.41 | 0.00 | 0.00 | 0.00 | 54.22 | 78.26 | 41.47 | 45.82 | 68.29 | 34.47 | 62.74 | 75.67 | 53.58 | |
Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | 38 | 66.52 | 83.81 | 55.14 | 66.59 | 82.29 | 55.92 | 65.24 | 63.82 | 66.73 | 46.22 | 35.51 | 66.19 | 42.22 | 50.41 | 36.32 | 44.72 | 83.99 | 30.47 | 64.78 | 85.92 | 51.99 | |
Jie_IESEFPT_task2_2 | JieIESEFPT2023 | 1 | 69.48 | 85.61 | 58.46 | 78.79 | 85.06 | 73.38 | 61.71 | 70.13 | 55.10 | 80.32 | 100.00 | 67.11 | 53.93 | 55.60 | 52.36 | 48.48 | 52.58 | 44.98 | 67.39 | 74.55 | 61.48 | |
Gou_UESTC_task2_3 | GouUESTC2023 | 73 | 13.78 | 7.69 | 66.67 | 55.56 | 55.71 | 55.40 | 44.83 | 34.87 | 62.77 | 13.53 | 7.68 | 56.80 | 48.43 | 57.67 | 41.75 | 38.22 | 52.63 | 30.00 | 50.32 | 50.57 | 50.08 | |
Tanaka_GU_task2_3 | TanakaGU2023 | 49 | 7.27 | 3.91 | 51.43 | 53.45 | 45.04 | 65.73 | 62.50 | 62.60 | 62.41 | 31.17 | 21.43 | 57.14 | 41.44 | 46.68 | 37.26 | 40.29 | 49.12 | 34.15 | 46.54 | 39.18 | 57.31 | |
Fujimura_NU_task2_1 | FujimuraNU2023 | 54 | 19.01 | 11.29 | 60.00 | 61.64 | 52.94 | 73.77 | 46.69 | 35.51 | 68.15 | 41.09 | 30.21 | 64.19 | 55.88 | 63.96 | 49.61 | 47.24 | 64.21 | 37.36 | 53.66 | 53.15 | 54.18 | |
Bai_JLESS_task2_3 | BaiJLESS2023 | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Guan_HEU_task2_4 | GuanHEU2023 | 14 | 52.84 | 46.47 | 61.25 | 59.04 | 53.33 | 66.12 | 55.85 | 45.38 | 72.60 | 63.84 | 50.03 | 88.17 | 38.77 | 39.69 | 37.89 | 45.09 | 50.72 | 40.58 | 69.96 | 63.55 | 77.80 | |
Hauser_JKU_task2_1 | HauserJKU2023 | 86 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
LEE_KNU_task2_2 | LEEKNU2023 | 84 | 62.39 | 80.95 | 50.75 | 59.60 | 72.00 | 50.85 | 59.41 | 75.00 | 49.18 | 64.14 | 86.36 | 51.01 | 50.49 | 68.29 | 40.05 | 42.64 | 75.36 | 29.73 | 56.47 | 64.51 | 50.21 | |
QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | 31 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.56 | 100.00 | 36.58 | 43.65 | 100.00 | 27.92 | 68.79 | 98.08 | 52.98 |
Systems ranking
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
ToyDrone (AUC) |
ToyDrone (pAUC) |
ToyNscale (AUC) |
ToyNscale (pAUC) |
ToyTank (AUC) |
ToyTank (pAUC) |
Vacuum (AUC) |
Vacuum (pAUC) |
Bandsaw (AUC) |
Bandsaw (pAUC) |
Grinder (AUC) |
Grinder (pAUC) |
Shaker (AUC) |
Shaker (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Bearing (AUC) |
Bearing (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | 24 | 61.05082186925268 ± 0.0015218757062443913 | 58.93 | 51.42 | 50.73 | 50.89 | 57.89 | 53.84 | 86.84 | 65.32 | 69.10 | 57.54 | 60.19 | 59.55 | 72.28 | 62.33 | 59.20 | 49.18 | 48.73 | 48.05 | 59.77 | 50.68 | 61.89 | 58.42 | 71.58 | 54.84 | 79.25 | 56.18 | 53.74 | 51.28 | |
DCASE2023_baseline_task2_MSE | DCASE2023baseline2023 | 30 | 59.25469043549957 ± 0.0015318988799038432 | 65.84 | 53.68 | 58.49 | 51.79 | 68.20 | 58.26 | 59.87 | 59.47 | 56.01 | 50.91 | 61.97 | 58.46 | 62.02 | 54.92 | 59.36 | 52.93 | 58.03 | 48.28 | 60.85 | 50.30 | 54.02 | 58.28 | 61.01 | 53.44 | 59.56 | 57.04 | 53.56 | 51.12 | |
Du_NERCSLIP_task2_1 | DuNERCSLIP2023 | 21 | 61.40265030314117 ± 0.0017835401670258867 | 57.93 | 51.11 | 86.17 | 64.84 | 60.94 | 56.63 | 82.86 | 62.11 | 47.04 | 49.37 | 47.33 | 49.40 | 94.23 | 82.87 | 70.31 | 58.95 | 70.21 | 53.32 | 84.78 | 77.11 | 89.04 | 76.11 | 84.98 | 67.89 | 97.81 | 90.89 | 92.66 | 85.37 | |
Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | 19 | 61.765486226672074 ± 0.0017959994163787177 | 58.06 | 51.47 | 86.84 | 65.37 | 61.29 | 57.58 | 82.05 | 60.84 | 47.58 | 49.92 | 49.06 | 49.21 | 93.24 | 80.78 | 68.86 | 59.47 | 68.47 | 51.63 | 84.62 | 76.68 | 89.21 | 77.32 | 81.68 | 66.53 | 97.66 | 90.16 | 92.66 | 85.37 | |
Du_NERCSLIP_task2_3 | DuNERCSLIP2023 | 20 | 61.72668688068389 ± 0.0016960833303502675 | 58.21 | 52.05 | 86.38 | 65.05 | 61.54 | 58.00 | 80.72 | 60.16 | 47.95 | 50.54 | 50.51 | 48.11 | 91.09 | 76.08 | 71.01 | 58.00 | 68.11 | 52.95 | 83.81 | 75.79 | 86.86 | 76.58 | 81.03 | 66.68 | 97.00 | 88.53 | 92.66 | 85.37 | |
Du_NERCSLIP_task2_4 | DuNERCSLIP2023 | 23 | 61.33284074574933 ± 0.001706784911538521 | 58.48 | 52.16 | 85.77 | 64.00 | 61.04 | 58.74 | 79.74 | 59.74 | 47.92 | 51.17 | 51.00 | 47.75 | 88.15 | 69.74 | 68.01 | 57.79 | 72.84 | 54.32 | 81.56 | 72.00 | 86.37 | 71.74 | 83.82 | 67.42 | 96.96 | 87.53 | 92.66 | 85.37 | |
He_XJU_task2_1 | HeXJU2023 | 78 | 46.89167264620427 ± 0.0014839978080730181 | 39.46 | 49.21 | 51.30 | 52.74 | 52.85 | 50.16 | 38.53 | 51.00 | 41.23 | 47.96 | 53.18 | 50.84 | 46.71 | 49.64 | 47.32 | 50.10 | 44.52 | 48.68 | 49.24 | 48.26 | 47.88 | 49.89 | 51.43 | 50.36 | 79.46 | 69.11 | 51.18 | 55.10 | |
He_XJU_task2_2 | HeXJU2023 | 83 | 44.80907187312061 ± 0.001437121781209372 | 38.54 | 50.00 | 45.40 | 50.89 | 48.55 | 51.21 | 27.55 | 47.95 | 48.29 | 48.28 | 51.32 | 52.09 | 52.46 | 48.85 | 52.57 | 51.21 | 52.89 | 48.74 | 72.25 | 55.89 | 46.09 | 50.10 | 58.16 | 52.84 | 76.52 | 70.10 | 48.89 | 49.42 | |
He_XJU_task2_3 | HeXJU2023 | 80 | 46.41086559024494 ± 0.0015280006063045325 | 41.07 | 49.74 | 30.07 | 47.58 | 49.56 | 52.11 | 40.44 | 53.32 | 46.28 | 51.60 | 49.37 | 53.13 | 68.49 | 57.94 | 49.02 | 49.42 | 56.37 | 48.68 | 59.59 | 52.84 | 43.58 | 48.78 | 51.81 | 51.10 | 84.62 | 73.15 | 57.11 | 53.31 | |
He_XJU_task2_4 | HeXJU2023 | 74 | 48.17910227573888 ± 0.0014803390407048121 | 39.26 | 50.11 | 51.79 | 52.74 | 47.34 | 50.37 | 48.34 | 52.53 | 36.68 | 49.55 | 65.85 | 58.46 | 47.06 | 49.51 | 44.14 | 75.00 | 54.06 | 49.36 | 67.04 | 56.78 | 46.83 | 47.84 | 53.77 | 52.73 | 92.79 | 83.42 | 44.28 | 52.21 | |
Lv_HUAKONG_task2_1 | LvHUAKONG2023 | 11 | 63.641026999638264 ± 0.0016956362933551541 | 52.86 | 49.47 | 74.94 | 56.95 | 68.38 | 62.79 | 85.48 | 70.32 | 54.24 | 51.15 | 66.93 | 62.16 | 73.46 | 65.50 | 63.52 | 48.95 | 63.25 | 52.74 | 76.98 | 57.79 | 69.51 | 55.11 | 87.23 | 72.79 | 94.02 | 71.37 | 78.94 | 54.00 | |
Lv_HUAKONG_task2_2 | LvHUAKONG2023 | 15 | 62.91199838369852 ± 0.001748368530129158 | 52.56 | 49.32 | 68.50 | 52.21 | 64.91 | 62.79 | 79.26 | 63.95 | 56.87 | 51.76 | 68.77 | 63.44 | 76.51 | 71.23 | 62.91 | 50.56 | 58.26 | 49.79 | 74.84 | 53.95 | 74.04 | 61.16 | 86.16 | 75.53 | 93.89 | 70.53 | 73.77 | 57.87 | |
Lv_HUAKONG_task2_3 | LvHUAKONG2023 | 8 | 63.85811949412737 ± 0.001663717465843232 | 53.38 | 49.84 | 77.54 | 56.79 | 66.34 | 58.21 | 84.96 | 70.32 | 56.34 | 50.11 | 70.01 | 61.98 | 74.51 | 63.13 | 59.14 | 48.79 | 62.28 | 50.42 | 80.32 | 67.21 | 72.50 | 57.16 | 89.64 | 76.53 | 94.32 | 72.84 | 76.61 | 52.42 | |
Lv_HUAKONG_task2_4 | LvHUAKONG2023 | 2 | 66.38618902139308 ± 0.001763447255809211 | 54.84 | 49.37 | 82.71 | 57.00 | 74.80 | 63.79 | 93.66 | 87.42 | 58.48 | 50.30 | 66.69 | 61.22 | 74.24 | 65.24 | 65.47 | 49.47 | 64.82 | 49.32 | 78.80 | 62.26 | 65.97 | 56.32 | 82.28 | 62.47 | 94.74 | 76.68 | 73.66 | 53.68 | |
Jiang_THUEE_task2_1 | JiangTHUEE2023 | 4 | 65.40305914562828 ± 0.0016954969066200025 | 55.83 | 49.74 | 73.44 | 61.63 | 63.03 | 59.74 | 81.98 | 76.42 | 71.10 | 56.64 | 62.18 | 62.41 | 75.99 | 64.68 | 58.40 | 50.37 | 49.77 | 48.32 | 66.15 | 51.84 | 88.20 | 76.32 | 76.38 | 57.68 | 88.27 | 66.37 | 67.90 | 53.58 | |
Jiang_THUEE_task2_2 | JiangTHUEE2023 | 35 | 58.135795444298886 ± 0.0018171205740200168 | 34.32 | 49.11 | 69.55 | 55.42 | 59.84 | 54.37 | 78.16 | 71.37 | 60.16 | 51.12 | 63.07 | 61.40 | 70.77 | 65.33 | 61.62 | 49.53 | 60.52 | 49.53 | 71.92 | 56.00 | 81.28 | 65.37 | 84.37 | 68.16 | 96.76 | 84.21 | 73.23 | 58.80 | |
Jiang_THUEE_task2_3 | JiangTHUEE2023 | 7 | 63.89749272780968 ± 0.0017249015968282557 | 49.63 | 48.89 | 77.66 | 52.53 | 69.47 | 55.89 | 81.87 | 73.00 | 66.53 | 50.75 | 66.05 | 61.77 | 75.29 | 64.50 | 63.24 | 48.63 | 62.66 | 48.53 | 75.21 | 56.53 | 86.96 | 62.89 | 86.29 | 68.79 | 96.83 | 83.74 | 72.95 | 54.47 | |
Jiang_THUEE_task2_4 | JiangTHUEE2023 | 17 | 62.38070966737226 ± 0.0017055328702134229 | 51.56 | 49.79 | 71.14 | 53.16 | 62.07 | 55.42 | 77.26 | 65.26 | 63.91 | 50.98 | 65.01 | 63.08 | 75.44 | 65.23 | 60.69 | 48.42 | 62.17 | 50.58 | 73.28 | 65.63 | 88.11 | 63.58 | 89.64 | 73.89 | 96.28 | 81.68 | 78.56 | 55.79 | |
JiaJun_HFUU_task2_1 | JiaJunHFUU2023 | 33 | 58.169557409440074 ± 0.001718520073442323 | 36.99 | 49.32 | 83.60 | 64.53 | 53.54 | 55.63 | 79.38 | 73.95 | 71.25 | 57.83 | 59.03 | 55.84 | 55.92 | 49.32 | 49.76 | 48.63 | 48.95 | 49.21 | 67.98 | 51.63 | 81.80 | 61.57 | 84.48 | 66.84 | 94.44 | 87.42 | 86.12 | 65.21 | |
JiaJun_HFUU_task2_2 | JiaJunHFUU2023 | 33 | 58.169557409440074 ± 0.001718520073442323 | 36.99 | 49.32 | 83.60 | 64.53 | 53.54 | 55.63 | 79.38 | 73.95 | 71.25 | 57.83 | 59.03 | 55.84 | 55.92 | 49.32 | 50.86 | 48.68 | 49.90 | 49.15 | 68.26 | 52.15 | 81.84 | 66.00 | 85.08 | 66.84 | 94.92 | 89.21 | 84.22 | 58.47 | |
JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | 27 | 59.539455870919 ± 0.0017136456379770644 | 43.91 | 48.79 | 83.60 | 64.53 | 53.54 | 55.63 | 79.38 | 73.95 | 71.25 | 57.83 | 59.03 | 55.84 | 55.92 | 49.32 | 48.90 | 48.68 | 51.28 | 49.10 | 68.18 | 52.00 | 80.58 | 61.89 | 84.92 | 65.31 | 95.10 | 89.57 | 81.82 | 55.84 | |
JiaJun_HFUU_task2_4 | JiaJunHFUU2023 | 41 | 56.93963532020672 ± 0.00162923369781846 | 36.99 | 49.32 | 83.60 | 64.53 | 53.54 | 55.63 | 79.38 | 73.95 | 59.85 | 50.64 | 59.03 | 55.84 | 55.92 | 49.32 | 49.24 | 48.84 | 52.41 | 48.84 | 68.52 | 52.41 | 80.42 | 61.73 | 84.48 | 65.00 | 94.94 | 88.73 | 79.58 | 55.68 | |
Zhang_DKU_task2_1 | ZhangDKU2023 | 76 | 47.85601959825719 ± 0.001486695076025454 | 44.89 | 49.63 | 54.90 | 51.42 | 48.83 | 51.84 | 37.05 | 49.68 | 47.23 | 50.77 | 54.78 | 53.80 | 42.65 | 50.38 | 48.76 | 49.05 | 49.65 | 47.79 | 65.58 | 56.84 | 60.70 | 57.26 | 68.00 | 54.53 | 96.74 | 95.58 | 65.78 | 53.68 | |
Zhang_DKU_task2_2 | ZhangDKU2023 | 57 | 53.943211217441004 ± 0.001648641037227489 | 58.31 | 52.37 | 75.26 | 64.11 | 37.34 | 52.68 | 43.69 | 56.00 | 55.42 | 55.05 | 63.06 | 57.10 | 58.23 | 50.72 | 52.78 | 51.79 | 55.46 | 54.74 | 61.64 | 56.84 | 68.82 | 58.11 | 74.70 | 65.89 | 92.64 | 69.89 | 67.48 | 49.26 | |
Zhang_DKU_task2_3 | ZhangDKU2023 | 65 | 50.362219485218304 ± 0.0014691134337457292 | 44.61 | 47.74 | 54.50 | 54.11 | 44.85 | 51.37 | 40.48 | 51.11 | 53.42 | 53.11 | 64.86 | 57.20 | 51.38 | 51.34 | 49.12 | 49.68 | 44.98 | 47.37 | 60.32 | 60.00 | 69.10 | 61.68 | 70.52 | 69.47 | 73.74 | 66.11 | 68.24 | 63.37 | |
Zhang_DKU_task2_4 | ZhangDKU2023 | 76 | 47.85601959825719 ± 0.001486695076025454 | 44.89 | 49.63 | 54.90 | 51.42 | 48.83 | 51.84 | 37.05 | 49.68 | 47.23 | 50.77 | 54.78 | 53.80 | 42.65 | 50.38 | 51.50 | 52.21 | 53.92 | 51.16 | 65.72 | 57.26 | 63.66 | 57.89 | 75.00 | 56.42 | 94.50 | 82.11 | 66.02 | 48.84 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 58.542095543559356 ± 0.0015955525547135157 | 52.27 | 51.37 | 70.86 | 64.16 | 43.40 | 51.05 | 64.34 | 49.79 | 69.13 | 51.99 | 69.04 | 61.51 | 68.83 | 55.94 | 64.59 | 50.15 | 58.73 | 51.78 | 63.65 | 51.10 | 72.94 | 56.42 | 60.50 | 53.22 | 68.53 | 51.63 | 45.84 | 49.78 | |
Zhou_SHNU_task2_2 | ZhouSHNU2023 | 69 | 49.78071871290905 ± 0.0015131690089389166 | 52.27 | 51.37 | 70.86 | 64.16 | 43.40 | 51.05 | 64.34 | 49.79 | 37.86 | 50.28 | 42.93 | 49.34 | 45.42 | 50.36 | 64.59 | 50.15 | 58.73 | 51.78 | 63.65 | 51.10 | 72.94 | 56.42 | 60.50 | 53.22 | 68.53 | 51.63 | 45.84 | 49.78 | |
Zhou_SHNU_task2_3 | ZhouSHNU2023 | 10 | 63.64485714595981 ± 0.0017183511378647829 | 61.10 | 55.74 | 62.23 | 52.11 | 68.66 | 59.53 | 77.05 | 63.53 | 69.13 | 51.99 | 69.04 | 61.51 | 68.83 | 55.94 | 61.90 | 51.05 | 57.18 | 48.36 | 63.39 | 51.26 | 74.13 | 63.78 | 65.22 | 54.78 | 77.07 | 53.26 | 52.48 | 51.00 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 58.542095543559356 ± 0.0015955525547135157 | 52.27 | 51.37 | 70.86 | 64.16 | 43.40 | 51.05 | 64.34 | 49.79 | 69.13 | 51.99 | 69.04 | 61.51 | 68.83 | 55.94 | 64.59 | 50.15 | 58.73 | 51.78 | 63.65 | 51.10 | 72.94 | 56.42 | 60.50 | 53.22 | 68.53 | 51.63 | 45.84 | 49.78 | |
Zhang_BIT_task2_1 | ZhangBIT2023 | 28 | 59.48866414964231 ± 0.001496880906985829 | 52.05 | 51.89 | 62.01 | 57.21 | 64.18 | 57.32 | 56.81 | 60.47 | 62.03 | 50.09 | 61.76 | 61.32 | 71.55 | 61.06 | 52.10 | 63.75 | 59.65 | 55.80 | 58.50 | 63.50 | 72.80 | ||||||||
Zhang_BIT_task2_2 | ZhangBIT2023 | 56 | 54.210315178401395 ± 0.0013985070411561664 | 41.73 | 49.05 | 53.01 | 52.16 | 48.77 | 51.63 | 51.89 | 52.79 | 67.89 | 51.38 | 62.10 | 58.67 | 69.16 | 58.08 | 53.75 | 44.45 | 61.50 | 74.75 | 71.10 | 75.45 | 53.60 | ||||||||
Zhang_BIT_task2_3 | ZhangBIT2023 | 67 | 49.943548299651766 ± 0.0014282994275963807 | 45.50 | 48.63 | 50.24 | 51.68 | 49.69 | 48.21 | 47.06 | 49.95 | 51.91 | 50.85 | 58.70 | 52.42 | 48.11 | 49.08 | 65.55 | 54.95 | 71.25 | 70.65 | 54.40 | 63.35 | 63.60 | ||||||||
Zhang_BIT_task2_4 | ZhangBIT2023 | 43 | 56.27066126406969 ± 0.0016641694588265764 | 48.03 | 51.05 | 68.37 | 55.47 | 63.55 | 54.58 | 52.63 | 55.47 | 52.48 | 48.76 | 58.10 | 61.47 | 62.92 | 56.25 | 62.95 | 61.00 | 73.75 | 77.55 | 65.75 | 70.90 | 46.60 | ||||||||
Liu_CQUPT_task2_1 | LiuCQUPT2023 | 44 | 56.00318391857601 ± 0.0017690559303198009 | 48.33 | 48.79 | 63.51 | 55.53 | 55.68 | 57.84 | 43.63 | 57.74 | 55.53 | 51.54 | 69.44 | 62.70 | 65.54 | 60.40 | 58.54 | 48.47 | 62.40 | 49.74 | 70.68 | 61.68 | 59.66 | 51.73 | 74.24 | 56.89 | 92.02 | 68.11 | 68.34 | 53.36 | |
Liu_CQUPT_task2_2 | LiuCQUPT2023 | 64 | 50.41922704617341 ± 0.00151277878553744 | 47.77 | 48.74 | 48.33 | 49.58 | 39.21 | 50.26 | 37.84 | 52.16 | 62.88 | 54.00 | 55.78 | 56.16 | 73.86 | 53.84 | 52.46 | 51.71 | 54.68 | 49.95 | 59.14 | 51.10 | 74.22 | 50.31 | 84.54 | 55.26 | 98.48 | 91.47 | 60.72 | 53.47 | |
Liu_CQUPT_task2_3 | LiuCQUPT2023 | 48 | 55.59389634677413 ± 0.001558902874346492 | 47.86 | 48.63 | 60.13 | 53.37 | 51.00 | 56.58 | 43.20 | 56.74 | 62.00 | 54.31 | 64.71 | 59.42 | 73.23 | 59.31 | 56.20 | 51.10 | 59.18 | 48.89 | 66.50 | 53.05 | 66.84 | 51.57 | 85.04 | 53.31 | 98.20 | 89.53 | 63.56 | 53.95 | |
Liu_CQUPT_task2_4 | LiuCQUPT2023 | 45 | 55.66677560102276 ± 0.0015322461322400422 | 47.88 | 48.58 | 59.32 | 52.63 | 51.94 | 56.95 | 43.41 | 57.11 | 61.51 | 54.38 | 64.85 | 59.29 | 73.29 | 60.15 | 56.46 | 50.89 | 59.18 | 49.00 | 67.80 | 54.15 | 69.12 | 51.36 | 84.42 | 53.47 | 97.94 | 87.95 | 63.98 | 54.26 | |
Atmaja_AIST_task2_1 | AtmajaAIST2023 | 53 | 54.897809500433034 ± 0.0013673077294584605 | 55.35 | 54.11 | 50.14 | 53.11 | 55.02 | 52.32 | 71.41 | 63.32 | 53.59 | 50.26 | 48.32 | 48.29 | 62.66 | 53.48 | 56.85 | 48.68 | 55.96 | 50.16 | 50.75 | 50.29 | 50.69 | 50.79 | 58.87 | 50.97 | 51.70 | 50.45 | 48.27 | 50.03 | |
Atmaja_AIST_task2_2 | AtmajaAIST2023 | 51 | 55.04922229013841 ± 0.0013864114692666522 | 55.62 | 54.00 | 51.25 | 54.05 | 54.57 | 51.05 | 72.81 | 63.74 | 53.35 | 50.26 | 48.05 | 48.29 | 63.20 | 53.43 | 56.71 | 48.63 | 56.17 | 49.89 | 50.26 | 50.45 | 50.30 | 52.00 | 58.73 | 50.82 | 51.81 | 50.82 | 48.02 | 49.97 | |
Atmaja_AIST_task2_3 | AtmajaAIST2023 | 52 | 54.927919043886064 ± 0.001367012045991299 | 55.80 | 54.00 | 50.49 | 53.58 | 54.34 | 51.95 | 71.70 | 62.74 | 53.46 | 50.43 | 48.06 | 48.29 | 63.19 | 53.81 | 56.66 | 48.89 | 56.25 | 50.05 | 50.28 | 50.63 | 50.26 | 51.18 | 58.63 | 50.55 | 51.81 | 50.79 | 48.30 | 49.97 | |
Atmaja_AIST_task2_4 | AtmajaAIST2023 | 50 | 55.0920471984782 ± 0.0013534875706585426 | 55.55 | 54.00 | 50.32 | 53.00 | 54.35 | 51.84 | 74.99 | 64.11 | 53.39 | 50.31 | 48.09 | 48.29 | 63.21 | 54.28 | 56.55 | 48.79 | 56.26 | 50.16 | 50.51 | 50.71 | 50.01 | 51.37 | 58.59 | 50.87 | 51.85 | 50.71 | 48.06 | 49.97 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | 5 | 64.91145175990695 ± 0.0017818544158040373 | 53.90 | 50.21 | 87.14 | 76.58 | 63.43 | 62.21 | 83.26 | 74.00 | 66.06 | 52.87 | 67.10 | 62.11 | 65.91 | 50.24 | 60.66 | 48.00 | 58.12 | 48.37 | 75.48 | 51.42 | 80.22 | 52.32 | 82.66 | 65.21 | 94.02 | 72.68 | 88.98 | 55.62 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2023 | 18 | 61.94943271644443 ± 0.0017493450038549405 | 50.24 | 50.95 | 83.54 | 70.16 | 58.81 | 54.89 | 79.69 | 68.26 | 61.27 | 49.66 | 68.52 | 55.97 | 66.92 | 50.86 | 56.70 | 48.79 | 59.62 | 50.11 | 78.32 | 56.47 | 74.26 | 53.00 | 86.26 | 63.26 | 96.66 | 81.95 | 99.10 | 92.63 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2023 | 9 | 63.78183448560294 ± 0.0017160757632745873 | 52.31 | 50.84 | 85.86 | 74.74 | 61.01 | 58.47 | 81.64 | 71.42 | 63.95 | 49.94 | 68.90 | 58.07 | 68.23 | 51.47 | 58.02 | 48.79 | 59.66 | 50.11 | 78.32 | 56.47 | 74.48 | 53.00 | 86.14 | 63.26 | 96.66 | 81.95 | 98.92 | 91.32 | |
Jiang_PSH_task2_1 | JiangPSH2023 | 71 | 48.91877723956266 ± 0.0013780231177993646 | 45.49 | 52.84 | 46.80 | 56.05 | 53.21 | 51.95 | 41.25 | 51.11 | 48.90 | 49.46 | 52.96 | 50.47 | 47.59 | 49.46 | 54.13 | 52.52 | 53.84 | 49.57 | 57.68 | 51.21 | 86.84 | 68.84 | 59.33 | 53.78 | 36.75 | 48.31 | 45.00 | 49.94 | |
Jiang_PSH_task2_2 | JiangPSH2023 | 47 | 55.61393665575548 ± 0.001453889360427255 | 57.66 | 50.68 | 58.27 | 56.11 | 48.60 | 57.05 | 70.54 | 66.74 | 47.05 | 48.24 | 63.93 | 56.18 | 54.66 | 49.72 | 52.97 | 51.68 | 55.25 | 52.42 | 64.03 | 51.79 | 51.17 | 55.37 | 78.20 | 54.00 | 96.37 | 83.26 | 61.39 | 54.47 | |
Jiang_PSH_task2_3 | JiangPSH2023 | 66 | 49.99037851318873 ± 0.0015137828936477508 | 43.59 | 51.37 | 46.28 | 51.47 | 35.87 | 48.74 | 37.22 | 48.47 | 52.54 | 51.60 | 69.55 | 63.31 | 78.29 | 71.97 | 53.50 | 52.42 | 68.29 | 54.32 | 68.09 | 50.79 | 71.79 | 57.95 | 69.75 | 50.63 | 93.30 | 88.95 | 66.27 | 56.32 | |
Wu_qdreamer_task2_1 | Wuqdreamer2023 | 62 | 51.525660069002065 ± 0.0015822681937240819 | 44.02 | 48.21 | 42.34 | 49.58 | 61.71 | 55.84 | 60.60 | 63.68 | 51.34 | 48.02 | 49.74 | 48.76 | 54.86 | 55.59 | 67.49 | 49.89 | 61.95 | 53.53 | 74.63 | 52.11 | 73.19 | 63.21 | 75.79 | 65.58 | 83.87 | 62.53 | 67.40 | 57.68 | |
Wu_qdreamer_task2_2 | Wuqdreamer2023 | 37 | 57.89588861551478 ± 0.0015098156155787597 | 40.29 | 48.95 | 72.82 | 62.47 | 70.77 | 57.47 | 59.42 | 63.16 | 52.56 | 51.44 | 64.02 | 57.79 | 65.36 | 57.48 | 67.49 | 49.89 | 61.95 | 53.53 | 74.63 | 52.11 | 73.19 | 63.21 | 75.79 | 65.58 | 83.87 | 62.53 | 67.40 | 57.68 | |
Wu_qdreamer_task2_3 | Wuqdreamer2023 | 29 | 59.262985023209346 ± 0.001379038594802009 | 45.85 | 52.53 | 79.02 | 60.26 | 69.46 | 57.89 | 56.76 | 65.26 | 55.48 | 50.81 | 60.25 | 54.21 | 69.44 | 58.87 | 67.49 | 49.89 | 61.95 | 53.53 | 74.63 | 52.11 | 73.19 | 63.21 | 75.79 | 65.58 | 83.87 | 62.53 | 67.40 | 57.68 | |
Wu_qdreamer_task2_4 | Wuqdreamer2023 | 36 | 57.98849302545982 ± 0.0013438879348592308 | 44.62 | 52.16 | 78.25 | 58.32 | 53.10 | 55.26 | 82.62 | 65.63 | 54.05 | 50.83 | 58.99 | 51.20 | 63.85 | 53.20 | 67.49 | 49.89 | 61.95 | 53.53 | 74.63 | 52.11 | 73.19 | 63.21 | 75.79 | 65.58 | 83.87 | 62.53 | 67.40 | 57.68 | |
Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | 38 | 57.61233604271262 ± 0.00148382196939156 | 65.63 | 50.89 | 59.59 | 52.21 | 68.27 | 57.68 | 55.90 | 63.05 | 53.97 | 48.72 | 58.29 | 58.16 | 57.78 | 50.77 | 63.22 | 53.31 | 62.05 | 63.24 | 65.28 | 56.28 | 70.36 | 59.78 | 74.53 | 70.82 | 85.69 | 70.19 | 72.85 | 57.13 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 49.02196802271064 ± 0.0015200211817074174 | 43.52 | 49.79 | 40.18 | 50.26 | 39.96 | 53.79 | 39.15 | 54.58 | 67.17 | 51.15 | 56.16 | 55.92 | 62.42 | 50.61 | 60.94 | 53.31 | 67.42 | 63.24 | 63.22 | 55.32 | 69.55 | 60.76 | 82.87 | 72.62 | 87.87 | 78.84 | 85.68 | 71.21 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 49.02196802271064 ± 0.0015200211817074174 | 43.52 | 49.79 | 40.18 | 50.26 | 39.96 | 53.79 | 39.15 | 54.58 | 67.17 | 51.15 | 56.16 | 55.92 | 62.42 | 50.61 | 68.34 | 58.69 | 56.61 | 50.16 | 73.39 | 56.11 | 82.12 | 68.11 | 74.73 | 57.58 | 98.63 | 95.63 | 88.74 | 71.37 | |
Jie_IESEFPT_task2_1 | JieIESEFPT2023 | 3 | 65.62721368076484 ± 0.001765422247029773 | 55.09 | 51.26 | 87.28 | 74.84 | 61.63 | 62.63 | 94.61 | 84.79 | 64.83 | 53.06 | 65.56 | 60.82 | 64.51 | 52.91 | 59.89 | 47.76 | 57.62 | 49.47 | 74.88 | 50.23 | 87.65 | 60.23 | 86.15 | 63.42 | 96.97 | 83.66 | 93.84 | 73.01 | |
Jie_IESEFPT_task2_2 | JieIESEFPT2023 | 1 | 66.96865050141963 ± 0.00180162797332972 | 58.03 | 51.58 | 89.03 | 77.74 | 60.33 | 61.53 | 96.18 | 85.32 | 65.66 | 53.35 | 66.63 | 62.45 | 68.08 | 55.97 | 57.68 | 42.73 | 56.56 | 47.47 | 73.84 | 51.31 | 86.96 | 61.22 | 82.13 | 63.43 | 97.12 | 82.81 | 93.38 | 73.02 | |
Jie_IESEFPT_task2_3 | JieIESEFPT2023 | 25 | 60.23220801829445 ± 0.001567939212077677 | 42.57 | 49.68 | 63.00 | 51.89 | 53.64 | 53.53 | 74.61 | 68.79 | 73.74 | 57.25 | 65.40 | 62.58 | 76.04 | 63.43 | 61.45 | 49.00 | 48.15 | 47.00 | 64.40 | 53.24 | 73.00 | 60.26 | 73.10 | 56.42 | 78.00 | 54.00 | 53.50 | 51.00 | |
Jie_IESEFPT_task2_4 | JieIESEFPT2023 | 72 | 48.705631593217355 ± 0.0014459198323020794 | 37.04 | 48.16 | 70.62 | 56.16 | 62.53 | 54.58 | 32.52 | 52.11 | 55.10 | 49.65 | 52.05 | 51.31 | 44.95 | 48.92 | 57.93 | 41.74 | 56.41 | 47.37 | 73.88 | 51.11 | 86.86 | 61.32 | 82.19 | 63.41 | 96.79 | 82.21 | 93.37 | 73.03 | |
Gou_UESTC_task2_1 | GouUESTC2023 | 75 | 47.9520641929154 ± 0.001556273507724516 | 40.55 | 50.11 | 57.13 | 54.84 | 43.75 | 52.32 | 36.43 | 49.37 | 53.23 | 52.58 | 54.65 | 53.63 | 44.80 | 52.76 | 48.96 | 49.16 | 49.69 | 48.05 | 70.17 | 55.26 | 44.24 | 49.21 | 72.87 | 59.44 | 86.92 | 75.21 | 56.00 | 51.05 | |
Gou_UESTC_task2_2 | GouUESTC2023 | 81 | 46.15697002269834 ± 0.0015103508446716806 | 39.40 | 50.11 | 57.09 | 49.16 | 43.60 | 50.32 | 39.18 | 52.89 | 45.07 | 53.35 | 43.52 | 49.71 | 45.70 | 49.46 | 48.18 | 48.63 | 49.95 | 51.37 | 62.73 | 54.89 | 54.16 | 50.11 | 61.50 | 51.79 | 96.32 | 93.84 | 50.76 | 56.16 | |
Gou_UESTC_task2_3 | GouUESTC2023 | 73 | 48.68995653342131 ± 0.0015180040461601286 | 42.32 | 48.47 | 56.72 | 50.11 | 43.96 | 54.47 | 41.29 | 49.42 | 55.72 | 52.61 | 48.24 | 49.51 | 51.59 | 49.14 | 50.82 | 51.00 | 51.48 | 49.68 | 54.94 | 51.26 | 62.13 | 49.84 | 56.42 | 54.11 | 72.76 | 75.63 | 47.36 | 52.26 | |
Gou_UESTC_task2_4 | GouUESTC2023 | 82 | 45.96194603023594 ± 0.0015360163668050005 | 35.67 | 49.05 | 60.98 | 53.16 | 35.79 | 50.00 | 30.24 | 49.58 | 53.57 | 51.95 | 59.55 | 54.79 | 52.44 | 49.81 | 52.72 | 48.52 | 59.02 | 51.63 | 49.28 | 49.00 | 37.62 | 47.63 | 67.08 | 52.00 | 67.78 | 59.68 | 53.64 | 53.21 | |
Tanaka_GU_task2_1 | TanakaGU2023 | 61 | 52.545263099486384 ± 0.00162693301788327 | 41.48 | 51.00 | 56.71 | 54.42 | 46.13 | 51.84 | 62.01 | 59.95 | 57.23 | 52.90 | 62.11 | 54.59 | 48.06 | 48.49 | 52.18 | 48.11 | 59.00 | 49.27 | 63.54 | 56.11 | 50.54 | 54.53 | 66.36 | 55.58 | 95.22 | 81.16 | 58.66 | 54.11 | |
Tanaka_GU_task2_2 | TanakaGU2023 | 63 | 50.81184160924456 ± 0.0014834146397466558 | 56.80 | 52.89 | 59.46 | 51.42 | 49.66 | 48.32 | 35.09 | 48.89 | 56.19 | 50.04 | 55.18 | 53.12 | 54.02 | 50.02 | 51.34 | 49.95 | 55.00 | 54.37 | 50.80 | 49.00 | 45.18 | 47.74 | 53.02 | 53.74 | 50.02 | 50.26 | 43.70 | 50.26 | |
Tanaka_GU_task2_3 | TanakaGU2023 | 49 | 55.25265431943579 ± 0.0013817138477153071 | 37.89 | 48.21 | 60.97 | 52.74 | 69.38 | 59.11 | 59.42 | 62.84 | 52.13 | 51.25 | 60.02 | 55.39 | 60.33 | 58.62 | 56.44 | 49.58 | 60.98 | 50.11 | 63.36 | 54.42 | 47.60 | 58.32 | 58.96 | 51.58 | 57.50 | 58.95 | 47.26 | 50.11 | |
Tanaka_GU_task2_4 | TanakaGU2023 | 79 | 46.622594130456804 ± 0.001590474577974257 | 44.00 | 50.37 | 40.00 | 53.11 | 45.71 | 52.05 | 38.99 | 50.79 | 50.63 | 51.89 | 57.72 | 52.17 | 39.93 | 50.84 | 0.00 | 0.00 | 48.32 | 50.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 48.06 | 52.11 | |
Fujimura_NU_task2_1 | FujimuraNU2023 | 54 | 54.70129260730897 ± 0.0017335695817680035 | 33.60 | 49.32 | 71.36 | 61.47 | 57.96 | 54.47 | 58.38 | 61.37 | 59.03 | 53.75 | 61.81 | 61.08 | 52.00 | 59.84 | 60.70 | 51.53 | 61.16 | 48.58 | 65.60 | 56.26 | 72.32 | 70.32 | 82.78 | 64.26 | 96.14 | 80.53 | 97.62 | 78.95 | |
Fujimura_NU_task2_2 | FujimuraNU2023 | 58 | 53.75994905164085 ± 0.0017045574877527835 | 35.41 | 49.79 | 66.51 | 57.58 | 54.85 | 55.32 | 58.61 | 59.63 | 57.20 | 53.33 | 59.94 | 58.84 | 49.80 | 58.99 | 64.32 | 53.16 | 62.22 | 49.05 | 67.24 | 54.37 | 76.08 | 72.84 | 77.48 | 61.74 | 94.78 | 73.89 | 85.40 | 64.68 | |
Fujimura_NU_task2_3 | FujimuraNU2023 | 55 | 54.28246173098811 ± 0.0017569003745495227 | 37.15 | 49.37 | 62.91 | 58.95 | 50.01 | 52.68 | 59.85 | 58.16 | 57.95 | 51.26 | 57.05 | 59.10 | 62.61 | 60.60 | 59.74 | 51.47 | 53.98 | 48.42 | 65.80 | 54.79 | 73.04 | 73.68 | 82.38 | 62.89 | 95.84 | 80.11 | 98.16 | 91.42 | |
Fujimura_NU_task2_4 | FujimuraNU2023 | 59 | 53.50842811408859 ± 0.0017191745921461637 | 32.94 | 49.21 | 68.89 | 60.16 | 52.20 | 53.00 | 59.35 | 59.26 | 58.14 | 52.60 | 60.07 | 60.22 | 52.73 | 59.63 | 62.42 | 51.63 | 62.06 | 48.79 | 65.92 | 54.68 | 74.50 | 74.00 | 81.58 | 62.68 | 95.80 | 79.63 | 97.94 | 80.05 | |
Bai_JLESS_task2_1 | BaiJLESS2023 | 12 | 63.54460439753876 ± 0.0016235543759989214 | 61.11 | 51.11 | 60.54 | 51.79 | 63.02 | 54.63 | 74.65 | 62.84 | 74.22 | 55.75 | 64.84 | 62.19 | 78.09 | 63.81 | 62.47 | 49.96 | 53.89 | 48.16 | 62.95 | 51.79 | 84.85 | 68.30 | 75.31 | 56.21 | 83.31 | 55.11 | 53.97 | 50.95 | |
Bai_JLESS_task2_2 | BaiJLESS2023 | 13 | 63.5164873117854 ± 0.0015641551115055045 | 57.84 | 51.11 | 60.98 | 52.53 | 67.39 | 52.89 | 71.47 | 62.37 | 70.61 | 54.58 | 66.99 | 62.57 | 80.73 | 67.62 | 62.47 | 49.96 | 53.89 | 48.16 | 62.95 | 51.79 | 84.85 | 68.30 | 75.31 | 56.21 | 83.31 | 55.11 | 53.97 | 50.95 | |
Bai_JLESS_task2_3 | BaiJLESS2023 | 6 | 64.10430038433627 ± 0.0015312095360472697 | 51.44 | 50.89 | 59.85 | 51.16 | 70.05 | 59.58 | 81.46 | 69.47 | 74.51 | 55.65 | 67.07 | 63.03 | 78.30 | 63.37 | 62.47 | 49.96 | 53.89 | 48.16 | 62.95 | 51.79 | 84.85 | 68.30 | 75.31 | 56.21 | 83.31 | 55.11 | 53.97 | 50.95 | |
Bai_JLESS_task2_4 | BaiJLESS2023 | 22 | 61.34910760835197 ± 0.0015351699289522023 | 49.33 | 52.05 | 57.54 | 51.42 | 60.65 | 54.05 | 76.22 | 66.11 | 72.02 | 56.93 | 63.97 | 61.06 | 74.01 | 64.52 | 62.47 | 49.96 | 53.89 | 48.16 | 62.95 | 51.79 | 84.85 | 68.30 | 75.31 | 56.21 | 83.31 | 55.11 | 53.97 | 50.95 | |
Guan_HEU_task2_1 | GuanHEU2023 | 46 | 55.620217351968016 ± 0.001600989251423758 | 55.70 | 50.84 | 59.87 | 55.05 | 61.15 | 57.05 | 73.41 | 72.58 | 55.41 | 49.71 | 51.94 | 50.60 | 45.28 | 48.76 | 56.15 | 52.63 | 58.25 | 50.63 | 58.03 | 50.95 | 61.49 | 48.53 | 73.71 | 50.32 | 87.26 | 65.11 | 90.52 | 62.79 | |
Guan_HEU_task2_2 | GuanHEU2023 | 16 | 62.408172184960776 ± 0.0016644393094324126 | 55.53 | 50.74 | 64.33 | 54.16 | 62.60 | 57.47 | 82.75 | 75.84 | 57.83 | 50.51 | 61.75 | 54.98 | 80.14 | 68.50 | 60.42 | 49.37 | 51.92 | 49.11 | 65.05 | 52.21 | 67.00 | 57.63 | 83.18 | 61.47 | 92.52 | 71.58 | 92.33 | 63.21 | |
Guan_HEU_task2_3 | GuanHEU2023 | 40 | 57.26749679751192 ± 0.0016441315830157254 | 51.06 | 53.37 | 68.87 | 55.84 | 62.37 | 57.84 | 55.20 | 54.89 | 55.39 | 50.32 | 60.60 | 50.76 | 67.31 | 50.89 | 60.63 | 52.53 | 57.25 | 50.37 | 67.02 | 52.37 | 57.62 | 52.53 | 58.66 | 52.05 | 79.35 | 59.42 | 56.24 | 48.47 | |
Guan_HEU_task2_4 | GuanHEU2023 | 14 | 63.50321347349609 ± 0.0016921801501565013 | 62.93 | 52.05 | 68.94 | 54.21 | 66.41 | 60.63 | 79.47 | 72.47 | 57.22 | 50.76 | 62.38 | 54.96 | 78.46 | 61.47 | 63.04 | 50.21 | 56.96 | 48.95 | 67.71 | 54.84 | 66.97 | 56.05 | 79.49 | 60.58 | 91.91 | 71.05 | 89.35 | 60.05 | |
Hauser_JKU_task2_1 | HauserJKU2023 | 86 | 41.40741259250251 ± 0.001374452454520565 | 40.70 | 48.47 | 36.58 | 48.74 | 37.85 | 50.32 | 25.95 | 47.89 | 52.84 | 51.26 | 41.91 | 49.08 | 44.11 | 48.23 | 46.18 | 48.91 | 49.33 | 49.53 | 40.02 | 49.34 | 48.18 | 58.11 | 43.10 | 49.76 | 52.08 | 51.57 | 64.38 | 58.85 | |
LEE_KNU_task2_1 | LEEKNU2023 | 85 | 43.73815668367107 ± 0.0014042933269652487 | 39.70 | 50.05 | 43.19 | 52.05 | 37.21 | 51.32 | 33.75 | 50.42 | 43.11 | 47.37 | 46.73 | 48.48 | 48.24 | 51.13 | 45.50 | 54.57 | 46.00 | 49.37 | 73.40 | 59.73 | 65.52 | 48.16 | 77.56 | 54.53 | 83.38 | 62.89 | 99.27 | 98.74 | |
LEE_KNU_task2_2 | LEEKNU2023 | 84 | 44.231914616941665 ± 0.00130457675996216 | 40.03 | 50.21 | 42.70 | 51.58 | 38.82 | 51.68 | 35.20 | 49.53 | 43.53 | 47.37 | 46.42 | 48.50 | 49.01 | 52.08 | 46.38 | 51.47 | 47.74 | 48.27 | 70.84 | 50.58 | 65.31 | 52.16 | 78.20 | 51.58 | 82.07 | 51.90 | 97.06 | 97.57 | |
LEE_KNU_task2_3 | LEEKNU2023 | 88 | 40.80929524258176 ± 0.001304646555059204 | 39.46 | 48.79 | 44.09 | 51.79 | 34.09 | 49.74 | 27.97 | 48.26 | 49.86 | 49.92 | 35.16 | 48.63 | 40.12 | 49.26 | 42.38 | 56.58 | 49.22 | 42.92 | 62.94 | 57.58 | 47.16 | 48.89 | 65.95 | 58.42 | 83.38 | 63.48 | 97.06 | 98.74 | |
LEE_KNU_task2_4 | LEEKNU2023 | 87 | 41.253746415955696 ± 0.0013222783593330345 | 42.82 | 49.37 | 44.13 | 49.89 | 34.50 | 50.89 | 25.97 | 47.95 | 49.55 | 49.63 | 35.85 | 48.59 | 44.59 | 51.27 | 42.92 | 55.84 | 51.34 | 49.05 | 62.10 | 57.63 | 46.38 | 48.73 | 68.30 | 57.10 | 80.14 | 63.10 | 96.92 | 96.37 | |
QianXuHu_BITNUDT_task2_1 | QianXuHuBITNUDT2023 | 39 | 57.470075856395965 ± 0.001575522945532246 | 60.59 | 51.37 | 76.90 | 58.32 | 58.39 | 62.16 | 69.83 | 62.79 | 54.82 | 52.47 | 42.76 | 47.37 | 61.34 | 53.08 | 66.33 | 49.68 | 63.35 | 51.26 | 71.59 | 58.00 | 71.94 | 59.42 | 71.77 | 59.84 | 78.24 | 64.11 | 43.11 | 49.05 | |
QianXuHu_BITNUDT_task2_2 | QianXuHuBITNUDT2023 | 42 | 56.31700501343051 ± 0.0017126948526507567 | 60.59 | 51.37 | 76.90 | 58.32 | 60.31 | 54.68 | 58.46 | 59.79 | 54.82 | 52.47 | 42.76 | 47.37 | 61.34 | 53.08 | 66.33 | 49.68 | 63.35 | 51.26 | 71.59 | 58.00 | 71.94 | 59.42 | 71.77 | 59.84 | 78.24 | 64.11 | 43.11 | 49.05 | |
QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | 31 | 59.06204701591861 ± 0.0015102887361449933 | 57.76 | 53.00 | 46.69 | 51.53 | 64.75 | 59.42 | 72.73 | 62.58 | 63.37 | 53.03 | 57.77 | 59.02 | 69.93 | 55.41 | 59.69 | 51.16 | 60.55 | 48.84 | 59.66 | 51.21 | 71.96 | 64.32 | 73.46 | 58.89 | 78.89 | 59.42 | 65.05 | 55.00 | |
QianXuHu_BITNUDT_task2_4 | QianXuHuBITNUDT2023 | 60 | 53.39003048197518 ± 0.0014644056967616462 | 57.76 | 53.00 | 46.69 | 51.53 | 41.83 | 52.16 | 47.12 | 51.16 | 63.37 | 53.03 | 57.77 | 59.02 | 69.93 | 55.41 | 59.69 | 51.16 | 60.55 | 48.84 | 59.66 | 51.21 | 71.96 | 64.32 | 73.46 | 58.89 | 78.89 | 59.42 | 65.05 | 55.00 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
ToyDrone (F1 score) |
ToyDrone (Recall) |
ToyDrone (Precision) |
ToyNscale (F1 score) |
ToyNscale (Recall) |
ToyNscale (Precision) |
ToyTank (F1 score) |
ToyTank (Recall) |
ToyTank (Precision) |
Vacuum (F1 score) |
Vacuum (Recall) |
Vacuum (Precision) |
Bandsaw (F1 score) |
Bandsaw (Recall) |
Bandsaw (Precision) |
Grinder (F1 score) |
Grinder (Recall) |
Grinder (Precision) |
Shaker (F1 score) |
Shaker (Recall) |
Shaker (Precision) |
|
DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | 24 | 15.56 | 8.89 | 62.50 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
DCASE2023_baseline_task2_MSE | DCASE2023baseline2023 | 30 | 61.86 | 62.98 | 60.77 | 63.20 | 78.20 | 53.03 | 64.38 | 72.66 | 57.79 | 67.07 | 71.79 | 62.92 | 52.64 | 71.39 | 41.69 | 47.10 | 68.28 | 35.95 | 62.82 | 76.57 | 53.26 | |
Du_NERCSLIP_task2_1 | DuNERCSLIP2023 | 21 | 61.08 | 60.98 | 61.18 | 75.34 | 74.72 | 75.96 | 56.03 | 55.93 | 56.13 | 75.96 | 75.16 | 76.77 | 46.47 | 49.03 | 44.16 | 36.76 | 52.06 | 28.41 | 40.53 | 40.70 | 40.36 | |
Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | 19 | 60.13 | 59.93 | 60.34 | 73.90 | 73.25 | 74.56 | 58.08 | 57.72 | 58.45 | 79.08 | 78.38 | 79.79 | 46.99 | 47.88 | 46.13 | 33.33 | 47.06 | 25.81 | 83.70 | 83.52 | 83.88 | |
Du_NERCSLIP_task2_3 | DuNERCSLIP2023 | 20 | 60.00 | 60.00 | 60.00 | 74.71 | 73.85 | 75.59 | 59.07 | 58.98 | 59.16 | 76.04 | 75.16 | 76.94 | 50.85 | 53.10 | 48.78 | 36.65 | 50.91 | 28.63 | 82.57 | 82.22 | 82.92 | |
Du_NERCSLIP_task2_4 | DuNERCSLIP2023 | 23 | 59.06 | 58.98 | 59.14 | 74.01 | 72.87 | 75.19 | 59.05 | 58.98 | 59.12 | 75.05 | 74.35 | 75.76 | 48.29 | 52.01 | 45.06 | 38.22 | 52.63 | 30.00 | 82.75 | 82.22 | 83.29 | |
He_XJU_task2_1 | HeXJU2023 | 78 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
He_XJU_task2_2 | HeXJU2023 | 83 | 12.14 | 7.69 | 28.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
He_XJU_task2_3 | HeXJU2023 | 80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
He_XJU_task2_4 | HeXJU2023 | 74 | 21.65 | 14.81 | 40.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Lv_HUAKONG_task2_1 | LvHUAKONG2023 | 11 | 42.30 | 37.53 | 48.45 | 69.05 | 68.87 | 69.23 | 58.97 | 58.85 | 59.09 | 78.58 | 78.68 | 78.48 | 43.31 | 50.96 | 37.66 | 49.84 | 68.28 | 39.24 | 65.17 | 64.91 | 65.42 | |
Lv_HUAKONG_task2_2 | LvHUAKONG2023 | 15 | 48.41 | 45.71 | 51.45 | 64.80 | 64.86 | 64.74 | 55.85 | 54.88 | 56.85 | 71.88 | 71.34 | 72.43 | 43.95 | 50.83 | 38.72 | 50.10 | 67.74 | 39.75 | 68.34 | 68.69 | 68.00 | |
Lv_HUAKONG_task2_3 | LvHUAKONG2023 | 8 | 41.12 | 35.20 | 49.44 | 71.86 | 71.50 | 72.22 | 63.06 | 62.22 | 63.93 | 79.44 | 79.20 | 79.68 | 48.08 | 55.60 | 42.35 | 52.00 | 71.98 | 40.70 | 68.34 | 68.69 | 68.00 | |
Lv_HUAKONG_task2_4 | LvHUAKONG2023 | 2 | 50.70 | 50.21 | 51.20 | 77.54 | 77.54 | 77.54 | 66.34 | 66.27 | 66.41 | 87.74 | 87.82 | 87.66 | 48.30 | 57.14 | 41.83 | 48.41 | 66.67 | 38.00 | 66.92 | 66.45 | 67.40 | |
Jiang_THUEE_task2_1 | JiangTHUEE2023 | 4 | 59.54 | 55.73 | 63.91 | 66.40 | 63.24 | 69.90 | 58.73 | 51.10 | 69.05 | 71.19 | 66.44 | 76.67 | 59.96 | 71.39 | 51.68 | 45.44 | 63.15 | 35.49 | 65.28 | 65.57 | 64.98 | |
Jiang_THUEE_task2_2 | JiangTHUEE2023 | 35 | 19.30 | 11.29 | 66.21 | 56.70 | 49.65 | 66.08 | 52.34 | 42.71 | 67.56 | 65.01 | 56.81 | 75.97 | 55.39 | 62.92 | 49.47 | 48.52 | 66.30 | 38.26 | 62.65 | 59.04 | 66.74 | |
Jiang_THUEE_task2_3 | JiangTHUEE2023 | 7 | 54.23 | 53.93 | 54.53 | 70.95 | 70.00 | 71.92 | 67.92 | 65.88 | 70.09 | 70.74 | 64.44 | 78.40 | 54.90 | 63.96 | 48.09 | 52.46 | 71.27 | 41.51 | 68.32 | 67.73 | 68.93 | |
Jiang_THUEE_task2_4 | JiangTHUEE2023 | 17 | 53.09 | 53.53 | 52.67 | 64.33 | 62.40 | 66.38 | 59.70 | 54.19 | 66.46 | 68.47 | 62.20 | 76.14 | 49.55 | 57.28 | 43.66 | 52.41 | 71.27 | 41.45 | 68.32 | 67.73 | 68.93 | |
JiaJun_HFUU_task2_1 | JiaJunHFUU2023 | 33 | 0.00 | 0.00 | 0.00 | 38.52 | 25.08 | 83.01 | 0.00 | 0.00 | 0.00 | 38.71 | 24.00 | 100.00 | 44.28 | 32.26 | 70.59 | 39.77 | 32.23 | 51.92 | 24.91 | 16.85 | 47.78 | |
JiaJun_HFUU_task2_2 | JiaJunHFUU2023 | 33 | 0.00 | 0.00 | 0.00 | 38.52 | 25.08 | 83.01 | 0.00 | 0.00 | 0.00 | 38.71 | 24.00 | 100.00 | 44.28 | 32.26 | 70.59 | 39.77 | 32.23 | 51.92 | 24.91 | 16.85 | 47.78 | |
JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | 27 | 11.80 | 6.55 | 60.00 | 38.52 | 25.08 | 83.01 | 0.00 | 0.00 | 0.00 | 38.71 | 24.00 | 100.00 | 44.28 | 32.26 | 70.59 | 39.77 | 32.23 | 51.92 | 24.91 | 16.85 | 47.78 | |
JiaJun_HFUU_task2_4 | JiaJunHFUU2023 | 41 | 0.00 | 0.00 | 0.00 | 38.52 | 25.08 | 83.01 | 0.00 | 0.00 | 0.00 | 38.71 | 24.00 | 100.00 | 20.38 | 14.16 | 36.36 | 39.77 | 32.23 | 51.92 | 24.91 | 16.85 | 47.78 | |
Zhang_DKU_task2_1 | ZhangDKU2023 | 76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.29 | 6.77 | 66.67 | 0.00 | 0.00 | 0.00 | 7.32 | 3.92 | 54.55 | 16.33 | 9.80 | 48.78 | 6.41 | 3.36 | 70.00 | |
Zhang_DKU_task2_2 | ZhangDKU2023 | 57 | 0.00 | 0.00 | 0.00 | 7.47 | 3.89 | 92.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 35.79 | 28.64 | 47.71 | 10.26 | 5.80 | 44.44 | 12.96 | 7.44 | 50.00 | |
Zhang_DKU_task2_3 | ZhangDKU2023 | 65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.41 | 3.33 | 83.33 | 0.00 | 0.00 | 0.00 | 37.38 | 30.08 | 49.38 | 0.00 | 0.00 | 0.00 | 37.46 | 29.70 | 50.72 | |
Zhang_DKU_task2_4 | ZhangDKU2023 | 76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.29 | 6.77 | 66.67 | 0.00 | 0.00 | 0.00 | 7.32 | 3.92 | 54.55 | 16.33 | 9.80 | 48.78 | 6.41 | 3.36 | 70.00 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 53.00 | 50.98 | 55.18 | 47.78 | 36.24 | 70.09 | 28.32 | 20.21 | 47.29 | 46.72 | 35.10 | 69.85 | 54.93 | 56.48 | 53.46 | 50.10 | 54.24 | 46.56 | 57.52 | 51.28 | 65.49 | |
Zhou_SHNU_task2_2 | ZhouSHNU2023 | 69 | 53.00 | 50.98 | 55.18 | 47.78 | 36.24 | 70.09 | 28.32 | 20.21 | 47.29 | 46.72 | 35.10 | 69.85 | 19.47 | 13.48 | 35.01 | 32.17 | 51.51 | 23.39 | 21.36 | 13.48 | 51.44 | |
Zhou_SHNU_task2_3 | ZhouSHNU2023 | 10 | 41.16 | 31.49 | 59.39 | 49.26 | 42.42 | 58.73 | 58.23 | 51.31 | 67.31 | 62.19 | 50.51 | 80.90 | 54.93 | 56.48 | 53.46 | 50.10 | 54.24 | 46.56 | 57.52 | 51.28 | 65.49 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 53.00 | 50.98 | 55.18 | 47.78 | 36.24 | 70.09 | 28.32 | 20.21 | 47.29 | 46.72 | 35.10 | 69.85 | 54.93 | 56.48 | 53.46 | 50.10 | 54.24 | 46.56 | 57.52 | 51.28 | 65.49 | |
Zhang_BIT_task2_1 | ZhangBIT2023 | 28 | 53.82 | 46.34 | 64.18 | 56.96 | 56.28 | 57.67 | 57.38 | 57.38 | 57.38 | 32.27 | 21.28 | 66.67 | 52.75 | 63.06 | 45.34 | 45.51 | 63.15 | 35.57 | 59.37 | 60.38 | 58.38 | |
Zhang_BIT_task2_2 | ZhangBIT2023 | 56 | 7.40 | 3.92 | 66.22 | 52.53 | 52.53 | 52.53 | 34.80 | 24.30 | 61.27 | 0.00 | 0.00 | 0.00 | 58.43 | 70.59 | 49.85 | 45.86 | 63.16 | 36.00 | 63.25 | 62.88 | 63.61 | |
Zhang_BIT_task2_3 | ZhangBIT2023 | 67 | 46.93 | 46.81 | 47.05 | 49.88 | 49.68 | 50.08 | 51.00 | 50.98 | 51.02 | 48.85 | 48.82 | 48.88 | 44.12 | 52.17 | 38.22 | 42.60 | 59.63 | 33.14 | 50.08 | 50.57 | 49.60 | |
Zhang_BIT_task2_4 | ZhangBIT2023 | 43 | 49.24 | 41.75 | 60.01 | 67.14 | 65.79 | 68.55 | 60.89 | 60.59 | 61.19 | 35.38 | 24.50 | 63.64 | 43.68 | 52.00 | 37.66 | 38.67 | 54.15 | 30.07 | 54.99 | 54.60 | 55.38 | |
Liu_CQUPT_task2_1 | LiuCQUPT2023 | 44 | 48.11 | 47.12 | 49.14 | 54.62 | 51.53 | 58.10 | 23.97 | 14.79 | 63.12 | 19.19 | 11.27 | 64.79 | 47.50 | 55.47 | 41.53 | 52.73 | 71.79 | 41.67 | 58.26 | 58.39 | 58.14 | |
Liu_CQUPT_task2_2 | LiuCQUPT2023 | 64 | 48.11 | 47.12 | 49.14 | 54.62 | 51.53 | 58.10 | 23.97 | 14.79 | 63.12 | 19.19 | 11.27 | 64.79 | 47.50 | 55.47 | 41.53 | 52.73 | 71.79 | 41.67 | 58.26 | 58.39 | 58.14 | |
Liu_CQUPT_task2_3 | LiuCQUPT2023 | 48 | 48.11 | 47.12 | 49.14 | 54.62 | 51.53 | 58.10 | 23.97 | 14.79 | 63.12 | 19.19 | 11.27 | 64.79 | 47.50 | 55.47 | 41.53 | 52.73 | 71.79 | 41.67 | 58.26 | 58.39 | 58.14 | |
Liu_CQUPT_task2_4 | LiuCQUPT2023 | 45 | 48.11 | 47.12 | 49.14 | 54.62 | 51.53 | 58.10 | 23.97 | 14.79 | 63.12 | 19.19 | 11.27 | 64.79 | 47.50 | 55.47 | 41.53 | 52.73 | 71.79 | 41.67 | 58.26 | 58.39 | 58.14 | |
Atmaja_AIST_task2_1 | AtmajaAIST2023 | 53 | 22.33 | 14.12 | 53.33 | 61.67 | 71.74 | 54.09 | 45.74 | 40.19 | 53.07 | 70.98 | 77.97 | 65.14 | 38.61 | 40.22 | 37.11 | 38.86 | 48.69 | 32.34 | 60.01 | 67.09 | 54.29 | |
Atmaja_AIST_task2_2 | AtmajaAIST2023 | 51 | 22.02 | 14.17 | 49.40 | 61.84 | 76.80 | 51.75 | 49.66 | 44.61 | 56.00 | 71.25 | 75.95 | 67.09 | 0.00 | 0.00 | 0.00 | 39.16 | 49.12 | 32.56 | 59.80 | 67.39 | 53.74 | |
Atmaja_AIST_task2_3 | AtmajaAIST2023 | 52 | 22.02 | 14.12 | 50.00 | 62.22 | 73.85 | 53.75 | 47.13 | 41.73 | 54.13 | 70.95 | 75.95 | 66.58 | 38.61 | 40.22 | 37.11 | 38.54 | 48.69 | 31.89 | 60.01 | 63.21 | 57.11 | |
Atmaja_AIST_task2_4 | AtmajaAIST2023 | 50 | 0.00 | 0.00 | 0.00 | 62.42 | 73.85 | 54.05 | 0.00 | 0.00 | 0.00 | 67.57 | 100.00 | 51.02 | 38.61 | 40.22 | 37.11 | 38.46 | 47.21 | 32.44 | 58.72 | 62.47 | 55.40 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | 5 | 67.21 | 78.91 | 58.53 | 72.90 | 75.00 | 70.92 | 61.93 | 70.13 | 55.45 | 73.22 | 91.30 | 61.12 | 54.42 | 54.79 | 54.05 | 50.00 | 56.14 | 45.07 | 59.34 | 54.55 | 65.06 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2023 | 18 | 59.68 | 61.09 | 58.33 | 70.42 | 71.74 | 69.15 | 63.29 | 66.67 | 60.24 | 76.43 | 94.74 | 64.06 | 25.88 | 19.05 | 40.34 | 31.62 | 24.24 | 45.45 | 39.94 | 30.83 | 56.66 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2023 | 9 | 63.18 | 69.62 | 57.84 | 75.76 | 78.05 | 73.60 | 63.88 | 71.79 | 57.54 | 75.73 | 96.91 | 62.15 | 37.90 | 31.58 | 47.40 | 41.10 | 38.10 | 44.61 | 49.54 | 43.49 | 57.56 | |
Jiang_PSH_task2_1 | JiangPSH2023 | 71 | 66.67 | 100.00 | 50.00 | 59.26 | 71.79 | 50.45 | 63.33 | 79.20 | 52.76 | 45.00 | 40.73 | 50.27 | 53.38 | 100.00 | 36.41 | 44.01 | 100.00 | 28.21 | 66.05 | 97.97 | 49.81 | |
Jiang_PSH_task2_2 | JiangPSH2023 | 47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Jiang_PSH_task2_3 | JiangPSH2023 | 66 | 0.00 | 0.00 | 0.00 | 53.90 | 52.41 | 55.47 | 13.80 | 7.69 | 67.11 | 13.79 | 7.69 | 66.67 | 51.53 | 61.74 | 44.21 | 56.97 | 75.31 | 45.81 | 69.39 | 68.69 | 70.10 | |
Wu_qdreamer_task2_1 | Wuqdreamer2023 | 62 | 58.68 | 63.77 | 54.35 | 27.76 | 18.95 | 51.87 | 41.31 | 30.00 | 66.30 | 73.53 | 100.00 | 58.14 | 10.76 | 6.70 | 27.27 | 7.08 | 4.76 | 13.79 | 43.64 | 33.27 | 63.38 | |
Wu_qdreamer_task2_2 | Wuqdreamer2023 | 37 | 57.86 | 63.01 | 53.49 | 69.75 | 98.99 | 53.85 | 65.20 | 81.67 | 54.26 | 73.68 | 98.99 | 58.68 | 33.73 | 29.45 | 39.47 | 43.69 | 38.96 | 49.72 | 62.67 | 74.68 | 53.99 | |
Wu_qdreamer_task2_3 | Wuqdreamer2023 | 29 | 6.77 | 3.91 | 25.21 | 71.57 | 94.74 | 57.51 | 66.37 | 85.06 | 54.41 | 0.00 | 0.00 | 0.00 | 54.22 | 78.26 | 41.47 | 45.82 | 68.29 | 34.47 | 62.74 | 75.67 | 53.58 | |
Wu_qdreamer_task2_4 | Wuqdreamer2023 | 36 | 12.48 | 7.67 | 33.58 | 72.81 | 95.83 | 58.70 | 7.22 | 3.85 | 57.78 | 76.86 | 94.91 | 64.58 | 52.32 | 76.88 | 39.66 | 44.09 | 60.68 | 34.62 | 28.04 | 18.55 | 57.46 | |
Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | 38 | 66.52 | 83.81 | 55.14 | 66.59 | 82.29 | 55.92 | 65.24 | 63.82 | 66.73 | 46.22 | 35.51 | 66.19 | 42.22 | 50.41 | 36.32 | 44.72 | 83.99 | 30.47 | 64.78 | 85.92 | 51.99 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 0.00 | 0.00 | 0.00 | 51.17 | 48.63 | 53.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 59.68 | 71.34 | 51.30 | 39.84 | 55.63 | 31.03 | 58.85 | 59.25 | 58.45 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 0.00 | 0.00 | 0.00 | 51.17 | 48.63 | 53.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 59.68 | 71.34 | 51.30 | 39.84 | 55.63 | 31.03 | 58.85 | 59.25 | 58.45 | |
Jie_IESEFPT_task2_1 | JieIESEFPT2023 | 3 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
Jie_IESEFPT_task2_2 | JieIESEFPT2023 | 1 | 69.48 | 85.61 | 58.46 | 78.79 | 85.06 | 73.38 | 61.71 | 70.13 | 55.10 | 80.32 | 100.00 | 67.11 | 53.93 | 55.60 | 52.36 | 48.48 | 52.58 | 44.98 | 67.39 | 74.55 | 61.48 | |
Jie_IESEFPT_task2_3 | JieIESEFPT2023 | 25 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 0.00 | 0.00 | 0.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
Jie_IESEFPT_task2_4 | JieIESEFPT2023 | 72 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 0.00 | 0.00 | 0.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
Gou_UESTC_task2_1 | GouUESTC2023 | 75 | 0.00 | 0.00 | 0.00 | 50.61 | 49.26 | 52.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.65 | 6.45 | 60.00 | 42.73 | 96.48 | 27.44 | 56.47 | 71.01 | 46.87 | |
Gou_UESTC_task2_2 | GouUESTC2023 | 81 | 49.33 | 39.71 | 65.12 | 57.92 | 57.38 | 58.47 | 43.90 | 32.73 | 66.67 | 13.75 | 7.68 | 65.75 | 35.14 | 40.13 | 31.25 | 30.57 | 42.11 | 24.00 | 46.43 | 46.92 | 45.96 | |
Gou_UESTC_task2_3 | GouUESTC2023 | 73 | 13.78 | 7.69 | 66.67 | 55.56 | 55.71 | 55.40 | 44.83 | 34.87 | 62.77 | 13.53 | 7.68 | 56.80 | 48.43 | 57.67 | 41.75 | 38.22 | 52.63 | 30.00 | 50.32 | 50.57 | 50.08 | |
Gou_UESTC_task2_4 | GouUESTC2023 | 82 | 0.00 | 0.00 | 0.00 | 50.61 | 49.26 | 52.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.65 | 6.45 | 60.00 | 42.73 | 96.48 | 27.44 | 56.47 | 71.01 | 46.87 | |
Tanaka_GU_task2_1 | TanakaGU2023 | 61 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 42.55 | 41.10 | 44.12 | 41.12 | 44.18 | 38.46 | 66.06 | 100.00 | 49.32 | |
Tanaka_GU_task2_2 | TanakaGU2023 | 63 | 58.63 | 64.98 | 53.41 | 5.74 | 3.00 | 66.67 | 0.00 | 0.00 | 0.00 | 6.87 | 3.84 | 32.43 | 52.46 | 86.83 | 37.58 | 0.00 | 0.00 | 0.00 | 59.13 | 73.56 | 49.43 | |
Tanaka_GU_task2_3 | TanakaGU2023 | 49 | 7.27 | 3.91 | 51.43 | 53.45 | 45.04 | 65.73 | 62.50 | 62.60 | 62.41 | 31.17 | 21.43 | 57.14 | 41.44 | 46.68 | 37.26 | 40.29 | 49.12 | 34.15 | 46.54 | 39.18 | 57.31 | |
Tanaka_GU_task2_4 | TanakaGU2023 | 79 | 0.00 | 0.00 | 0.00 | 37.18 | 36.32 | 38.08 | 26.75 | 18.00 | 52.02 | 13.49 | 7.66 | 56.43 | 44.30 | 53.20 | 37.95 | 38.85 | 47.21 | 33.00 | 31.68 | 29.38 | 34.38 | |
Fujimura_NU_task2_1 | FujimuraNU2023 | 54 | 19.01 | 11.29 | 60.00 | 61.64 | 52.94 | 73.77 | 46.69 | 35.51 | 68.15 | 41.09 | 30.21 | 64.19 | 55.88 | 63.96 | 49.61 | 47.24 | 64.21 | 37.36 | 53.66 | 53.15 | 54.18 | |
Fujimura_NU_task2_2 | FujimuraNU2023 | 58 | 23.53 | 14.77 | 57.83 | 58.23 | 49.65 | 70.39 | 44.16 | 32.98 | 66.81 | 49.33 | 40.34 | 63.45 | 55.70 | 61.67 | 50.78 | 49.39 | 66.85 | 39.16 | 48.55 | 48.26 | 48.85 | |
Fujimura_NU_task2_3 | FujimuraNU2023 | 55 | 13.56 | 7.69 | 57.48 | 55.29 | 50.75 | 60.71 | 7.28 | 3.92 | 50.51 | 48.24 | 38.40 | 64.86 | 49.70 | 58.74 | 43.08 | 41.78 | 57.93 | 32.67 | 52.75 | 53.34 | 52.17 | |
Fujimura_NU_task2_4 | FujimuraNU2023 | 59 | 13.56 | 7.69 | 57.48 | 57.48 | 49.94 | 67.71 | 32.21 | 21.38 | 65.26 | 44.36 | 33.22 | 66.76 | 54.59 | 62.07 | 48.71 | 44.69 | 61.26 | 35.17 | 50.55 | 50.28 | 50.81 | |
Bai_JLESS_task2_1 | BaiJLESS2023 | 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bai_JLESS_task2_2 | BaiJLESS2023 | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bai_JLESS_task2_3 | BaiJLESS2023 | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bai_JLESS_task2_4 | BaiJLESS2023 | 22 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
Guan_HEU_task2_1 | GuanHEU2023 | 46 | 51.76 | 43.92 | 62.99 | 54.10 | 49.26 | 60.00 | 51.38 | 42.00 | 66.14 | 51.53 | 37.33 | 83.17 | 43.75 | 46.45 | 41.33 | 38.07 | 49.06 | 31.10 | 42.60 | 39.18 | 46.68 | |
Guan_HEU_task2_2 | GuanHEU2023 | 16 | 50.24 | 42.00 | 62.50 | 51.03 | 42.31 | 64.28 | 56.52 | 46.34 | 72.41 | 55.48 | 40.14 | 89.80 | 36.59 | 38.42 | 34.91 | 44.42 | 50.91 | 39.40 | 68.09 | 59.23 | 80.07 | |
Guan_HEU_task2_3 | GuanHEU2023 | 40 | 26.27 | 18.04 | 48.32 | 59.90 | 55.08 | 65.65 | 57.73 | 54.11 | 61.87 | 38.75 | 28.69 | 59.68 | 50.87 | 58.74 | 44.85 | 47.42 | 57.26 | 40.46 | 64.86 | 62.97 | 66.87 | |
Guan_HEU_task2_4 | GuanHEU2023 | 14 | 52.84 | 46.47 | 61.25 | 59.04 | 53.33 | 66.12 | 55.85 | 45.38 | 72.60 | 63.84 | 50.03 | 88.17 | 38.77 | 39.69 | 37.89 | 45.09 | 50.72 | 40.58 | 69.96 | 63.55 | 77.80 | |
Hauser_JKU_task2_1 | HauserJKU2023 | 86 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.38 | 100.00 | 36.41 | 43.65 | 100.00 | 27.92 | 66.06 | 100.00 | 49.32 | |
LEE_KNU_task2_1 | LEEKNU2023 | 85 | 29.85 | 21.18 | 50.56 | 40.28 | 37.30 | 43.78 | 7.13 | 3.92 | 39.83 | 0.00 | 0.00 | 0.00 | 39.34 | 46.68 | 34.00 | 28.50 | 38.10 | 22.77 | 48.13 | 48.26 | 48.00 | |
LEE_KNU_task2_2 | LEEKNU2023 | 84 | 62.39 | 80.95 | 50.75 | 59.60 | 72.00 | 50.85 | 59.41 | 75.00 | 49.18 | 64.14 | 86.36 | 51.01 | 50.49 | 68.29 | 40.05 | 42.64 | 75.36 | 29.73 | 56.47 | 64.51 | 50.21 | |
LEE_KNU_task2_3 | LEEKNU2023 | 88 | 41.50 | 32.45 | 57.53 | 40.66 | 37.30 | 44.69 | 0.00 | 0.00 | 0.00 | 7.40 | 3.92 | 66.22 | 45.16 | 53.50 | 39.07 | 31.87 | 44.90 | 24.70 | 42.93 | 43.01 | 42.85 | |
LEE_KNU_task2_4 | LEEKNU2023 | 87 | 59.89 | 71.79 | 51.38 | 57.45 | 67.83 | 49.82 | 63.93 | 82.35 | 52.24 | 68.12 | 87.64 | 55.71 | 45.53 | 64.97 | 35.04 | 45.16 | 73.68 | 32.56 | 56.90 | 66.67 | 49.62 | |
QianXuHu_BITNUDT_task2_1 | QianXuHuBITNUDT2023 | 39 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.56 | 100.00 | 36.58 | 43.65 | 100.00 | 27.92 | 68.79 | 98.08 | 52.98 | |
QianXuHu_BITNUDT_task2_2 | QianXuHuBITNUDT2023 | 42 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.56 | 100.00 | 36.58 | 43.65 | 100.00 | 27.92 | 68.79 | 98.08 | 52.98 | |
QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | 31 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.56 | 100.00 | 36.58 | 43.65 | 100.00 | 27.92 | 68.79 | 98.08 | 52.98 | |
QianXuHu_BITNUDT_task2_4 | QianXuHuBITNUDT2023 | 60 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 53.56 | 100.00 | 36.58 | 43.65 | 100.00 | 27.92 | 68.79 | 98.08 | 52.98 |
Domain-wise performance
Rank | Submission Information | Ranking | Eveluation Dataset in Source Domain | Eveluation Dataset in Target Domain | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
Harmonic mean (AUC, source) |
ToyDrone (AUC, source) |
ToyDrone (pAUC, source) |
ToyNscale (AUC, source) |
ToyNscale (pAUC, source) |
ToyTank (AUC, source) |
ToyTank (pAUC, source) |
Vacuum (AUC, source) |
Vacuum (pAUC, source) |
Bandsaw (AUC, source) |
Bandsaw (pAUC, source) |
Grinder (AUC, source) |
Grinder (pAUC, source) |
Shaker (AUC, source) |
Shaker (pAUC, source) |
Harmonic mean (AUC, target) |
ToyDrone (AUC, target) |
ToyDrone (pAUC, target) |
ToyNscale (AUC, target) |
ToyNscale (pAUC, target) |
ToyTank (AUC, target) |
ToyTank (pAUC, target) |
Vacuum (AUC, target) |
Vacuum (pAUC, target) |
Bandsaw (AUC, target) |
Bandsaw (pAUC, target) |
Grinder (AUC, target) |
Grinder (pAUC, target) |
Shaker (AUC, target) |
Shaker (pAUC, target) |
|
DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | 24 | 61.051 | 78.71 | 81.30 | 51.42 | 66.78 | 50.89 | 80.12 | 53.84 | 83.84 | 65.32 | 83.64 | 57.54 | 74.09 | 59.55 | 84.77 | 62.33 | 53.09 | 46.22 | 51.42 | 40.90 | 50.89 | 45.32 | 53.84 | 90.06 | 65.32 | 58.86 | 57.54 | 50.68 | 59.55 | 63.00 | 62.33 | |
DCASE2023_baseline_task2_MSE | DCASE2023baseline2023 | 30 | 59.255 | 74.23 | 79.68 | 53.68 | 77.00 | 51.79 | 72.12 | 58.26 | 88.16 | 59.47 | 66.67 | 50.91 | 70.68 | 58.46 | 69.43 | 54.92 | 52.54 | 56.10 | 53.68 | 47.16 | 51.79 | 64.68 | 58.26 | 45.32 | 59.47 | 48.29 | 50.91 | 55.17 | 58.46 | 56.04 | 54.92 | |
Du_NERCSLIP_task2_1 | DuNERCSLIP2023 | 21 | 61.403 | 72.34 | 70.84 | 51.11 | 83.28 | 64.84 | 65.98 | 56.63 | 90.56 | 62.11 | 72.68 | 49.37 | 50.30 | 49.40 | 92.56 | 82.87 | 56.49 | 49.00 | 51.11 | 89.26 | 64.84 | 56.62 | 56.63 | 76.36 | 62.11 | 34.77 | 49.37 | 44.69 | 49.40 | 95.96 | 82.87 | |
Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | 19 | 61.765 | 73.01 | 70.98 | 51.47 | 83.94 | 65.37 | 66.36 | 57.58 | 90.48 | 60.84 | 73.28 | 49.92 | 52.06 | 49.21 | 91.73 | 80.78 | 56.98 | 49.12 | 51.47 | 89.94 | 65.37 | 56.94 | 57.58 | 75.06 | 60.84 | 35.23 | 49.92 | 46.39 | 49.21 | 94.79 | 80.78 | |
Du_NERCSLIP_task2_3 | DuNERCSLIP2023 | 20 | 61.727 | 72.81 | 71.06 | 52.05 | 83.10 | 65.05 | 66.28 | 58.00 | 89.28 | 60.16 | 72.21 | 50.54 | 53.24 | 48.11 | 89.96 | 76.08 | 57.42 | 49.30 | 52.05 | 89.92 | 65.05 | 57.44 | 58.00 | 73.66 | 60.16 | 35.89 | 50.54 | 48.05 | 48.11 | 92.25 | 76.08 | |
Du_NERCSLIP_task2_4 | DuNERCSLIP2023 | 23 | 61.333 | 71.40 | 69.00 | 52.16 | 82.06 | 64.00 | 64.14 | 58.74 | 88.24 | 59.74 | 69.97 | 51.17 | 53.25 | 47.75 | 88.02 | 69.74 | 57.86 | 50.74 | 52.16 | 89.84 | 64.00 | 58.22 | 58.74 | 72.74 | 59.74 | 36.44 | 51.17 | 48.93 | 47.75 | 88.29 | 69.74 | |
He_XJU_task2_1 | HeXJU2023 | 78 | 46.892 | 58.64 | 75.12 | 49.21 | 67.44 | 52.74 | 58.18 | 50.16 | 73.58 | 51.00 | 37.58 | 47.96 | 57.63 | 50.84 | 60.61 | 49.64 | 37.04 | 26.76 | 49.21 | 41.40 | 52.74 | 48.42 | 50.16 | 26.10 | 51.00 | 45.66 | 47.96 | 49.37 | 50.84 | 38.00 | 49.64 | |
He_XJU_task2_2 | HeXJU2023 | 83 | 44.809 | 55.40 | 62.58 | 50.00 | 63.21 | 50.89 | 56.30 | 51.21 | 67.96 | 47.95 | 42.08 | 48.28 | 48.16 | 52.09 | 56.98 | 48.85 | 34.67 | 27.84 | 50.00 | 35.42 | 50.89 | 42.68 | 51.21 | 17.28 | 47.95 | 56.67 | 48.28 | 54.92 | 52.09 | 48.60 | 48.85 | |
He_XJU_task2_3 | HeXJU2023 | 80 | 46.411 | 55.14 | 67.16 | 49.74 | 52.54 | 47.58 | 39.56 | 52.11 | 74.86 | 53.32 | 47.19 | 51.60 | 54.99 | 53.13 | 66.58 | 57.94 | 36.65 | 29.58 | 49.74 | 21.06 | 47.58 | 66.34 | 52.11 | 27.70 | 53.32 | 45.41 | 51.60 | 44.79 | 53.13 | 70.51 | 57.94 | |
He_XJU_task2_4 | HeXJU2023 | 74 | 48.179 | 51.28 | 72.78 | 50.11 | 57.84 | 52.74 | 65.20 | 50.37 | 36.20 | 52.53 | 35.60 | 49.55 | 68.39 | 58.46 | 50.52 | 49.51 | 42.66 | 26.88 | 50.11 | 46.88 | 52.74 | 37.16 | 50.37 | 72.74 | 52.53 | 37.83 | 49.55 | 63.50 | 58.46 | 44.05 | 49.51 | |
Lv_HUAKONG_task2_1 | LvHUAKONG2023 | 11 | 63.641 | 67.89 | 50.08 | 49.47 | 80.50 | 56.95 | 72.54 | 62.79 | 88.18 | 70.32 | 55.63 | 51.15 | 69.70 | 62.16 | 75.32 | 65.50 | 64.79 | 55.96 | 49.47 | 70.10 | 56.95 | 64.68 | 62.79 | 82.94 | 70.32 | 52.92 | 51.15 | 64.38 | 62.16 | 71.68 | 65.50 | |
Lv_HUAKONG_task2_2 | LvHUAKONG2023 | 15 | 62.912 | 68.55 | 54.44 | 49.32 | 74.78 | 52.21 | 71.50 | 62.79 | 78.78 | 63.95 | 59.17 | 51.76 | 70.62 | 63.44 | 79.18 | 71.23 | 62.74 | 50.80 | 49.32 | 63.20 | 52.21 | 59.44 | 62.79 | 79.74 | 63.95 | 54.75 | 51.76 | 67.01 | 63.44 | 74.01 | 71.23 | |
Lv_HUAKONG_task2_3 | LvHUAKONG2023 | 8 | 63.858 | 70.72 | 49.12 | 49.84 | 81.22 | 56.79 | 79.82 | 58.21 | 84.28 | 70.32 | 64.57 | 50.11 | 73.13 | 61.98 | 78.40 | 63.13 | 64.30 | 58.44 | 49.84 | 74.18 | 56.79 | 56.76 | 58.21 | 85.66 | 70.32 | 49.98 | 50.11 | 67.15 | 61.98 | 71.00 | 63.13 | |
Lv_HUAKONG_task2_4 | LvHUAKONG2023 | 2 | 66.386 | 72.18 | 59.60 | 49.37 | 81.08 | 57.00 | 75.62 | 63.79 | 96.82 | 87.42 | 58.31 | 50.30 | 71.01 | 61.22 | 76.42 | 65.24 | 68.03 | 50.78 | 49.37 | 84.40 | 57.00 | 74.00 | 63.79 | 90.70 | 87.42 | 58.65 | 50.30 | 62.87 | 61.22 | 72.18 | 65.24 | |
Jiang_THUEE_task2_1 | JiangTHUEE2023 | 4 | 65.403 | 82.43 | 85.88 | 49.74 | 82.90 | 61.63 | 87.12 | 59.74 | 98.74 | 76.42 | 80.56 | 56.64 | 69.54 | 62.41 | 78.05 | 64.68 | 57.91 | 41.36 | 49.74 | 65.92 | 61.63 | 49.38 | 59.74 | 70.08 | 76.42 | 63.63 | 56.64 | 56.24 | 62.41 | 74.05 | 64.68 | |
Jiang_THUEE_task2_2 | JiangTHUEE2023 | 35 | 58.136 | 86.38 | 89.40 | 49.11 | 88.36 | 55.42 | 90.72 | 54.37 | 99.50 | 71.37 | 80.72 | 51.12 | 73.88 | 61.40 | 86.68 | 65.33 | 44.24 | 21.24 | 49.11 | 57.34 | 55.42 | 44.64 | 54.37 | 64.36 | 71.37 | 47.95 | 51.12 | 55.02 | 61.40 | 59.79 | 65.33 | |
Jiang_THUEE_task2_3 | JiangTHUEE2023 | 7 | 63.897 | 82.17 | 78.64 | 48.89 | 84.20 | 52.53 | 87.92 | 55.89 | 99.28 | 73.00 | 74.63 | 50.75 | 73.24 | 61.77 | 82.64 | 64.50 | 57.86 | 36.26 | 48.89 | 72.06 | 52.53 | 57.42 | 55.89 | 69.66 | 73.00 | 60.02 | 50.75 | 60.14 | 61.77 | 69.13 | 64.50 | |
Jiang_THUEE_task2_4 | JiangTHUEE2023 | 17 | 62.381 | 79.16 | 67.80 | 49.79 | 85.00 | 53.16 | 86.42 | 55.42 | 97.74 | 65.26 | 70.86 | 50.98 | 71.86 | 63.08 | 82.73 | 65.23 | 55.93 | 41.60 | 49.79 | 61.16 | 53.16 | 48.42 | 55.42 | 63.88 | 65.26 | 58.20 | 50.98 | 59.36 | 63.08 | 69.33 | 65.23 | |
JiaJun_HFUU_task2_1 | JiaJunHFUU2023 | 33 | 58.170 | 80.83 | 89.98 | 49.32 | 91.04 | 64.53 | 90.14 | 55.63 | 99.58 | 73.95 | 82.62 | 57.83 | 66.50 | 55.84 | 61.64 | 49.32 | 46.16 | 23.28 | 49.32 | 77.28 | 64.53 | 38.08 | 55.63 | 66.00 | 73.95 | 62.63 | 57.83 | 53.07 | 55.84 | 51.17 | 49.32 | |
JiaJun_HFUU_task2_2 | JiaJunHFUU2023 | 33 | 58.170 | 80.83 | 89.98 | 49.32 | 91.04 | 64.53 | 90.14 | 55.63 | 99.58 | 73.95 | 82.62 | 57.83 | 66.50 | 55.84 | 61.64 | 49.32 | 46.16 | 23.28 | 49.32 | 77.28 | 64.53 | 38.08 | 55.63 | 66.00 | 73.95 | 62.63 | 57.83 | 53.07 | 55.84 | 51.17 | 49.32 | |
JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | 27 | 59.539 | 80.07 | 83.74 | 48.79 | 91.04 | 64.53 | 90.14 | 55.63 | 99.58 | 73.95 | 82.62 | 57.83 | 66.50 | 55.84 | 61.64 | 49.32 | 49.19 | 29.76 | 48.79 | 77.28 | 64.53 | 38.08 | 55.63 | 66.00 | 73.95 | 62.63 | 57.83 | 53.07 | 55.84 | 51.17 | 49.32 | |
JiaJun_HFUU_task2_4 | JiaJunHFUU2023 | 41 | 56.940 | 79.07 | 89.98 | 49.32 | 91.04 | 64.53 | 90.14 | 55.63 | 99.58 | 73.95 | 71.25 | 50.64 | 66.50 | 55.84 | 61.64 | 49.32 | 45.14 | 23.28 | 49.32 | 77.28 | 64.53 | 38.08 | 55.63 | 66.00 | 73.95 | 51.60 | 50.64 | 53.07 | 55.84 | 51.17 | 49.32 | |
Zhang_DKU_task2_1 | ZhangDKU2023 | 76 | 47.856 | 63.43 | 64.16 | 49.63 | 64.30 | 51.42 | 64.94 | 51.84 | 66.34 | 49.68 | 71.17 | 50.77 | 54.60 | 53.80 | 61.06 | 50.38 | 36.59 | 34.52 | 49.63 | 47.90 | 51.42 | 39.12 | 51.84 | 25.70 | 49.68 | 35.34 | 50.77 | 54.97 | 53.80 | 32.77 | 50.38 | |
Zhang_DKU_task2_2 | ZhangDKU2023 | 57 | 53.943 | 68.29 | 69.58 | 52.37 | 65.06 | 64.11 | 81.22 | 52.68 | 82.12 | 56.00 | 67.37 | 55.05 | 67.70 | 57.10 | 53.62 | 50.72 | 43.79 | 50.18 | 52.37 | 89.24 | 64.11 | 24.24 | 52.68 | 29.76 | 56.00 | 47.08 | 55.05 | 59.02 | 57.10 | 63.71 | 50.72 | |
Zhang_DKU_task2_3 | ZhangDKU2023 | 65 | 50.362 | 62.37 | 52.94 | 47.74 | 57.34 | 54.11 | 64.58 | 51.37 | 71.60 | 51.11 | 63.14 | 53.11 | 68.67 | 57.20 | 62.30 | 51.34 | 41.06 | 38.54 | 47.74 | 51.92 | 54.11 | 34.36 | 51.37 | 28.22 | 51.11 | 46.30 | 53.11 | 61.45 | 57.20 | 43.73 | 51.34 | |
Zhang_DKU_task2_4 | ZhangDKU2023 | 76 | 47.856 | 63.43 | 64.16 | 49.63 | 64.30 | 51.42 | 64.94 | 51.84 | 66.34 | 49.68 | 71.17 | 50.77 | 54.60 | 53.80 | 61.06 | 50.38 | 36.59 | 34.52 | 49.63 | 47.90 | 51.42 | 39.12 | 51.84 | 25.70 | 49.68 | 35.34 | 50.77 | 54.97 | 53.80 | 32.77 | 50.38 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 58.542 | 73.06 | 70.12 | 51.37 | 73.36 | 64.16 | 73.08 | 51.05 | 81.18 | 49.79 | 71.76 | 51.99 | 73.41 | 61.51 | 69.61 | 55.94 | 51.93 | 41.66 | 51.37 | 68.52 | 64.16 | 30.86 | 51.05 | 53.28 | 49.79 | 66.69 | 51.99 | 65.16 | 61.51 | 68.07 | 55.94 | |
Zhou_SHNU_task2_2 | ZhouSHNU2023 | 69 | 49.781 | 67.92 | 70.12 | 51.37 | 73.36 | 64.16 | 73.08 | 51.05 | 81.18 | 49.79 | 68.17 | 50.28 | 47.68 | 49.34 | 73.90 | 50.36 | 38.04 | 41.66 | 51.37 | 68.52 | 64.16 | 30.86 | 51.05 | 53.28 | 49.79 | 26.21 | 50.28 | 39.04 | 49.34 | 32.79 | 50.36 | |
Zhou_SHNU_task2_3 | ZhouSHNU2023 | 10 | 63.645 | 64.98 | 53.72 | 55.74 | 56.66 | 52.11 | 66.60 | 59.53 | 68.88 | 63.53 | 71.76 | 51.99 | 73.41 | 61.51 | 69.61 | 55.94 | 70.57 | 70.82 | 55.74 | 69.02 | 52.11 | 70.86 | 59.53 | 87.42 | 63.53 | 66.69 | 51.99 | 65.16 | 61.51 | 68.07 | 55.94 | |
Zhou_SHNU_task2_1 | ZhouSHNU2023 | 32 | 58.542 | 73.06 | 70.12 | 51.37 | 73.36 | 64.16 | 73.08 | 51.05 | 81.18 | 49.79 | 71.76 | 51.99 | 73.41 | 61.51 | 69.61 | 55.94 | 51.93 | 41.66 | 51.37 | 68.52 | 64.16 | 30.86 | 51.05 | 53.28 | 49.79 | 66.69 | 51.99 | 65.16 | 61.51 | 68.07 | 55.94 | |
Zhang_BIT_task2_1 | ZhangBIT2023 | 28 | 59.489 | 74.61 | 84.62 | 51.89 | 66.54 | 57.21 | 69.54 | 57.32 | 88.84 | 60.47 | 71.78 | 50.09 | 69.44 | 61.32 | 76.89 | 61.06 | 51.54 | 37.58 | 51.89 | 58.06 | 57.21 | 59.58 | 57.32 | 41.76 | 60.47 | 54.61 | 50.09 | 55.60 | 61.32 | 66.90 | 61.06 | |
Zhang_BIT_task2_2 | ZhangBIT2023 | 56 | 54.210 | 74.84 | 87.10 | 49.05 | 54.98 | 52.16 | 79.48 | 51.63 | 89.24 | 52.79 | 82.09 | 51.38 | 67.16 | 58.67 | 76.87 | 58.08 | 43.14 | 27.44 | 49.05 | 51.18 | 52.16 | 35.18 | 51.63 | 36.58 | 52.79 | 57.88 | 51.38 | 57.75 | 58.67 | 62.86 | 58.08 | |
Zhang_BIT_task2_3 | ZhangBIT2023 | 67 | 49.944 | 47.69 | 43.80 | 48.63 | 47.44 | 51.68 | 49.32 | 48.21 | 47.16 | 49.95 | 47.31 | 50.85 | 57.55 | 52.42 | 43.70 | 49.08 | 52.28 | 47.34 | 48.63 | 53.40 | 51.68 | 50.06 | 48.21 | 46.96 | 49.95 | 57.49 | 50.85 | 59.89 | 52.42 | 53.52 | 49.08 | |
Zhang_BIT_task2_4 | ZhangBIT2023 | 43 | 56.271 | 67.08 | 76.24 | 51.05 | 86.22 | 55.47 | 59.56 | 54.58 | 76.06 | 55.47 | 56.84 | 48.76 | 63.11 | 61.47 | 61.49 | 56.25 | 49.88 | 35.06 | 51.05 | 56.64 | 55.47 | 68.12 | 54.58 | 40.24 | 55.47 | 48.74 | 48.76 | 53.83 | 61.47 | 64.41 | 56.25 | |
Liu_CQUPT_task2_1 | LiuCQUPT2023 | 44 | 56.003 | 67.46 | 52.42 | 48.79 | 70.90 | 55.53 | 77.52 | 57.84 | 82.18 | 57.74 | 58.19 | 51.54 | 74.91 | 62.70 | 66.77 | 60.40 | 47.88 | 44.84 | 48.79 | 57.52 | 55.53 | 43.44 | 57.84 | 29.70 | 57.74 | 53.11 | 51.54 | 64.72 | 62.70 | 64.36 | 60.40 | |
Liu_CQUPT_task2_2 | LiuCQUPT2023 | 64 | 50.419 | 63.68 | 46.00 | 48.74 | 41.28 | 49.58 | 81.08 | 50.26 | 86.44 | 52.16 | 74.24 | 54.00 | 70.26 | 56.16 | 80.89 | 53.84 | 40.72 | 49.68 | 48.74 | 58.28 | 49.58 | 25.86 | 50.26 | 24.22 | 52.16 | 54.54 | 54.00 | 46.25 | 56.16 | 67.95 | 53.84 | |
Liu_CQUPT_task2_3 | LiuCQUPT2023 | 48 | 55.594 | 69.58 | 48.36 | 48.63 | 60.44 | 53.37 | 79.50 | 56.58 | 87.30 | 56.74 | 73.09 | 54.31 | 77.57 | 59.42 | 78.27 | 59.31 | 46.53 | 47.38 | 48.63 | 59.82 | 53.37 | 37.54 | 56.58 | 28.70 | 56.74 | 53.84 | 54.31 | 55.51 | 59.42 | 68.80 | 59.31 | |
Liu_CQUPT_task2_4 | LiuCQUPT2023 | 45 | 55.667 | 69.19 | 48.40 | 48.58 | 59.10 | 52.63 | 79.70 | 56.95 | 87.56 | 57.11 | 72.13 | 54.38 | 77.23 | 59.29 | 78.05 | 60.15 | 46.81 | 47.38 | 48.58 | 59.54 | 52.63 | 38.52 | 56.95 | 28.86 | 57.11 | 53.61 | 54.38 | 55.90 | 59.29 | 69.08 | 60.15 | |
Atmaja_AIST_task2_1 | AtmajaAIST2023 | 53 | 54.898 | 57.77 | 49.24 | 54.11 | 74.22 | 53.11 | 48.02 | 52.32 | 78.32 | 63.32 | 52.93 | 50.26 | 51.25 | 48.29 | 64.94 | 53.48 | 53.92 | 63.18 | 54.11 | 37.86 | 53.11 | 64.40 | 52.32 | 65.62 | 63.32 | 54.27 | 50.26 | 45.71 | 48.29 | 60.55 | 53.48 | |
Atmaja_AIST_task2_2 | AtmajaAIST2023 | 51 | 55.049 | 57.81 | 49.24 | 54.00 | 74.56 | 54.05 | 47.96 | 51.05 | 78.00 | 63.74 | 53.10 | 50.26 | 51.07 | 48.29 | 65.43 | 53.43 | 54.36 | 63.90 | 54.00 | 39.04 | 54.05 | 63.30 | 51.05 | 68.26 | 63.74 | 53.61 | 50.26 | 45.37 | 48.29 | 61.11 | 53.43 | |
Atmaja_AIST_task2_3 | AtmajaAIST2023 | 52 | 54.928 | 57.63 | 49.66 | 54.00 | 73.86 | 53.58 | 47.18 | 51.95 | 78.08 | 62.74 | 52.89 | 50.43 | 51.22 | 48.29 | 65.16 | 53.81 | 54.11 | 63.68 | 54.00 | 38.36 | 53.58 | 64.06 | 51.95 | 66.28 | 62.74 | 54.04 | 50.43 | 45.27 | 48.29 | 61.32 | 53.81 | |
Atmaja_AIST_task2_4 | AtmajaAIST2023 | 50 | 55.092 | 57.65 | 49.24 | 54.00 | 74.08 | 53.00 | 47.30 | 51.84 | 79.38 | 64.11 | 52.91 | 50.31 | 51.16 | 48.29 | 64.81 | 54.28 | 54.48 | 63.72 | 54.00 | 38.10 | 53.00 | 63.88 | 51.84 | 71.06 | 64.11 | 53.88 | 50.31 | 45.37 | 48.29 | 61.69 | 54.28 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | 5 | 64.911 | 81.20 | 80.70 | 50.21 | 87.70 | 76.58 | 82.04 | 62.21 | 92.02 | 74.00 | 76.43 | 52.87 | 74.47 | 62.11 | 77.88 | 50.24 | 58.41 | 40.46 | 50.21 | 86.58 | 76.58 | 51.70 | 62.21 | 76.02 | 74.00 | 58.17 | 52.87 | 61.06 | 62.11 | 57.13 | 50.24 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2023 | 18 | 61.949 | 77.82 | 83.66 | 50.95 | 83.58 | 70.16 | 83.68 | 54.89 | 96.30 | 68.26 | 65.86 | 49.66 | 69.68 | 55.97 | 70.60 | 50.86 | 56.17 | 35.90 | 50.95 | 83.50 | 70.16 | 45.34 | 54.89 | 67.96 | 68.26 | 57.28 | 49.66 | 67.40 | 55.97 | 63.60 | 50.86 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2023 | 9 | 63.782 | 80.73 | 83.70 | 50.84 | 85.86 | 74.74 | 83.34 | 58.47 | 95.60 | 71.42 | 72.40 | 49.94 | 73.47 | 58.07 | 75.59 | 51.47 | 57.51 | 38.04 | 50.84 | 85.86 | 74.74 | 48.12 | 58.47 | 71.24 | 71.42 | 57.26 | 49.94 | 64.86 | 58.07 | 62.18 | 51.47 | |
Jiang_PSH_task2_1 | JiangPSH2023 | 71 | 48.919 | 48.23 | 33.82 | 52.84 | 67.28 | 56.05 | 42.56 | 51.95 | 63.70 | 51.11 | 50.75 | 49.46 | 49.16 | 50.47 | 46.61 | 49.46 | 47.19 | 69.46 | 52.84 | 35.88 | 56.05 | 70.96 | 51.95 | 30.50 | 51.11 | 47.19 | 49.46 | 57.41 | 50.47 | 48.62 | 49.46 | |
Jiang_PSH_task2_2 | JiangPSH2023 | 47 | 55.614 | 63.47 | 73.02 | 50.68 | 70.06 | 56.11 | 75.64 | 57.05 | 72.68 | 66.74 | 47.66 | 48.24 | 61.70 | 56.18 | 55.10 | 49.72 | 50.50 | 47.64 | 50.68 | 49.88 | 56.11 | 35.80 | 57.05 | 68.52 | 66.74 | 46.46 | 48.24 | 66.33 | 56.18 | 54.22 | 49.72 | |
Jiang_PSH_task2_3 | JiangPSH2023 | 66 | 49.990 | 82.59 | 80.68 | 51.37 | 72.00 | 51.47 | 85.96 | 48.74 | 89.98 | 48.47 | 79.84 | 51.60 | 82.46 | 63.31 | 90.33 | 71.97 | 33.94 | 29.86 | 51.37 | 34.10 | 51.47 | 22.66 | 48.74 | 23.46 | 48.47 | 39.16 | 51.60 | 60.14 | 63.31 | 69.08 | 71.97 | |
Wu_qdreamer_task2_1 | Wuqdreamer2023 | 62 | 51.526 | 62.60 | 74.03 | 48.21 | 68.28 | 49.58 | 59.06 | 55.84 | 98.18 | 63.68 | 52.55 | 48.02 | 48.30 | 48.76 | 59.47 | 55.59 | 43.24 | 31.32 | 48.21 | 30.68 | 49.58 | 64.60 | 55.84 | 43.82 | 63.68 | 50.18 | 48.02 | 51.27 | 48.76 | 50.91 | 55.59 | |
Wu_qdreamer_task2_2 | Wuqdreamer2023 | 37 | 57.896 | 75.97 | 77.36 | 48.95 | 94.26 | 62.47 | 85.56 | 57.47 | 96.96 | 63.16 | 56.94 | 51.44 | 69.62 | 57.79 | 68.11 | 57.48 | 47.70 | 27.24 | 48.95 | 59.32 | 62.47 | 60.34 | 57.47 | 42.84 | 63.16 | 48.81 | 51.44 | 59.26 | 57.79 | 62.82 | 57.48 | |
Wu_qdreamer_task2_3 | Wuqdreamer2023 | 29 | 59.263 | 57.64 | 34.20 | 52.53 | 89.08 | 60.26 | 84.88 | 57.89 | 44.78 | 65.26 | 60.52 | 50.81 | 60.76 | 54.21 | 71.99 | 58.87 | 63.89 | 69.52 | 52.53 | 71.00 | 60.26 | 58.78 | 57.89 | 77.50 | 65.26 | 51.21 | 50.81 | 59.75 | 54.21 | 67.07 | 58.87 | |
Wu_qdreamer_task2_4 | Wuqdreamer2023 | 36 | 57.988 | 54.84 | 33.16 | 52.16 | 86.20 | 58.32 | 39.46 | 55.26 | 91.32 | 65.63 | 59.25 | 50.83 | 61.04 | 51.20 | 61.18 | 53.20 | 65.53 | 68.20 | 52.16 | 71.64 | 58.32 | 81.16 | 55.26 | 75.44 | 65.63 | 49.68 | 50.83 | 57.07 | 51.20 | 66.76 | 53.20 | |
Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | 38 | 57.612 | 69.49 | 64.68 | 50.89 | 80.68 | 52.21 | 79.36 | 57.68 | 82.24 | 63.05 | 61.87 | 48.72 | 66.40 | 58.16 | 59.20 | 50.77 | 52.10 | 66.60 | 50.89 | 47.24 | 52.21 | 59.90 | 57.68 | 42.34 | 63.05 | 47.85 | 48.72 | 51.95 | 58.16 | 56.43 | 50.77 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 49.022 | 76.00 | 81.52 | 49.79 | 77.36 | 50.26 | 88.38 | 53.79 | 91.48 | 54.58 | 76.51 | 51.15 | 63.19 | 55.92 | 63.41 | 50.61 | 34.62 | 29.68 | 49.79 | 27.14 | 50.26 | 25.82 | 53.79 | 24.90 | 54.58 | 59.86 | 51.15 | 50.54 | 55.92 | 61.46 | 50.61 | |
Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | 70 | 49.022 | 76.00 | 81.52 | 49.79 | 77.36 | 50.26 | 88.38 | 53.79 | 91.48 | 54.58 | 76.51 | 51.15 | 63.19 | 55.92 | 63.41 | 50.61 | 34.62 | 29.68 | 49.79 | 27.14 | 50.26 | 25.82 | 53.79 | 24.90 | 54.58 | 59.86 | 51.15 | 50.54 | 55.92 | 61.46 | 50.61 | |
Jie_IESEFPT_task2_1 | JieIESEFPT2023 | 3 | 65.627 | 85.29 | 82.54 | 51.26 | 96.36 | 74.84 | 88.56 | 62.63 | 100.00 | 84.79 | 77.26 | 53.06 | 73.88 | 60.82 | 84.68 | 52.91 | 56.86 | 41.34 | 51.26 | 79.76 | 74.84 | 47.26 | 62.63 | 89.78 | 84.79 | 55.84 | 53.06 | 58.92 | 60.82 | 52.10 | 52.91 | |
Jie_IESEFPT_task2_2 | JieIESEFPT2023 | 1 | 66.969 | 83.13 | 80.26 | 51.58 | 90.42 | 77.74 | 84.80 | 61.53 | 96.90 | 85.32 | 76.55 | 53.35 | 73.67 | 62.45 | 83.76 | 55.97 | 60.08 | 45.44 | 51.58 | 87.68 | 77.74 | 46.82 | 61.53 | 95.48 | 85.32 | 57.49 | 53.35 | 60.82 | 62.45 | 57.34 | 55.97 | |
Jie_IESEFPT_task2_3 | JieIESEFPT2023 | 25 | 60.232 | 79.23 | 89.58 | 49.68 | 62.58 | 51.89 | 83.10 | 53.53 | 88.66 | 68.79 | 80.49 | 57.25 | 73.80 | 62.58 | 83.90 | 63.43 | 50.55 | 27.92 | 49.68 | 63.42 | 51.89 | 39.60 | 53.53 | 64.40 | 68.79 | 68.04 | 57.25 | 58.72 | 62.58 | 69.52 | 63.43 | |
Jie_IESEFPT_task2_4 | JieIESEFPT2023 | 72 | 48.706 | 68.07 | 85.30 | 48.16 | 80.46 | 56.16 | 90.22 | 54.58 | 92.74 | 52.11 | 60.66 | 49.65 | 57.04 | 51.31 | 43.85 | 48.92 | 36.43 | 23.66 | 48.16 | 62.92 | 56.16 | 47.84 | 54.58 | 19.72 | 52.11 | 50.48 | 49.65 | 47.86 | 51.31 | 46.11 | 48.92 | |
Gou_UESTC_task2_1 | GouUESTC2023 | 75 | 47.952 | 62.65 | 76.02 | 50.11 | 59.48 | 54.84 | 71.48 | 52.32 | 77.72 | 49.37 | 54.30 | 52.58 | 54.03 | 53.63 | 55.59 | 52.76 | 36.45 | 27.65 | 50.11 | 54.96 | 54.84 | 31.52 | 52.32 | 23.79 | 49.37 | 52.20 | 52.58 | 55.29 | 53.63 | 37.52 | 52.76 | |
Gou_UESTC_task2_2 | GouUESTC2023 | 81 | 46.157 | 58.38 | 86.66 | 50.11 | 50.18 | 49.16 | 85.00 | 50.32 | 83.62 | 52.89 | 48.27 | 53.35 | 42.55 | 49.71 | 48.77 | 49.46 | 35.55 | 25.50 | 50.11 | 66.20 | 49.16 | 29.32 | 50.32 | 25.58 | 52.89 | 42.26 | 53.35 | 44.54 | 49.71 | 42.99 | 49.46 | |
Gou_UESTC_task2_3 | GouUESTC2023 | 73 | 48.690 | 61.46 | 87.24 | 48.47 | 50.60 | 50.11 | 80.44 | 54.47 | 78.78 | 49.42 | 61.11 | 52.61 | 49.47 | 49.51 | 47.70 | 49.14 | 39.18 | 27.94 | 48.47 | 64.52 | 50.11 | 30.24 | 54.47 | 27.98 | 49.42 | 51.21 | 52.61 | 47.08 | 49.51 | 56.16 | 49.14 | |
Gou_UESTC_task2_4 | GouUESTC2023 | 82 | 45.962 | 63.07 | 73.18 | 49.05 | 64.54 | 53.16 | 72.46 | 50.00 | 78.64 | 49.58 | 51.36 | 51.95 | 61.80 | 54.79 | 50.86 | 49.81 | 33.50 | 23.58 | 49.05 | 57.80 | 53.16 | 23.76 | 50.00 | 18.72 | 49.58 | 55.98 | 51.95 | 57.46 | 54.79 | 54.12 | 49.81 | |
Tanaka_GU_task2_1 | TanakaGU2023 | 61 | 52.545 | 72.49 | 83.82 | 51.00 | 74.94 | 54.42 | 82.18 | 51.84 | 92.16 | 59.95 | 66.69 | 52.90 | 63.29 | 54.59 | 57.20 | 48.49 | 40.87 | 27.56 | 51.00 | 45.62 | 54.42 | 32.06 | 51.84 | 46.72 | 59.95 | 50.11 | 52.90 | 60.96 | 54.59 | 41.43 | 48.49 | |
Tanaka_GU_task2_2 | TanakaGU2023 | 63 | 50.812 | 55.60 | 67.58 | 52.89 | 61.36 | 51.42 | 48.00 | 48.32 | 61.42 | 48.89 | 52.63 | 50.04 | 53.37 | 53.12 | 50.11 | 50.02 | 46.96 | 48.98 | 52.89 | 57.68 | 51.42 | 51.44 | 48.32 | 24.56 | 48.89 | 60.27 | 50.04 | 57.12 | 53.12 | 58.59 | 50.02 | |
Tanaka_GU_task2_3 | TanakaGU2023 | 49 | 55.253 | 69.54 | 86.48 | 48.21 | 78.94 | 52.74 | 69.38 | 59.11 | 87.08 | 62.84 | 53.79 | 51.25 | 62.14 | 55.39 | 63.10 | 58.62 | 45.98 | 24.26 | 48.21 | 49.66 | 52.74 | 69.38 | 59.11 | 45.10 | 62.84 | 50.57 | 51.25 | 58.04 | 55.39 | 57.79 | 58.62 | |
Tanaka_GU_task2_4 | TanakaGU2023 | 79 | 46.623 | 38.50 | 30.76 | 50.37 | 54.14 | 53.11 | 35.24 | 52.05 | 26.00 | 50.79 | 46.19 | 51.89 | 56.48 | 52.17 | 40.59 | 50.84 | 52.66 | 77.26 | 50.37 | 31.72 | 53.11 | 65.04 | 52.05 | 77.90 | 50.79 | 56.03 | 51.89 | 59.02 | 52.17 | 39.30 | 50.84 | |
Fujimura_NU_task2_1 | FujimuraNU2023 | 54 | 54.701 | 83.45 | 91.02 | 49.32 | 88.58 | 61.47 | 85.20 | 54.47 | 84.40 | 61.37 | 82.36 | 53.75 | 72.09 | 61.08 | 83.30 | 59.84 | 39.52 | 20.60 | 49.32 | 59.74 | 61.47 | 43.92 | 54.47 | 44.62 | 61.37 | 46.00 | 53.75 | 54.09 | 61.08 | 37.80 | 59.84 | |
Fujimura_NU_task2_2 | FujimuraNU2023 | 58 | 53.760 | 83.30 | 88.36 | 49.79 | 88.86 | 57.58 | 83.68 | 55.32 | 83.74 | 59.63 | 83.03 | 53.33 | 73.14 | 58.84 | 84.33 | 58.99 | 38.55 | 22.14 | 49.79 | 53.14 | 57.58 | 40.80 | 55.32 | 45.08 | 59.63 | 43.63 | 53.33 | 50.78 | 58.84 | 35.33 | 58.99 | |
Fujimura_NU_task2_3 | FujimuraNU2023 | 55 | 54.282 | 73.03 | 84.14 | 49.37 | 75.98 | 58.95 | 81.28 | 52.68 | 81.54 | 58.16 | 66.26 | 51.26 | 60.35 | 59.10 | 68.60 | 60.60 | 42.50 | 23.84 | 49.37 | 53.68 | 58.95 | 36.12 | 52.68 | 47.28 | 58.16 | 51.48 | 51.26 | 54.09 | 59.10 | 57.58 | 60.60 | |
Fujimura_NU_task2_4 | FujimuraNU2023 | 59 | 53.508 | 81.56 | 88.10 | 49.21 | 88.62 | 60.16 | 83.52 | 53.00 | 83.54 | 59.26 | 81.44 | 52.60 | 67.60 | 60.22 | 82.11 | 59.63 | 38.56 | 20.26 | 49.21 | 56.34 | 60.16 | 37.96 | 53.00 | 46.02 | 59.26 | 45.21 | 52.60 | 54.04 | 60.22 | 38.83 | 59.63 | |
Bai_JLESS_task2_1 | BaiJLESS2023 | 12 | 63.545 | 71.91 | 79.26 | 51.11 | 58.08 | 51.79 | 81.68 | 54.63 | 62.24 | 62.84 | 80.70 | 55.75 | 72.54 | 62.19 | 76.79 | 63.81 | 63.43 | 49.72 | 51.11 | 63.22 | 51.79 | 51.30 | 54.63 | 93.24 | 62.84 | 68.70 | 55.75 | 58.63 | 62.19 | 79.43 | 63.81 | |
Bai_JLESS_task2_2 | BaiJLESS2023 | 13 | 63.516 | 70.88 | 74.98 | 51.11 | 57.72 | 52.53 | 76.86 | 52.89 | 57.36 | 62.37 | 80.19 | 54.58 | 73.68 | 62.57 | 86.15 | 67.62 | 64.08 | 47.08 | 51.11 | 64.64 | 52.53 | 60.00 | 52.89 | 94.78 | 62.37 | 63.08 | 54.58 | 61.40 | 62.57 | 75.95 | 67.62 | |
Bai_JLESS_task2_3 | BaiJLESS2023 | 6 | 64.104 | 69.49 | 57.72 | 50.89 | 54.40 | 51.16 | 77.46 | 59.58 | 73.12 | 69.47 | 78.59 | 55.65 | 73.26 | 63.03 | 82.83 | 63.37 | 65.51 | 46.40 | 50.89 | 66.52 | 51.16 | 63.94 | 59.58 | 91.94 | 69.47 | 70.82 | 55.65 | 61.84 | 63.03 | 74.24 | 63.37 | |
Bai_JLESS_task2_4 | BaiJLESS2023 | 22 | 61.349 | 76.62 | 85.68 | 52.05 | 56.12 | 51.42 | 82.30 | 54.05 | 87.90 | 66.11 | 79.33 | 56.93 | 72.68 | 61.06 | 83.45 | 64.52 | 54.18 | 34.64 | 52.05 | 59.04 | 51.42 | 48.02 | 54.05 | 67.28 | 66.11 | 65.94 | 56.93 | 57.12 | 61.06 | 66.49 | 64.52 | |
Guan_HEU_task2_1 | GuanHEU2023 | 46 | 55.620 | 65.18 | 75.64 | 50.84 | 70.62 | 55.05 | 79.30 | 57.05 | 96.40 | 72.58 | 60.52 | 49.71 | 56.30 | 50.60 | 43.95 | 48.76 | 49.78 | 44.08 | 50.84 | 51.96 | 55.05 | 49.76 | 57.05 | 59.28 | 72.58 | 51.10 | 49.71 | 48.20 | 50.60 | 46.70 | 48.76 | |
Guan_HEU_task2_2 | GuanHEU2023 | 16 | 62.408 | 76.47 | 76.20 | 50.74 | 70.32 | 54.16 | 89.14 | 57.47 | 97.60 | 75.84 | 65.34 | 50.51 | 64.29 | 54.98 | 84.25 | 68.50 | 56.63 | 43.68 | 50.74 | 59.28 | 54.16 | 48.24 | 57.47 | 71.82 | 75.84 | 51.87 | 50.51 | 59.41 | 54.98 | 76.42 | 68.50 | |
Guan_HEU_task2_3 | GuanHEU2023 | 40 | 57.267 | 58.19 | 39.92 | 53.37 | 73.88 | 55.84 | 55.58 | 57.84 | 56.80 | 54.89 | 61.75 | 50.32 | 64.54 | 50.76 | 69.37 | 50.89 | 60.85 | 70.84 | 53.37 | 64.50 | 55.84 | 71.06 | 57.84 | 53.68 | 54.89 | 50.23 | 50.32 | 57.12 | 50.76 | 65.37 | 50.89 | |
Guan_HEU_task2_4 | GuanHEU2023 | 14 | 63.503 | 76.72 | 73.36 | 52.05 | 76.08 | 54.21 | 87.06 | 60.63 | 94.96 | 72.47 | 66.20 | 50.76 | 66.45 | 54.96 | 81.30 | 61.47 | 59.66 | 55.10 | 52.05 | 63.02 | 54.21 | 53.68 | 60.63 | 68.32 | 72.47 | 50.39 | 50.76 | 58.77 | 54.96 | 75.82 | 61.47 | |
Hauser_JKU_task2_1 | HauserJKU2023 | 86 | 41.407 | 30.39 | 30.04 | 48.47 | 26.94 | 48.74 | 30.60 | 50.32 | 16.18 | 47.89 | 51.71 | 51.26 | 42.52 | 49.08 | 44.26 | 48.23 | 52.13 | 63.08 | 48.47 | 56.98 | 48.74 | 49.60 | 50.32 | 65.50 | 47.89 | 54.02 | 51.26 | 41.33 | 49.08 | 43.96 | 48.23 | |
LEE_KNU_task2_1 | LEEKNU2023 | 85 | 43.738 | 32.22 | 27.70 | 50.05 | 36.58 | 52.05 | 24.68 | 51.32 | 21.62 | 50.42 | 43.30 | 47.37 | 42.27 | 48.48 | 49.33 | 51.13 | 56.87 | 70.06 | 50.05 | 52.72 | 52.05 | 75.60 | 51.32 | 76.94 | 50.42 | 42.92 | 47.37 | 52.24 | 48.48 | 47.20 | 51.13 | |
LEE_KNU_task2_2 | LEEKNU2023 | 84 | 44.232 | 33.45 | 28.58 | 50.21 | 38.72 | 51.58 | 25.60 | 51.68 | 22.74 | 49.53 | 43.12 | 47.37 | 43.17 | 48.50 | 52.44 | 52.08 | 55.68 | 66.76 | 50.21 | 47.58 | 51.58 | 80.26 | 51.68 | 77.84 | 49.53 | 43.95 | 47.37 | 50.19 | 48.50 | 46.00 | 52.08 | |
LEE_KNU_task2_3 | LEEKNU2023 | 88 | 40.809 | 29.94 | 27.10 | 48.79 | 35.72 | 51.79 | 22.16 | 49.74 | 17.10 | 48.26 | 49.34 | 49.92 | 48.76 | 48.63 | 40.84 | 49.26 | 50.25 | 72.56 | 48.79 | 57.58 | 51.79 | 73.84 | 49.74 | 76.82 | 48.26 | 50.39 | 49.92 | 27.49 | 48.63 | 39.43 | 49.26 | |
LEE_KNU_task2_4 | LEEKNU2023 | 87 | 41.254 | 30.42 | 30.94 | 49.37 | 37.36 | 49.89 | 22.34 | 50.89 | 15.44 | 47.95 | 49.97 | 49.63 | 48.57 | 48.59 | 47.85 | 51.27 | 50.77 | 69.50 | 49.37 | 53.90 | 49.89 | 75.74 | 50.89 | 81.70 | 47.95 | 49.13 | 49.63 | 28.41 | 48.59 | 41.74 | 51.27 | |
QianXuHu_BITNUDT_task2_1 | QianXuHuBITNUDT2023 | 39 | 57.470 | 59.48 | 62.12 | 51.37 | 90.22 | 58.32 | 59.48 | 62.16 | 57.70 | 62.79 | 54.57 | 52.47 | 46.71 | 47.37 | 60.11 | 53.08 | 58.30 | 59.14 | 51.37 | 67.00 | 58.32 | 57.34 | 62.16 | 88.42 | 62.79 | 55.07 | 52.47 | 39.42 | 47.37 | 62.63 | 53.08 | |
QianXuHu_BITNUDT_task2_2 | QianXuHuBITNUDT2023 | 42 | 56.317 | 66.37 | 62.12 | 51.37 | 90.22 | 58.32 | 84.44 | 54.68 | 99.20 | 59.79 | 54.57 | 52.47 | 46.71 | 47.37 | 60.11 | 53.08 | 51.18 | 59.14 | 51.37 | 67.00 | 58.32 | 46.90 | 54.68 | 41.44 | 59.79 | 55.07 | 52.47 | 39.42 | 47.37 | 62.63 | 53.08 | |
QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | 31 | 59.062 | 64.14 | 60.10 | 53.00 | 34.86 | 51.53 | 87.28 | 59.42 | 85.38 | 62.58 | 74.50 | 53.03 | 72.88 | 59.02 | 74.07 | 55.41 | 57.62 | 55.60 | 53.00 | 70.66 | 51.53 | 51.46 | 59.42 | 63.34 | 62.58 | 55.14 | 53.03 | 47.86 | 59.02 | 66.24 | 55.41 | |
QianXuHu_BITNUDT_task2_4 | QianXuHuBITNUDT2023 | 60 | 53.390 | 49.32 | 60.10 | 53.00 | 34.86 | 51.53 | 29.30 | 52.16 | 45.82 | 51.16 | 74.50 | 53.03 | 72.88 | 59.02 | 74.07 | 55.41 | 58.06 | 55.60 | 53.00 | 70.66 | 51.53 | 73.10 | 52.16 | 48.50 | 51.16 | 55.14 | 53.03 | 47.86 | 59.02 | 66.24 | 55.41 |
System characteristics
Summary of the submitted system characteristics.
Rank |
Submission Code |
Technical Report |
Classifier |
System Complexity |
Acoustic Feature |
Data Augmentation |
Decision Making |
System Embeddings |
Subsystem Conut |
External Data Usage |
Front End System |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | DCASE2023_baseline_task2_MAHALA | DCASE2023baseline2023 | AE | 267928 | log-mel energies | ||||||
30 | DCASE2023_baseline_task2_MSE | DCASE2023baseline2023 | AE | 267928 | log-mel energies | ||||||
21 | Du_NERCSLIP_task2_1 | DuNERCSLIP2023 | CNN, AE, ensemble | 107708217 | mel spectrogram, raw waveform | mixup | weighted average | wav2vec | 3 | ||
19 | Du_NERCSLIP_task2_2 | DuNERCSLIP2023 | CNN, AE, ensemble | 107708002 | mel spectrogram, raw waveform | mixup | weighted average | wav2vec | 2 | ||
20 | Du_NERCSLIP_task2_3 | DuNERCSLIP2023 | CNN, AE, ensemble | 5469799 | mel spectrogram | mixup | weighted average | 2 | |||
23 | Du_NERCSLIP_task2_4 | DuNERCSLIP2023 | CNN, AE, ensemble | 107707961 | mel spectrogram, raw waveform | mixup | weighted average | wav2vec | 2 | ||
78 | He_XJU_task2_1 | HeXJU2023 | CNN | 269992 | spectrogram | pitch shifting | |||||
83 | He_XJU_task2_2 | HeXJU2023 | CNN | 269992 | spectrogram | pitch shifting | |||||
80 | He_XJU_task2_3 | HeXJU2023 | CNN | 269992 | spectrogram | pitch shifting | |||||
74 | He_XJU_task2_4 | HeXJU2023 | CNN | 269992 | spectrogram | pitch shifting | |||||
11 | Lv_HUAKONG_task2_1 | LvHUAKONG2023 | Transformer | 300000000 | raw waveform | median | wav2vec2, hubert, unispeech, wavlm | 4 | wav2vec2 | ||
15 | Lv_HUAKONG_task2_2 | LvHUAKONG2023 | Transformer | 300000000 | raw waveform | median | wav2vec2 | 4 | wav2vec2 | ||
8 | Lv_HUAKONG_task2_3 | LvHUAKONG2023 | Transformer | 300000000 | raw waveform | median | wav2vec2, unispeech, wavlm | 6 | wav2vec2 | ||
2 | Lv_HUAKONG_task2_4 | LvHUAKONG2023 | Transformer | 300000000 | raw waveform | median | wav2vec2, unispeech, wavlm | 3 | wav2vec2, unispeech, wavlm | ||
4 | Jiang_THUEE_task2_1 | JiangTHUEE2023 | NFCDEE | 6574848 | log-mel energies | median | |||||
35 | Jiang_THUEE_task2_2 | JiangTHUEE2023 | classifier, nfcdee | 1.206B | log-mel energies | median | wav2vec, hubert, unispeech, wavlm | 6 | wav2vec, hubert, unispeech, wavlm | ||
7 | Jiang_THUEE_task2_3 | JiangTHUEE2023 | classifier, nfcdee | 1.206B | log-mel energies | median | wav2vec, hubert, unispeech, wavlm | 6 | wav2vec, hubert, unispeech, wavlm | ||
17 | Jiang_THUEE_task2_4 | JiangTHUEE2023 | classifier, nfcdee | 1.206B | log-mel energies | median | wav2vec, hubert, unispeech, wavlm | 6 | wav2vec, hubert, unispeech, wavlm | ||
33 | JiaJun_HFUU_task2_1 | JiaJunHFUU2023 | GMM,KNN,CNN,LOF,Transformer,ensemble | 4971030 | log-mel energies | smote,mixup | 3 | ||||
33 | JiaJun_HFUU_task2_2 | JiaJunHFUU2023 | GMM,KNN,CNN,LOF,Transformer,ensemble | 4971030 | log-mel energies | smote,mixup | 3 | ||||
27 | JiaJun_HFUU_task2_3 | JiaJunHFUU2023 | GMM,KNN,CNN,LOF,Transformer,ensemble | 4971030 | log-mel energies | smote,mixup | 3 | ||||
41 | JiaJun_HFUU_task2_4 | JiaJunHFUU2023 | GMM,KNN,CNN,LOF,Transformer,ensemble | 4971030 | log-mel energies | smote,mixup | 3 | ||||
76 | Zhang_DKU_task2_1 | ZhangDKU2023 | conformer, GMM | 10.53M | log-mel spectrogram | mixup,pitch shifting,time stretching,gaussian noise,fading,time shifting,time masking,frequency masking | |||||
57 | Zhang_DKU_task2_2 | ZhangDKU2023 | CNN, conformer, GMM | 12.91M | log-mel spectrogram, raw waveform | mixup,pitch shifting,time stretching,gaussian noise,fading,time shifting,time masking,frequency masking | |||||
65 | Zhang_DKU_task2_3 | ZhangDKU2023 | CNN, VAE | 1.3M | log-mel spectrogram | ||||||
76 | Zhang_DKU_task2_4 | ZhangDKU2023 | CNN, conformer, VAE, GMM | 24.74M | log-mel spectrogram, raw waveform | mixup,pitch shifting,time stretching,gaussian noise,fading,time shifting,time masking,frequency masking | average | 3 | |||
32 | Zhou_SHNU_task2_1 | ZhouSHNU2023 | ResNet, KNN | 11171280 | log-mel energies | gaussian noise, time stretching, pitch shifting, shifting | 2 | ||||
69 | Zhou_SHNU_task2_2 | ZhouSHNU2023 | ResNet, KNN | 11171280 | log-mel energies | gaussian noise, time stretching, pitch shifting, shifting | |||||
10 | Zhou_SHNU_task2_3 | ZhouSHNU2023 | AE | 269992 | log-mel energies | gaussian noise, time stretching, pitch shifting, shifting | 2 | ||||
32 | Zhou_SHNU_task2_1 | ZhouSHNU2023 | ResNet, KNN | 11171280 | log-mel energies | gaussian noise, time stretching, pitch shifting, shifting | 2 | ||||
28 | Zhang_BIT_task2_1 | ZhangBIT2023 | VAE | 35704705 | STFT spectrum | ||||||
56 | Zhang_BIT_task2_2 | ZhangBIT2023 | VAE, Contrastive Learning | 35704705 | STFT spectrum | ||||||
67 | Zhang_BIT_task2_3 | ZhangBIT2023 | VAE, GMM | 229948 | log-mel energies | ||||||
43 | Zhang_BIT_task2_4 | ZhangBIT2023 | CNN, Denoising Diffusion Probability Model | 35704705 | log-mel energies | ||||||
44 | Liu_CQUPT_task2_1 | LiuCQUPT2023 | CNN | 3706766 | log-mel energies | average | 2 | pre-trained model | |||
64 | Liu_CQUPT_task2_2 | LiuCQUPT2023 | ViT | 486172 | log-mel energies | average | 2 | ||||
48 | Liu_CQUPT_task2_3 | LiuCQUPT2023 | CNN, ViT | 4192938 | log-mel energies | average | 4 | pre-trained model | |||
45 | Liu_CQUPT_task2_4 | LiuCQUPT2023 | CNN, ViT | 4192938 | log-mel energies | average | 4 | pre-trained model | |||
53 | Atmaja_AIST_task2_1 | AtmajaAIST2023 | AE | 269992 | log-mel energies | ||||||
51 | Atmaja_AIST_task2_2 | AtmajaAIST2023 | AE | 269992 | log-mel energies | ||||||
52 | Atmaja_AIST_task2_3 | AtmajaAIST2023 | AE | 269992 | log-mel energies | ||||||
50 | Atmaja_AIST_task2_4 | AtmajaAIST2023 | AE | 269992 | log-mel energies | ||||||
5 | Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2023 | CNN, ensemble | 34417490 | magnitude spectrogram, magnitude spectrum | mixup | sum | 10 | |||
18 | Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2023 | CNN, ensemble | 42036050 | magnitude spectrogram, magnitude spectrum | mixup | maximum | 10 | |||
9 | Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2023 | CNN, ensemble | 76453540 | magnitude spectrogram, magnitude spectrum | mixup | maximum, average | 20 | |||
71 | Jiang_PSH_task2_1 | JiangPSH2023 | CNN | 1657392 | kaldi.fbank | ||||||
47 | Jiang_PSH_task2_2 | JiangPSH2023 | CNN | 779992 | log-mel energies | pitch shifting | IDMT-ISA-ELECTRIC-ENGINE | ||||
66 | Jiang_PSH_task2_3 | JiangPSH2023 | CNN | 779992 | log-mel energies | pitch shifting | IDMT-ISA-ELECTRIC-ENGINE | ||||
62 | Wu_qdreamer_task2_1 | Wuqdreamer2023 | AE, GAN, CNN | 269992 | log-mel spectrogram | simulation of anomalous samples | PCA | ||||
37 | Wu_qdreamer_task2_2 | Wuqdreamer2023 | AE, GAN, CNN | 269992 | log-mel spectrogram | simulation of anomalous samples | PCA | ||||
29 | Wu_qdreamer_task2_3 | Wuqdreamer2023 | AE, GAN, CNN | 269992 | log-mel spectrogram | simulation of anomalous samples | PCA | ||||
36 | Wu_qdreamer_task2_4 | Wuqdreamer2023 | AE, GAN, CNN | 269992 | log-mel spectrogram | simulation of anomalous samples | PCA | ||||
38 | Xiao_NJUPT_task2_1 | XiaoNJUPT2023 | AE | 221809 | spectral coherence, wavelet, log-mel | ||||||
70 | Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | GMM | 0 | spectral coherence, wavelet, log-mel | ||||||
70 | Xiao_NJUPT_task2_2 | XiaoNJUPT2023 | CNN | 713910 | spectral coherence, wavelet, log-mel | ||||||
3 | Jie_IESEFPT_task2_1 | JieIESEFPT2023 | CNN,KNN,smote | 3124602 | spectrum | mixup | |||||
1 | Jie_IESEFPT_task2_2 | JieIESEFPT2023 | CNN,cosine distance,smote | 3135603 | spectrum | mixup | |||||
25 | Jie_IESEFPT_task2_3 | JieIESEFPT2023 | AE,ensemble | 3105433 | log-mel energies | mixup | |||||
72 | Jie_IESEFPT_task2_4 | JieIESEFPT2023 | cnn,ensemble | 3010000 | log-mel energies | mixup | |||||
75 | Gou_UESTC_task2_1 | GouUESTC2023 | AE, CAE, LOF, CNN | 1198336 | log-mel energies | mixup, pitch shifting, time masking, frequency masking, gaussian noise | |||||
81 | Gou_UESTC_task2_2 | GouUESTC2023 | CNN | 1058816 | log-mel energies | Spectral noise addition, Spectral masking, Spectral warping | |||||
73 | Gou_UESTC_task2_3 | GouUESTC2023 | CNN | 1058816 | log-mel energies | Spectral noise addition, Spectral masking, Spectral warping | |||||
82 | Gou_UESTC_task2_4 | GouUESTC2023 | AE, CAE, LOF, CNN | 1198336 | log-mel energies | mixup, pitch shifting, time masking, frequency masking, gaussian noise | |||||
61 | Tanaka_GU_task2_1 | TanakaGU2023 | CNN, Mahalanobis distance | 11234503 | log-mel spectrogram | frequency masking, time masking, gaussian noise | |||||
63 | Tanaka_GU_task2_2 | TanakaGU2023 | CNN,AE | 2,062,744 | log-mel energies | streching | 7 | ||||
49 | Tanaka_GU_task2_3 | TanakaGU2023 | CNN | 11365312 | log-mel spectrogram | gaussian noise | |||||
79 | Tanaka_GU_task2_4 | TanakaGU2023 | ensemble | 11234503 | log-mel spectrogram | ||||||
54 | Fujimura_NU_task2_1 | FujimuraNU2023 | GMM,KNN,normalizing flow,CNN | 189652039 | mel spectrogram | mixup | average | PyTorch Image Models | 84 | pre-trained model | |
58 | Fujimura_NU_task2_2 | FujimuraNU2023 | GMM,KNN,normalizing flow,CNN | 118784132 | mel spectrogram | mixup | average | PyTorch Image Models | 42 | pre-trained model | |
55 | Fujimura_NU_task2_3 | FujimuraNU2023 | GMM,KNN,normalizing flow,CNN | 100559620 | mel spectrogram | mixup | average | PyTorch Image Models | 81 | pre-trained model | |
59 | Fujimura_NU_task2_4 | FujimuraNU2023 | GMM,KNN,normalizing flow,CNN | 83 | mel spectrogram | mixup | average | PyTorch Image Models | 159953414 | pre-trained model | |
12 | Bai_JLESS_task2_1 | BaiJLESS2023 | VAE, GAN | 2.4M | log-mel energies | mixup | |||||
13 | Bai_JLESS_task2_2 | BaiJLESS2023 | VAE, GAN | 2.4M | log-mel energies | mixup | |||||
6 | Bai_JLESS_task2_3 | BaiJLESS2023 | VAE | 2.4M | log-mel energies | mixup | |||||
22 | Bai_JLESS_task2_4 | BaiJLESS2023 | VAE | 2.4M | log-mel energies | mixup | |||||
46 | Guan_HEU_task2_1 | GuanHEU2023 | GMM | 33024 | log-mel energies | smote | |||||
16 | Guan_HEU_task2_2 | GuanHEU2023 | GMM | 33024 | log-mel energies | smote | AudioLDM | ||||
40 | Guan_HEU_task2_3 | GuanHEU2023 | CNN | 84604468 | log-mel energies | pretrained CNN14 in PANNs | |||||
14 | Guan_HEU_task2_4 | GuanHEU2023 | GMM, CNN | 84670516 | log-mel energies | smote | weighted average | 3 | AudioLDM, pretrained CNN14 in PANNs | ||
86 | Hauser_JKU_task2_1 | HauserJKU2023 | AE, U-net | 17265985 | log-mel spectrogram | ||||||
85 | LEE_KNU_task2_1 | LEEKNU2023 | contrastive learning, maximum likelihook covariance estimator | 11496000 | log-mel spectrogram | pitch shifting, gaussian noise, time masking | |||||
84 | LEE_KNU_task2_2 | LEEKNU2023 | contrastive learning, elliptic envelope | 11496000 | log-mel spectrogram | pitch shifting, gaussian noise, time masking | |||||
88 | LEE_KNU_task2_3 | LEEKNU2023 | contrastive learning, maximum likelihook covariance estimator | 11496000 | log-mel spectrogram | pitch shifting, gaussian noise, time masking | |||||
87 | LEE_KNU_task2_4 | LEEKNU2023 | contrastive learning, elliptic envelope | 11496000 | log-mel spectrogram | pitch shifting, gaussian noise, time masking | |||||
39 | QianXuHu_BITNUDT_task2_1 | QianXuHuBITNUDT2023 | GAN | 269992 | spectrogram | ||||||
42 | QianXuHu_BITNUDT_task2_2 | QianXuHuBITNUDT2023 | GAN | 269992 | spectrogram | ||||||
31 | QianXuHu_BITNUDT_task2_3 | QianXuHuBITNUDT2023 | AE | log-mel energies | |||||||
60 | QianXuHu_BITNUDT_task2_4 | QianXuHuBITNUDT2023 | AE | log-mel energies |
System output for submitted systems
Technical reports
ON THE USE OF CONCORDANCE CORRELATION COEFFICIENT FOR EVALUATING FIRST SHOT ANOMALOUS SOUND DETECTION
Bagus Tris Atmaja, Akira Sasou
Signal Processing Research Team, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Atmaja_AIST_task2_1 Atmaja_AIST_task2_2 Atmaja_AIST_task2_3 Atmaja_AIST_task2_4
ON THE USE OF CONCORDANCE CORRELATION COEFFICIENT FOR EVALUATING FIRST SHOT ANOMALOUS SOUND DETECTION
Bagus Tris Atmaja, Akira Sasou
Signal Processing Research Team, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Abstract
The choice of the loss function is a critical aspect of machine/deep learning. In this study, we investigate the use of the concordance correlation coefficient (CCC) as a loss function for first-shot anomaly sound detection. We compare the performance of CCC with the commonly used loss function, mean squared error (MSE). Furthermore, we benchmark CCC, MSE, and selective Malahanobis distance equally. The results show that CCC outperforms MSE and Selective Mahalanobis in terms of the harmonic mean of pAUC scores. We repeated the experiments of our method with CCC five times, and we obtained similar results across four runs showing the stability of our method.
System characteristics
Classifier | AE |
System complexity | 269992 |
Acoustic features | log-mel energies |
Unsupervised Abnormal Sound Detection Based on Machine Condition Mixup
Yafei Jia, Jisheng Bai, Siwei Huang, Jianfeng Chen
Joint Laboratory of Environmental Sound Sensing, School of Marine Science and Technology, Northwestern Polytechnical University., Xi'an, China and 1 Joint Laboratory of Environmental Sound Sensing, School of Marine Science and Technology, Northwestern Polytechnical University, 2 LianFeng Acoustic Technologies Co., Ltd., Xi'an, China
Bai_JLESS_task2_1 Bai_JLESS_task2_2 Bai_JLESS_task2_3 Bai_JLESS_task2_4
Unsupervised Abnormal Sound Detection Based on Machine Condition Mixup
Yafei Jia, Jisheng Bai, Siwei Huang, Jianfeng Chen
Joint Laboratory of Environmental Sound Sensing, School of Marine Science and Technology, Northwestern Polytechnical University., Xi'an, China and 1 Joint Laboratory of Environmental Sound Sensing, School of Marine Science and Technology, Northwestern Polytechnical University, 2 LianFeng Acoustic Technologies Co., Ltd., Xi'an, China
Abstract
Anomaly detection has a wide range of applications such as finding fraud cases in industry or indicating network intrusion in network security. Anomalous sound detection (ASD) for machine condition monitoring can detect anomalies in advance and prevent causing damage. However, the operational conditions of machines often change, leading to the different acoustic characteristics between training and test data. Domain generalization techniques are required to adapt the model to different conditions. In this paper, we present an unsupervised method for ASD, which uses MSE, KLD, and BCE as joint loss and Condition-Mixup data augmentation strategies for the GAN-VAE model. The proposed Condition-Mixup strategy mixes data from the target domain of the unified condition in the time domain to balance the difference in data volume between the source domain and the target domain. In addition, we adopted a GAN-VAE model to learn common potential information between the source and target domains. Finally, we use acoustic representation to train anomaly detectors to detect abnormal sounds. The experimental results on the DCASE2023 taks2 development dataset show that our method outperforms the baseline system.
System characteristics
Classifier | GAN, VAE |
System complexity | 2.4M |
Acoustic features | log-mel energies |
Data augmentation | mixup |
Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Yohei Kawaguchi
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and Doshisha University, Kyoto, Japan and NTT Communication Science Labs, Kanagawa, Japan
DCASE2023_baseline_task2_MAHALA DCASE2023_baseline_task2_MSE
Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Yohei Kawaguchi
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and Doshisha University, Kyoto, Japan and NTT Communication Science Labs, Kanagawa, Japan
Abstract
We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: "First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring". The main goal is to enable rapid deployment of ASD systems for new kinds of machines using only a few normal samples, without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving first-shot problem, which is the challenge of training a model on a few machines of a completely novel machine type. Specifically, (i) each machine type has only one section, and (ii) machine types in the development and evaluation datasets are completely different. We will add challenge results and analysis of the submissions after the challenge submission deadline.
System characteristics
Classifier | AE |
System complexity | 267928 |
Acoustic features | log-mel energies |
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION USING ATTRIBUTE CLASSIFICATION AND CONDITIONAL AUTOENCODER
Lei Wang, Fan Chu, Yuxuan Zhou, Shuxian Wang, Zulong Yan, Shifan Xu, Qing Wu, Mingqi Cai, Jia Pan, Qing Wang, Jun Du, Tian Gao, Xin Fang, Liang Zou
National Intelligent Voice Innovation Center, Hefei, China and University of Science and Technology of China, Hefei, China and China University of Mining and Technology, Xuzhou, China and IFLYTEK CO. LTD., Hefei, China and National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, China
Du_NERCSLIP_task2_1 Du_NERCSLIP_task2_2 Du_NERCSLIP_task2_3 Du_NERCSLIP_task2_4
FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION USING ATTRIBUTE CLASSIFICATION AND CONDITIONAL AUTOENCODER
Lei Wang, Fan Chu, Yuxuan Zhou, Shuxian Wang, Zulong Yan, Shifan Xu, Qing Wu, Mingqi Cai, Jia Pan, Qing Wang, Jun Du, Tian Gao, Xin Fang, Liang Zou
National Intelligent Voice Innovation Center, Hefei, China and University of Science and Technology of China, Hefei, China and China University of Mining and Technology, Xuzhou, China and IFLYTEK CO. LTD., Hefei, China and National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, China
Abstract
This technical report outlines our solution to DCASE 2023 Challenge Task 2, First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. This year's task focuses on the first-shot problem: the development dataset and the evaluation dataset have completely different sets of machine types, and each machine type contains only one section. We propose an anomaly detection method based on attribute classification and conditional autoencoder. The attribute classification method includes model pre-training, embedding extraction and inlier modeling, and the conditional autoencoder uses attribute information as conditions. The proposed system achieves 78.35% in the harmonic mean of all machine types, sections, and domains for the area under the curve (AUC) and partial AUC (p = 0.1) on the development set.
System characteristics
Classifier | AE, CNN, ensemble |
System complexity | 107707961, 107708002, 107708217, 5469799 |
Acoustic features | mel spectrogram, raw waveform |
Data augmentation | mixup |
Decision making | weighted average |
System embeddings | wav2vec |
Subsystem count | 2, 3 |
Anomalous sound detection by end-to-end training of outlier exposure and normalizing flow with domain generalization techniques
Takuya Fujimura, Ibuki Kuroyanagi, Tomoki Hayashi, Tomoki Toda
Nagoya University, Nagoya, Japan and Nagoya University and Human Dataware Lab. Co., Ltd., Nagoya, Japan
Fujimura_NU_task2_1 Fujimura_NU_task2_2 Fujimura_NU_task2_3 Fujimura_NU_task2_4
Anomalous sound detection by end-to-end training of outlier exposure and normalizing flow with domain generalization techniques
Takuya Fujimura, Ibuki Kuroyanagi, Tomoki Hayashi, Tomoki Toda
Nagoya University, Nagoya, Japan and Nagoya University and Human Dataware Lab. Co., Ltd., Nagoya, Japan
Abstract
In this report, we propose an anomalous sound detection (ASD) method for DCASE 2023 Challenge Task 2. Our proposed method is an extension of the serial approach using an outlier exposure-based feature extractor and an inlier modeling-based anomalous detector. We newly employ the normalizing flow as the inlier model and jointly optimize it with the feature extractor in an end-to-end manner. Furthermore, in order to deal with the domain shift, we use some domain generalization techniques, such as the domain-invariant latent space modeling in the normalizing flow and mixup to generate the pseudo-target domain data. The anomaly scores can be calculated directly using the normalizing flow or additionally using other inlier models separately trained with the optimized feature embeddings. Our final system is made by the ensemble and achieves 69.78 % in the harmonic mean of the area under the curve (AUC) and partial AUC (p=0.1) over all machine types and domains on the development set.
System characteristics
Classifier | CNN, GMM, KNN, normalizing flow |
System complexity | 100559620, 118784132, 189652039, 83 |
Acoustic features | mel spectrogram |
Data augmentation | mixup |
Decision making | average |
System embeddings | PyTorch Image Models |
Subsystem count | 159953414, 42, 81, 84 |
External data usage | pre-trained model |
A DATA AUGMENTATION-BASED APPROACH FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION
Jiacheng Gou, Chenkun Sun, Anqi Tu, Huiyong Li, Chuang Shi
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China and University of Electronic Science and Technology of China, Chengdu, China
Gou_UESTC_task2_1 Gou_UESTC_task2_2 Gou_UESTC_task2_3 Gou_UESTC_task2_4
A DATA AUGMENTATION-BASED APPROACH FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION
Jiacheng Gou, Chenkun Sun, Anqi Tu, Huiyong Li, Chuang Shi
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China and University of Electronic Science and Technology of China, Chengdu, China
Abstract
The detection of abnormal conditions in machinery and equipment through sound diagnosis is of utmost importance in the field of industrial automation. However, acquiring abnormal sound and dealing with machine state transformation can present challenges. In order to address these challenges, a data augmentation combined with unsupervised feature extraction approach has been proposed for abnormal sound detection in machinery and equipment. The method involves the extraction of features from the sound samples using a unsupervised feature extractor, which is constructed using both normal and artificially constructed abnormal log-mel-spectrograms. These features are then fed into a autoencoder for unsupervised abnormal sound recognition. The proposed method has been evaluated using the DCASE 2023 Task 2 Development Dataset, and the results demonstrate that it can adaptively extract sound features of mechanical equipment, achieving an average area under the curve detection result of 56.52%.
System characteristics
Classifier | AE, CAE, CNN, LOF |
System complexity | 1058816, 1198336 |
Acoustic features | log-mel energies |
Data augmentation | Spectral noise addition, Spectral masking, Spectral warping, mixup, pitch shifting, time masking, frequency masking, gaussian noise |
First-shot Anomalous Sound Detection with GMM Clustering and Finetuned Attribute Classification using Audio Pretrained Model
Jiantong Tian, Hejing Zhang, Qiaoxi Zhu, Feiyang Xiao, Haohe Liu, Xinhao Mei, Youde Liu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and Centre for Audio, Acoustic and Vibration, University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK and School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Guan_HEU_task2_1 Guan_HEU_task2_2 Guan_HEU_task2_3 Guan_HEU_task2_4
First-shot Anomalous Sound Detection with GMM Clustering and Finetuned Attribute Classification using Audio Pretrained Model
Jiantong Tian, Hejing Zhang, Qiaoxi Zhu, Feiyang Xiao, Haohe Liu, Xinhao Mei, Youde Liu, Wenwu Wang, Jian Guan
Group of Intelligent Signal Processing, College of Computer Science and Technology, Harbin Engineering University, Harbin, China and Centre for Audio, Acoustic and Vibration, University of Technology Sydney, Ultimo, Australia and Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK and School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Abstract
This technical report describes our submission for DCASE 2023 challenge task 2. To address the first-shot and domain shift problem in anomalous sound detection (ASD), we designed an ensemble system that consists of a classification method based on pretrained audio neural networks (PANNs) and a clustering method based on the Gaussian Mixture Model (GMM) with a text-to-audio pretrained model AudioLDM. Experiments on the development set show that our system achieved 77.6% in the harmonic mean of area under curve (AUC) in the source domain, 65.4% in AUC in the target domain, and 56.6% in pAUC across all machine types.
System characteristics
Classifier | CNN, GMM |
System complexity | 33024, 84604468, 84670516 |
Acoustic features | log-mel energies |
Data augmentation | smote |
Decision making | weighted average |
Subsystem count | 3 |
External data usage | AudioLDM, AudioLDM, pretrained CNN14 in PANNs, pretrained CNN14 in PANNs |
ANOMALY DETECTION USING SPECTROGRAM RECONSTRUCTION ERRORS WITH U-NET
David Hauser, Tobias Katsch, Sara Moosbauer
Johannes Kepler University, Linz, Austria
Abstract
In this report we describe our submission to the DCASE 2023 Task 2: First-Shot Unsupervised Anomalous Sound Detection Challenge, which has the goal of detecting malfunctioning machines by analyzing a machine's sound recording. We applied the U-Net architecture, trained to reconstruct partially masked spectrograms generated from the machine sound recordings. The task turned out to be challenging, beating the baseline on one out of seven machines during evaluation.
System characteristics
Classifier | AE, U-net |
System complexity | 17265985 |
Acoustic features | log-mel spectrogram |
Unsupervised abnormal sound detection method based on causal separation
Yunxiang Zhang, Zheng Yaohao, Luo Qingqing, Liang HE
School of Information Science and Engineering, Xinjiang University, Urumqi, China and Xinjiang University, Urumqi, China
He_XJU_task2_1 He_XJU_task2_2 He_XJU_task2_3 He_XJU_task2_4
Unsupervised abnormal sound detection method based on causal separation
Yunxiang Zhang, Zheng Yaohao, Luo Qingqing, Liang HE
School of Information Science and Engineering, Xinjiang University, Urumqi, China and Xinjiang University, Urumqi, China
Abstract
Anomalous sound detection (ASD) is the task of identifying if a sound is normal or anomalous with respect to a given reference. In this report we present a solution for the DCASE2023 task 2 (First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring), which aims to address the ASD problem under domain generalization and First-shot problem. We use the method consists of the classification method and stable learning. The proposed systems achieve in the harmonic mean of all machine types, sections, and domains for the area under the curve (AUC) and partial AUC (p = 0.1) on the development set.
System characteristics
Classifier | CNN |
System complexity | 269992 |
Acoustic features | spectrogram |
Data augmentation | pitch shifting |
Self-Supervised Representation Learning for First-Shot Unsupervised Anomalous Sound Detection
Wang Jiajun, Wang Junjie, Chen Shengbing, Xu Zhiqi, Wan Mengyuan
HFUU, HeFei, China
JiaJun_HFUU_task2_1 JiaJun_HFUU_task2_2 JiaJun_HFUU_task2_3 JiaJun_HFUU_task2_4
Self-Supervised Representation Learning for First-Shot Unsupervised Anomalous Sound Detection
Wang Jiajun, Wang Junjie, Chen Shengbing, Xu Zhiqi, Wan Mengyuan
HFUU, HeFei, China
Abstract
This paper describes a self-supervised representation learning system for the DCASE 2023 Challenge Task 2: "First-shot compliant unsupervised anomaly detection (ASD) for machine condition monitoring".First-shot ASD does not allow systems to do machine-type dependent hyperparameter tuning or tool ensembling based on the performance metric calculated with the grand truth. Due to the challenges in extracting meaningful features from exposure methods of outlier values in anomaly detection, a novel approach of self-supervised representation learning is introduced. The proposed method involves initial classification based on sound metadata, and subsequent feature extraction, and ultimately, anomaly scores are obtained through an anomaly detection algorithm. Our final system is a result of integrating multiple systems together. The proposed system achieves a 63.16% area under the curve (AUC) and partial AUC (p = 0.1) in the harmonized average across all machine types, subsets, and domains on the development dataset.
System characteristics
Classifier | CNN, GMM, KNN, LOF, Transformer, ensemble |
System complexity | 4971030 |
Acoustic features | log-mel energies |
Data augmentation | smote,mixup |
Subsystem count | 3 |
UNSUPERVISED ABNORMAL SOUND DETECTION SYSTEM BASED ON MULTI-ATTRIBUTE
Chengliang Jiang, Yan Wang
A Fujitsu Company, PFU SHANGHAI Co, Ltd., Shanghai, China and PFU Shanghai Ltd., Shanghai, China
Jiang_PSH_task2_1 Jiang_PSH_task2_2 Jiang_PSH_task2_3
UNSUPERVISED ABNORMAL SOUND DETECTION SYSTEM BASED ON MULTI-ATTRIBUTE
Chengliang Jiang, Yan Wang
A Fujitsu Company, PFU SHANGHAI Co, Ltd., Shanghai, China and PFU Shanghai Ltd., Shanghai, China
Abstract
This technical report describes submission to DCASE 2023 Task 2. In this report, we propose a multi-attribute training method for anomalous sound detection, which includes feature preprocessing, model training, center loss, triplet loss, and anomaly score selection. The experimental results show that our anomalous sound detection model is superior to the official model.
System characteristics
Classifier | CNN |
System complexity | 1657392, 779992 |
Acoustic features | kaldi.fbank, log-mel energies |
Data augmentation | pitch shifting |
External data usage | IDMT-ISA-ELECTRIC-ENGINE |
THUEE SYSTEM FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION FOR MACHINE CONDITION MONITORING
Anbai Jiang, Qijun Hou, Jia Liu, Pingyi Fan, Jitao Ma, Cheng Lu, Yuanzhi Zhai, Yufeng Deng, Wei-Qiang Zhang
Department of Electronic Engineering, Tsinghua University, Beijing, China and Tsinghua University, Beijing, China and North China Electric Power University, Beijing, China
Jiang_THUEE_task2_1 Jiang_THUEE_task2_2 Jiang_THUEE_task2_3 Jiang_THUEE_task2_4
THUEE SYSTEM FOR FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND DETECTION FOR MACHINE CONDITION MONITORING
Anbai Jiang, Qijun Hou, Jia Liu, Pingyi Fan, Jitao Ma, Cheng Lu, Yuanzhi Zhai, Yufeng Deng, Wei-Qiang Zhang
Department of Electronic Engineering, Tsinghua University, Beijing, China and Tsinghua University, Beijing, China and North China Electric Power University, Beijing, China
Abstract
This report presents our work for DCASE 2023 Task 2: first-shot unsupervised anomalous sound detection for machine condition monitoring. This task mainly focuses on first-shot problems compared with previous challenges. No hyperparameter tuning and developing systems on some machines while testing on other machines bring a lot of challenges. We have developed several kinds of systems to detect first-shot sound anomalies better: training embedding extraction systems from scratch, finetuning pre-trained embedding extractors, and employing normalizing flows. Different kinds of systems give complementary information. We achieve the best hmean of 69.46% on the development set through system fusion.
System characteristics
Classifier | NFCDEE, classifier, nfcdee |
System complexity | 1.206B, 6574848 |
Acoustic features | log-mel energies |
Decision making | median |
System embeddings | wav2vec, hubert, unispeech, wavlm |
Subsystem count | 6 |
External data usage | wav2vec, hubert, unispeech, wavlm |
ANOMALOUS SOUND DETECTION BASED ON SELF-SUPERVISED LEARNING
Wang Junjie, Wang Jiajun, Chen Shengbing, Sun Yong, Liu Mengyuan
IESEFPT, hefei, China and IESEFPT, Hefei, China
Jie_IESEFPT_task2_1 Jie_IESEFPT_task2_2 Jie_IESEFPT_task2_3 Jie_IESEFPT_task2_4
ANOMALOUS SOUND DETECTION BASED ON SELF-SUPERVISED LEARNING
Wang Junjie, Wang Jiajun, Chen Shengbing, Sun Yong, Liu Mengyuan
IESEFPT, hefei, China and IESEFPT, Hefei, China
Abstract
This technical report presents our approach for Task 2 of the DCASE 2023 Challenge, which focuses on unsupervised anomaly sound detection for machine condition monitoring. We constructed four subsystems, where the first two are based on self-supervised learning methods that utilize feature vectors extracted from convolutional neural networks and employ outlier detection algorithms to identify abnormal sounds. The third subsystem incorporates a modification of the Mahalanobis distance autoencoder (AE) to better adapt to domain shift. The fourth subsystem integrates the previous three systems. The experimental results demonstrate that the proposed system outperforms the baseline significantly on the development set.
System characteristics
Classifier | AE, CNN, KNN, cnn, cosine distance, ensemble, smote |
System complexity | 3010000, 3105433, 3124602, 3135603 |
Acoustic features | log-mel energies, spectrum |
Data augmentation | mixup |
TWO-STAGE CONTRASTIVE LEARNING FOR ANOMALOUS SOUND DETECTION
Seunghyeon Shin, Seokjin Lee
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Korea
LEE_KNU_task2_1 LEE_KNU_task2_2 LEE_KNU_task2_3 LEE_KNU_task2_4
TWO-STAGE CONTRASTIVE LEARNING FOR ANOMALOUS SOUND DETECTION
Seunghyeon Shin, Seokjin Lee
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Korea
Abstract
This technical report describes our anomalous sound detection system submission for DCASE 2023 Task 2. Our system is composed of two stages: a self-supervised contrastive learning network as a feature extractor and a covariance estimator for anomalous scoring. The feature extractor network is trained only once and used across all classes, while the anomalous score is calculated using the mahalanobis distance with the covariance estimator. Our system tested with two kinds of covariance estimation method. Our system with maximum likelihood covariance estimation method achieved a performance improvement of 7.39% and 5.5% over the baseline system which uses mean square error loss and mahalanobis distance loss, based on the official scoring metric of DCASE 2023 Task 2
System characteristics
Classifier | contrastive learning, elliptic envelope, maximum likelihook covariance estimator |
System complexity | 11496000 |
Acoustic features | log-mel spectrogram |
Data augmentation | pitch shifting, gaussian noise, time masking |
General Anomalous Sound Detection Using Sound Event Classification and Detection
Ying Zeng, Hongqing Liu, Yi Zhou
Chongqing University of Posts and Telecommunications, Chongqing, China
Liu_CQUPT_task2_1 Liu_CQUPT_task2_2 Liu_CQUPT_task2_3 Liu_CQUPT_task2_4
General Anomalous Sound Detection Using Sound Event Classification and Detection
Ying Zeng, Hongqing Liu, Yi Zhou
Chongqing University of Posts and Telecommunications, Chongqing, China
Abstract
This technical report describes our team's submission to DCASE 2023 Task 2. In this report, we utilize sound event classification and detection as an auxiliary task for anomalous sound detection (ASD), and this method only needs to train a general ASD model to detect anomalies, and detects multiple anomalies, and can detect them at the same time. The experimental results show that our ASD model outperforms the official model.
System characteristics
Classifier | CNN, ViT |
System complexity | 3706766, 4192938, 486172 |
Acoustic features | log-mel energies |
Decision making | average |
Subsystem count | 2, 4 |
External data usage | pre-trained model |
UNSUPERVISED ANOMALOUS DETECTION BASED ON UNSUPERVISED PRETRAINED MODELS
Zhiqiang Lv, Bing Han, Zhengyang Chen, Yanmin Qian, Jiawei Ding, Jia Liu
Huakong AI Plus, Beijing, China and Shanghai Jiao Tong University, Shanghai, China
Lv_HUAKONG_task2_1 Lv_HUAKONG_task2_2 Lv_HUAKONG_task2_3 Lv_HUAKONG_task2_4
UNSUPERVISED ANOMALOUS DETECTION BASED ON UNSUPERVISED PRETRAINED MODELS
Zhiqiang Lv, Bing Han, Zhengyang Chen, Yanmin Qian, Jiawei Ding, Jia Liu
Huakong AI Plus, Beijing, China and Shanghai Jiao Tong University, Shanghai, China
Abstract
Unsupervised pretrained models have been widely applied in lots of scenarios successfully. DCASE 2023 challenge Task2 is about first-shot unsupervised anomalous sound detection. To solve this problem, we tried to use several unsupervised pretrained models trained on thousands hours of speech. By fine-tuning pretrained big models with datasets of DCASE 2023 challenge Task2, we found that pretrained models outperformed small models trained from scratch. Our best pretrained model achieve hmean of 63.84% on the development dataset, which is much better than the auto-encoder baseline.
System characteristics
Classifier | Transformer |
System complexity | 300000000 |
Acoustic features | raw waveform |
Decision making | median |
System embeddings | wav2vec2, wav2vec2, hubert, unispeech, wavlm, wav2vec2, unispeech, wavlm |
Subsystem count | 3, 4, 6 |
External data usage | wav2vec2, wav2vec2, unispeech, wavlm |
ENSEMBLE SYSTEMS WITH GAN AND AUTO-ENCODER MODELS FOR ANOMALOUS SOUND DETECTION
Zhonghao Zhao, Yang Tan, Kun Qian, Kele Xu, Bin Hu
(1) Ministry of Education (Beijing Institute of Technology) (2) Beijing Institute of Technology, (1) Key Laboratory of Brain Health Intelligent Evaluation and Intervention (2) School of Medical Technology, P.R. China and (1) Key Laboratory of Brain Health Intelligent Evaluation and Intervention (2) School of Medical Technology, P.R. China and National University of Defense Technology, Changsha, P.R. China
QianXuHu_BITNUDT_task2_1 QianXuHu_BITNUDT_task2_2 QianXuHu_BITNUDT_task2_3 QianXuHu_BITNUDT_task2_4
ENSEMBLE SYSTEMS WITH GAN AND AUTO-ENCODER MODELS FOR ANOMALOUS SOUND DETECTION
Zhonghao Zhao, Yang Tan, Kun Qian, Kele Xu, Bin Hu
(1) Ministry of Education (Beijing Institute of Technology) (2) Beijing Institute of Technology, (1) Key Laboratory of Brain Health Intelligent Evaluation and Intervention (2) School of Medical Technology, P.R. China and (1) Key Laboratory of Brain Health Intelligent Evaluation and Intervention (2) School of Medical Technology, P.R. China and National University of Defense Technology, Changsha, P.R. China
Abstract
In this paper, we describe our submissions for DCASE 2023 Challenge Task 2. For solving anomalous sound detection problem, an ensemble system with gan and auto-encoder model are proposed. Spectrograms and log-mel energies are used to train models. As a result, the proposed systems achieved a better performance than the baseline models.
System characteristics
Classifier | AE, GAN |
System complexity | 269992 |
Acoustic features | log-mel energies, spectrogram |
ANOMALOUS SOUND DETECTION USING CNN-BASED MODELS AND ENSEMBLE
Ryosuke Tanaka, Keisuke Ikeda, Shiya Aoyama, Satoshi Tamura
Gifu University, Gifu, Japan and Gifu, Gifu, Japan
Tanaka_GU_task2_1 Tanaka_GU_task2_2 Tanaka_GU_task2_3 Tanaka_GU_task2_4
ANOMALOUS SOUND DETECTION USING CNN-BASED MODELS AND ENSEMBLE
Ryosuke Tanaka, Keisuke Ikeda, Shiya Aoyama, Satoshi Tamura
Gifu University, Gifu, Japan and Gifu, Gifu, Japan
Abstract
This paper presents our efforts for DCASE2023 Challenge Task2. We explore three schemes: (1) sound anomaly detection based on state-of-the-art image processing techniques with machine type classifiers, (2) anomaloous detection based on the same image processing in addition to the inpainting strategy, (3) anomaly detection utilizing machine setting classification to enhance the performance, and (4) anomaly detection by composing existing detectors in the ensemble manner. Experiments were conducted to evaluate our approaches.
System characteristics
Classifier | AE, CNN, Mahalanobis distance, ensemble |
System complexity | 11234503, 11365312, 2,062,744 |
Acoustic features | log-mel energies, log-mel spectrogram |
Data augmentation | frequency masking, time masking, gaussian noise, gaussian noise, streching |
Subsystem count | 7 |
Fraunhofer FKIE submission for Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
Kevin Wilkinghoff
Communication Systems, Fraunhofer FKIE, Wachtberg, Germany
Abstract
This report contains a description of the Fraunhofer FKIE submission for task 2 "First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring" of the DCASE challenge 2023. The submitted system is an adaptation of a previously proposed embedding model for extracting representations of audio data suitable for detecting anomalous sounds in domain shifted conditions. The model consists of two sub-models utilizing static and dynamic frequency information and is trained through an auxiliary classification task using the sub-cluster AdaCos loss. In this work, a modified version of mixup is presented and shown to improve the performance, especially increasing the partial area under the receiver operating characteristic curve. As a result, the proposed system is shown to significantly outperform both baseline systems of the challenge.
System characteristics
Classifier | CNN, ensemble |
System complexity | 34417490, 42036050, 76453540 |
Acoustic features | magnitude spectrogram, magnitude spectrum |
Data augmentation | mixup |
Decision making | average, maximum, sum |
Subsystem count | 10, 20 |
ANOMALOUS SOUND DETECTION SYSTEM WITH GAN AND AE FOR DCASE2023 CHALLENGE TASK 2
Tianxin Wu
Suzhou Qimengzhe Technology Company, Co., Ltd., Suzhou, China
Wu_qdreamer_task2_1 Wu_qdreamer_task2_2 Wu_qdreamer_task2_3 Wu_qdreamer_task2_4
ANOMALOUS SOUND DETECTION SYSTEM WITH GAN AND AE FOR DCASE2023 CHALLENGE TASK 2
Tianxin Wu
Suzhou Qimengzhe Technology Company, Co., Ltd., Suzhou, China
Abstract
This report describes the system for DCASE 2023 Challenge Task 2, which aims to detect anomalous machine states through sound using machine learning methods, where the training dataset itself does not contain any anomalous examples. We constructed a method based on Generative Adversarial Networks (GAN). The system achieved the best score of 86.20% on the development dataset for the machine type "slider," while the corresponding baseline score based on autoencoders was 69.06% and 83.18%.
System characteristics
Classifier | AE, CNN, GAN |
System complexity | 269992 |
Acoustic features | log-mel spectrogram |
External data usage | simulation of anomalous samples |
Front end system | PCA |
UNSUPERVISED ABNORMAL SOUND DETECTION BASED ON FEATURE FUSION IN FIRST-SHOT CONDITION
Yao Xiao, Tao Peng, Shi Feng, Yanli Wang, Hao Ba, Chenyang Zhu, Shengchen Li, Xi Shao
Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China and SAMSUNG Electronics (China) R&D Centra, Nanjing, China and School of Advanced Technology, Suzhou, China and Telecommunications & Information Engineering, Nanjing, China
Xiao_NJUPT_task2_1 Xiao_NJUPT_task2_2 Xiao_NJUPT_task2_2
UNSUPERVISED ABNORMAL SOUND DETECTION BASED ON FEATURE FUSION IN FIRST-SHOT CONDITION
Yao Xiao, Tao Peng, Shi Feng, Yanli Wang, Hao Ba, Chenyang Zhu, Shengchen Li, Xi Shao
Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China and SAMSUNG Electronics (China) R&D Centra, Nanjing, China and School of Advanced Technology, Suzhou, China and Telecommunications & Information Engineering, Nanjing, China
Abstract
The DCASE2023 Challenge Task2 is to develop an unsupervised detection system of anomalous sounds for seven types of machines under first shot conditions. In this paper, we use a novel feature fusion way as the system input, using two simple models: one is Autoencoder(AE) and another is GMM. It shows that our feature fu- sion has significantly improved the results compared with the base- line in general, especially the GMM.
System characteristics
Classifier | AE, CNN, GMM |
System complexity | 0, 221809, 713910 |
Acoustic features | log-mel, spectral coherence, wavelet |
UNSUPERVISED LEARNING FOR ANOMALOUS SOUND DETECTION BASED ON PREDICTION AND RECONSTRUCTION TASKS
Fengrun Zhang, Chenguang Hu, Kai Guo
School of Information and Electronics, Beijing Institute of Technology, Beijing, China and Beijing Institute of Technology, Beijing, China
Zhang_BIT_task2_1 Zhang_BIT_task2_2 Zhang_BIT_task2_3 Zhang_BIT_task2_4
UNSUPERVISED LEARNING FOR ANOMALOUS SOUND DETECTION BASED ON PREDICTION AND RECONSTRUCTION TASKS
Fengrun Zhang, Chenguang Hu, Kai Guo
School of Information and Electronics, Beijing Institute of Technology, Beijing, China and Beijing Institute of Technology, Beijing, China
Abstract
The purpose of anomalous sound detection is to detect whether the sound emitted by the machine is normal or anomalous. Due to the scarcity and diversity of anomalous data, only normal audio data is used to detect anomalies. The DCASE 2023 challenge is dedicated to developing a general-purpose anomalous detection algorithm that has good anomalous detection results on different machine types. For the problem scenario of DCASE 2023, we have developed four systems for anomalous sound detection, which are called VIDNN, CPC-VAE, VAE-GMM, DDPM.
System characteristics
Classifier | CNN, Contrastive Learning, Denoising Diffusion Probability Model, GMM, VAE |
System complexity | 229948, 35704705 |
Acoustic features | STFT spectrum, log-mel energies |
Anomalous Sound Detection via Multitask Learning and Adversarial Learning
Yucong Zhang, Ming Li
Data Science Research Center, Duke Kunshan University, Suzhou, China and Duke Kunshan University, Suzhou, China
Zhang_DKU_task2_1 Zhang_DKU_task2_2 Zhang_DKU_task2_3 Zhang_DKU_task2_4
Anomalous Sound Detection via Multitask Learning and Adversarial Learning
Yucong Zhang, Ming Li
Data Science Research Center, Duke Kunshan University, Suzhou, China and Duke Kunshan University, Suzhou, China
Abstract
This technical report describes our submitted systems to DCASE 2023 Challenge Task 2. We propose two different methods. The first one is a multitask learning method, which incorporates a self-supervised attribute classification and a GMM-based scoring. The second one is to directly train an anomaly evaluator via adversarial learning, which achieves domain generalization by learning inherit properties other than the attributes. Experimental results on the development dataset show that both our methods outperform the baseline methods. The ensemble system has an average improvement of 8% based on the baseline results.
System characteristics
Classifier | CNN, GMM, VAE, conformer |
System complexity | 1.3M, 10.53M, 12.91M, 24.74M |
Acoustic features | log-mel spectrogram, raw waveform |
Data augmentation | mixup,pitch shifting,time stretching,gaussian noise,fading,time shifting,time masking,frequency masking |
Decision making | average |
Subsystem count | 3 |
Attribute Classifier with Imbalance Compensation for Anomalous Sound Detection
Yifan Zhou, Yanhua Long
Shanghai Normal University, Shanghai, China
Zhou_SHNU_task2_1 Zhou_SHNU_task2_2 Zhou_SHNU_task2_3 Zhou_SHNU_task2_1
Attribute Classifier with Imbalance Compensation for Anomalous Sound Detection
Yifan Zhou, Yanhua Long
Shanghai Normal University, Shanghai, China
Abstract
This paper proposes an Attribute Classifier with Imbalance Compensation (ACIC) for DCASE 2023 Challenge Task 2. The goal is to perform anomalous sound detection by exploiting prior knowledge about machine attributes. First, we propose to use the weak prior knowledge provided by attribute for anomaly detection. Then, we design the Imbalance Compensation (IC) strategy to address the class imbalance problem of attributes. Finally, we propose a score fusion method based on ACIC to enhance the robustness of the model. Experimental results show that compensating for attribute class imbalance improves the exposure of anomalies.
System characteristics
Classifier | AE, KNN, ResNet |
System complexity | 11171280, 269992 |
Acoustic features | log-mel energies |
Data augmentation | gaussian noise, time stretching, pitch shifting, shifting |
Subsystem count | 2 |