Task description
The scope of this task is to identify whether the sound emitted from a target machine is normal or anomalous via an anomaly detector trained using only normal sound data. The main difference from the DCASE 2020 Task 2 is that the participants have to solve the domain shift problem, i.e., the condition where the acoustic characteristics of the training and test data are different.
More detailed task description can be found in the task description page
Teams ranking
Table including only the best performing system per submitting team.
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Pump (AUC) |
Pump (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Pump (AUC) |
Pump (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | 51 | 56.375 | 65.93 | 52.32 | 68.51 | 57.56 | 60.68 | 50.50 | 65.49 | 56.86 | 58.30 | 50.98 | 57.22 | 51.41 | 51.87 | 50.07 | 62.49 | 52.36 | 61.71 | 53.81 | 63.24 | 53.38 | 65.97 | 52.76 | 61.92 | 54.41 | 66.74 | 55.94 | 53.41 | 50.54 | |
Tozicka_NSW_task2_4 | TozickaNSW2021 | 19 | 61.186 | 68.23 | 59.40 | 51.71 | 51.79 | 73.17 | 62.02 | 64.70 | 57.86 | 78.65 | 65.16 | 69.89 | 59.61 | 53.93 | 54.22 | 74.40 | 58.22 | 73.94 | 58.88 | |||||||||||
Asai_PFU_task2_1 | AsaiPFU2021 | 40 | 57.845 | 46.66 | 50.66 | 53.67 | 51.94 | 74.41 | 61.15 | 52.39 | 51.20 | 73.87 | 62.54 | 77.15 | 60.06 | 57.25 | 55.72 | 61.84 | 55.79 | 65.63 | 56.02 | 61.65 | 61.44 | 65.59 | 53.09 | 64.58 | 57.40 | 70.85 | 58.78 | 74.20 | 67.47 | |
Bai_LFXS_task2_2 | BaiLFXS2021 | 43 | 57.040 | 49.39 | 57.51 | 42.53 | 49.75 | 75.15 | 61.32 | 58.61 | 55.55 | 58.12 | 51.21 | 83.09 | 71.86 | 55.29 | 53.34 | 56.32 | 55.29 | 64.12 | 59.71 | 69.13 | 61.73 | 66.67 | 61.65 | 70.54 | 65.07 | 72.93 | 65.50 | 79.39 | 71.64 | |
Liu_CQUPT_task2_1 | LiuCQUPT2021 | 64 | 53.837 | 44.15 | 50.38 | 69.57 | 63.60 | 56.40 | 50.79 | 64.43 | 56.04 | 51.71 | 51.22 | 52.20 | 51.21 | 51.47 | 50.79 | 64.52 | 63.77 | 62.12 | 60.36 | 61.40 | 60.98 | 67.10 | 66.22 | 62.62 | 61.69 | 66.62 | 64.69 | 51.32 | 51.08 | |
Narita_AIT_task2_2 | NaritaAIT2021 | 26 | 60.445 | 58.81 | 58.97 | 54.88 | 56.19 | 68.86 | 55.79 | 73.28 | 63.45 | 72.33 | 61.17 | 67.72 | 57.49 | 53.07 | 53.76 | 83.29 | 71.50 | 73.75 | 60.65 | 68.87 | 61.12 | 87.04 | 76.77 | 72.94 | 63.07 | 73.67 | 64.12 | 71.57 | 64.37 | |
Deng_THU_task2_1 | DengTHU2021 | 28 | 60.172 | 52.46 | 59.78 | 43.22 | 48.44 | 88.09 | 70.84 | 63.04 | 54.78 | 80.22 | 69.07 | 73.89 | 58.83 | 57.04 | 54.06 | 73.86 | 56.51 | 65.90 | 60.85 | 72.05 | 69.26 | 72.16 | 61.29 | 71.08 | 60.10 | 68.43 | 61.36 | 84.86 | 72.24 | |
Li_CQUST_task2_1 | LiCQUST2021 | 55 | 55.430 | 44.96 | 52.39 | 47.89 | 49.43 | 66.97 | 58.68 | 51.46 | 53.02 | 66.40 | 61.66 | 73.67 | 60.61 | 52.83 | 51.07 | 64.13 | 62.00 | 64.42 | 59.90 | 69.52 | 68.73 | 68.25 | 65.52 | 66.34 | 64.38 | 63.47 | 58.82 | 69.05 | 68.10 | |
Chan_NTPU_task2_2 | ChanNTPU2021 | 73 | 51.925 | 54.77 | 58.83 | 47.67 | 50.37 | 47.82 | 50.56 | 44.10 | 51.72 | 51.86 | 51.07 | 59.02 | 53.30 | 58.64 | 52.07 | 56.34 | 54.90 | 47.46 | 50.71 | 60.51 | 64.67 | 61.53 | 57.30 | 72.20 | 63.26 | 53.90 | 59.80 | 62.83 | 55.21 | |
Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | 37 | 58.340 | 42.45 | 54.84 | 65.91 | 54.16 | 61.11 | 60.94 | 58.74 | 54.88 | 74.46 | 63.51 | 74.60 | 60.70 | 53.11 | 53.64 | 68.19 | 58.38 | 68.24 | 57.60 | 73.26 | 71.35 | 76.67 | 66.03 | 72.83 | 62.04 | 74.33 | 64.51 | 64.81 | 56.69 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | 4 | 64.201 | 69.83 | 63.41 | 57.50 | 54.23 | 88.98 | 70.20 | 57.75 | 50.17 | 74.82 | 66.64 | 86.84 | 66.93 | 62.74 | 53.63 | 81.41 | 68.56 | 77.88 | 61.09 | 74.62 | 67.18 | 75.99 | 55.94 | 77.04 | 63.02 | 80.97 | 64.20 | 81.10 | 64.93 | |
Tan_NTU_task2_1 | TanNTU2021 | 45 | 56.768 | 68.98 | 55.62 | 67.31 | 56.19 | 57.54 | 50.51 | 64.72 | 56.82 | 59.59 | 51.44 | 58.66 | 51.49 | 53.73 | 50.10 | 62.49 | 52.36 | 61.71 | 53.81 | 63.24 | 53.38 | 65.97 | 52.76 | 61.92 | 54.41 | 66.74 | 55.94 | 53.41 | 50.54 | |
Zhou_PSH_task2_4 | ZhouPSH2021 | 14 | 62.239 | 58.67 | 54.81 | 53.43 | 52.06 | 82.65 | 64.70 | 57.20 | 50.34 | 85.54 | 77.77 | 83.76 | 67.61 | 60.54 | 52.54 | 77.69 | 64.20 | 70.90 | 58.98 | 72.97 | 69.03 | 79.71 | 54.00 | 71.37 | 62.67 | 80.88 | 68.45 | 69.38 | 57.20 | |
Wang_NTU_task2_4 | WangNTU2021 | 41 | 57.420 | 63.94 | 51.99 | 62.93 | 54.86 | 73.10 | 60.22 | 66.46 | 58.43 | 56.53 | 51.73 | 60.39 | 53.06 | 49.28 | 50.87 | 70.54 | 57.10 | 66.48 | 54.79 | 62.27 | 62.85 | 72.47 | 57.56 | 65.21 | 56.04 | 67.41 | 58.21 | 57.42 | 54.42 | |
Morita_SECOM_task2_3 | MoritaSECOM2021 | 2 | 64.956 | 60.88 | 58.22 | 45.60 | 49.64 | 86.48 | 72.39 | 67.45 | 56.65 | 85.04 | 74.77 | 83.05 | 70.51 | 71.49 | 60.05 | 79.50 | 67.87 | 66.44 | 58.60 | 80.56 | 72.59 | 81.13 | 70.00 | 78.24 | 65.96 | 77.16 | 71.00 | 86.42 | 73.02 | |
Lopez_IL_task2_4 | LopezIL2021 | 1 | 66.798 | 75.27 | 59.71 | 69.15 | 59.91 | 61.01 | 60.79 | 63.07 | 61.56 | 86.76 | 81.55 | 83.18 | 63.60 | 65.36 | 60.15 | 87.45 | 78.37 | 77.56 | 70.48 | 81.22 | 80.25 | 86.13 | 76.35 | 79.58 | 67.90 | 82.87 | 69.25 | 90.32 | 77.24 | |
Abe_RLB_task2_1 | AbeRLB2021 | 62 | 54.307 | 54.68 | 51.64 | 58.68 | 51.97 | 58.66 | 53.55 | 63.33 | 54.51 | 55.64 | 52.28 | 56.98 | 51.74 | 49.21 | 50.75 | 57.49 | 54.02 | 61.57 | 50.70 | 56.06 | 51.17 | 54.30 | 52.17 | 59.16 | 55.89 | 65.18 | 54.41 | 52.32 | 51.39 | |
He_XJU_task2_4 | HeXJU2021 | 17 | 61.480 | 70.60 | 62.03 | 48.24 | 49.71 | 87.68 | 66.91 | 56.56 | 52.94 | 72.54 | 65.67 | 76.66 | 61.10 | 60.70 | 53.29 | 56.85 | 57.85 | 62.28 | 58.90 | 57.68 | 66.16 | 70.56 | 61.32 | 67.33 | 55.50 | 60.59 | 58.60 | 71.49 | 57.42 | |
Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | 20 | 60.966 | 53.81 | 58.40 | 47.49 | 49.09 | 90.68 | 79.99 | 58.00 | 54.54 | 77.82 | 67.66 | 77.34 | 63.68 | 53.53 | 54.20 | 74.33 | 59.63 | 72.00 | 63.10 | 75.18 | 68.58 | 78.22 | 63.42 | 78.80 | 66.22 | 78.66 | 66.62 | 71.26 | 65.90 | |
Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | 12 | 62.593 | 73.32 | 67.03 | 61.71 | 54.51 | 68.98 | 52.10 | 67.74 | 55.08 | 71.87 | 57.65 | 79.88 | 58.32 | 63.73 | 57.70 | 84.37 | 64.34 | 78.22 | 65.34 | 70.79 | 57.83 | 78.39 | 57.73 | 71.09 | 58.60 | 74.23 | 61.56 | 84.94 | 70.10 | |
Wang_UCAS_task2_1 | WangUCAS2021 | 48 | 56.509 | 66.67 | 55.59 | 66.51 | 56.71 | 59.18 | 50.76 | 65.04 | 56.85 | 57.48 | 51.05 | 58.30 | 51.62 | 52.17 | 50.38 | 65.94 | 53.43 | 67.26 | 55.19 | 62.60 | 53.42 | 66.61 | 52.83 | 62.18 | 54.76 | 66.78 | 56.18 | 54.46 | 50.51 | |
Jalali_AIT_task2_1 | JalaliAIT2021 | 58 | 54.983 | 44.06 | 53.99 | 45.94 | 48.53 | 51.41 | 50.10 | 57.61 | 53.95 | 77.20 | 66.80 | 80.28 | 61.85 | 49.09 | 53.18 | 58.91 | 53.94 | 69.22 | 59.80 | 60.35 | 63.30 | 65.46 | 58.48 | 68.55 | 61.08 | 71.31 | 62.24 | 76.76 | 66.97 | |
Lu_UESTC_task2_3 | LuUESTC2021 | 50 | 56.390 | 53.83 | 53.10 | 65.78 | 55.70 | 63.29 | 51.74 | 65.57 | 56.81 | 60.87 | 51.89 | 60.22 | 51.80 | 54.73 | 50.38 | 67.22 | 53.66 | 71.56 | 58.89 | 66.51 | 54.43 | 70.04 | 53.67 | 60.80 | 54.49 | 67.58 | 56.37 | 59.05 | 50.55 | |
Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | 44 | 56.787 | 61.04 | 59.76 | 72.95 | 63.94 | 60.63 | 52.57 | 61.57 | 55.14 | 49.76 | 50.32 | 60.43 | 55.00 | 51.02 | 50.31 | 56.26 | 51.21 | 71.06 | 57.14 | 60.04 | 52.77 | 60.57 | 52.17 | 54.50 | 52.65 | 67.55 | 58.11 | 60.00 | 54.38 | |
Primus_CPJKU_task2_4 | PrimusCPJKU2021 | 27 | 60.221 | 55.71 | 54.10 | 51.97 | 50.97 | 90.22 | 71.19 | 59.68 | 54.49 | 74.71 | 67.17 | 75.13 | 60.05 | 49.75 | 53.74 | 79.12 | 63.61 | 65.63 | 61.62 | 78.72 | 74.39 | 74.86 | 60.31 | 79.99 | 64.68 | 76.34 | 65.62 | 77.52 | 65.90 | |
Dini_TAU_task2_1 | DiniTAU2021 | 68 | 53.226 | 54.45 | 55.37 | 60.35 | 51.66 | 55.55 | 52.44 | 56.14 | 49.74 | 53.28 | 50.66 | 56.60 | 53.56 | 48.26 | 49.69 | 62.94 | 51.24 | 53.98 | 52.14 | 62.59 | 52.05 | 69.93 | 50.75 | 60.58 | 52.26 | 69.29 | 56.28 | 56.96 | 50.10 | |
Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | 9 | 63.745 | 61.70 | 55.58 | 61.79 | 57.07 | 66.60 | 66.17 | 62.53 | 54.92 | 74.60 | 61.69 | 86.27 | 74.12 | 62.36 | 60.05 | 84.31 | 69.10 | 79.15 | 64.84 | 79.68 | 77.03 | 84.09 | 67.73 | 77.15 | 67.22 | 84.03 | 73.22 | 94.42 | 81.03 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
ToyCar (F1 score) |
ToyCar (Recall) |
ToyCar (Precision) |
ToyTrain (F1 score) |
ToyTrain (Recall) |
ToyTrain (Precision) |
Fan (F1 score) |
Fan (Recall) |
Fan (Precision) |
Gearbox (F1 score) |
Gearbox (Recall) |
Gearbox (Precision) |
Pump (F1 score) |
Pump (Recall) |
Pump (Precision) |
Slider (F1 score) |
Slider (Recall) |
Slider (Precision) |
Valve (F1 score) |
Valve (Recall) |
Valve (Precision) |
|
DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | 51 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 38.29 | 29.56 | 54.36 | 47.53 | 37.47 | 64.97 | 40.41 | 31.74 | 55.62 | 42.36 | 33.79 | 56.74 | 27.80 | 19.01 | 51.73 | |
Tozicka_NSW_task2_4 | TozickaNSW2021 | 19 | 66.67 | 100.00 | 50.00 | 49.82 | 47.43 | 52.47 | 58.20 | 53.28 | 64.12 | 42.46 | 29.69 | 74.55 | 65.84 | 62.56 | 69.48 | 56.90 | 51.70 | 63.25 | 33.94 | 24.62 | 54.63 | |
Asai_PFU_task2_1 | AsaiPFU2021 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.52 | 10.73 | 47.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bai_LFXS_task2_2 | BaiLFXS2021 | 43 | 58.26 | 68.25 | 50.82 | 59.63 | 74.38 | 49.76 | 65.79 | 63.83 | 67.87 | 51.51 | 50.15 | 52.93 | 36.08 | 26.10 | 58.46 | 37.18 | 25.44 | 69.05 | 33.73 | 24.07 | 56.37 | |
Liu_CQUPT_task2_1 | LiuCQUPT2021 | 64 | 66.67 | 100.00 | 50.00 | 62.44 | 63.73 | 61.21 | 55.19 | 56.36 | 54.06 | 47.92 | 38.06 | 64.67 | 65.09 | 90.25 | 50.90 | 45.77 | 41.21 | 51.46 | 66.66 | 98.63 | 50.34 | |
Narita_AIT_task2_2 | NaritaAIT2021 | 26 | 0.00 | 0.00 | 0.00 | 64.44 | 92.98 | 49.31 | 61.25 | 60.99 | 61.52 | 68.20 | 74.17 | 63.12 | 64.26 | 61.37 | 67.43 | 68.39 | 75.49 | 62.50 | 49.60 | 47.65 | 51.73 | |
Deng_THU_task2_1 | DengTHU2021 | 28 | 51.06 | 47.76 | 54.85 | 46.18 | 46.33 | 46.02 | 81.37 | 81.73 | 81.01 | 54.56 | 48.98 | 61.58 | 53.58 | 38.95 | 85.82 | 60.16 | 51.13 | 73.05 | 52.45 | 48.14 | 57.61 | |
Li_CQUST_task2_1 | LiCQUST2021 | 55 | 58.32 | 64.46 | 53.24 | 58.10 | 70.13 | 49.60 | 45.64 | 36.39 | 61.20 | 6.77 | 3.61 | 54.90 | 37.32 | 24.27 | 80.71 | 6.78 | 3.54 | 81.11 | 0.00 | 0.00 | 0.00 | |
Chan_NTPU_task2_2 | ChanNTPU2021 | 73 | 57.14 | 66.67 | 50.00 | 66.67 | 100.00 | 50.00 | 65.48 | 95.25 | 49.89 | 58.92 | 79.39 | 46.84 | 64.02 | 86.31 | 50.88 | 65.59 | 86.59 | 52.79 | 65.37 | 92.22 | 50.63 | |
Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | 37 | 0.00 | 0.00 | 0.00 | 65.73 | 83.05 | 54.39 | 6.15 | 3.21 | 71.84 | 40.85 | 31.24 | 59.02 | 60.89 | 52.71 | 72.07 | 32.11 | 20.05 | 80.46 | 23.17 | 14.35 | 60.06 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | 4 | 52.09 | 51.03 | 53.19 | 60.44 | 77.05 | 49.72 | 69.95 | 61.90 | 80.41 | 36.54 | 28.09 | 52.29 | 66.73 | 66.06 | 67.40 | 74.48 | 69.13 | 80.72 | 37.73 | 30.47 | 49.52 | |
Tan_NTU_task2_1 | TanNTU2021 | 45 | 66.67 | 100.00 | 50.00 | 67.08 | 72.75 | 62.22 | 54.91 | 52.78 | 57.22 | 47.29 | 36.31 | 67.80 | 39.76 | 30.78 | 56.14 | 48.45 | 42.06 | 57.13 | 31.71 | 22.69 | 52.64 | |
Zhou_PSH_task2_4 | ZhouPSH2021 | 14 | 66.70 | 100.00 | 50.04 | 67.03 | 99.31 | 50.58 | 73.25 | 92.90 | 60.46 | 65.72 | 80.80 | 55.38 | 69.48 | 92.83 | 55.52 | 72.22 | 96.05 | 57.86 | 67.73 | 88.72 | 54.77 | |
Wang_NTU_task2_4 | WangNTU2021 | 41 | 0.00 | 0.00 | 0.00 | 42.73 | 31.99 | 64.36 | 0.00 | 0.00 | 0.00 | 50.51 | 39.74 | 69.29 | 25.07 | 16.03 | 57.58 | 66.48 | 100.00 | 49.79 | 0.00 | 0.00 | 0.00 | |
Morita_SECOM_task2_3 | MoritaSECOM2021 | 2 | 54.74 | 55.04 | 54.43 | 62.02 | 80.54 | 50.42 | 51.24 | 37.23 | 82.19 | 60.24 | 55.36 | 66.08 | 73.83 | 67.22 | 81.89 | 0.00 | 0.00 | 0.00 | 62.49 | 60.79 | 64.29 | |
Lopez_IL_task2_4 | LopezIL2021 | 1 | 71.97 | 98.02 | 56.86 | 35.01 | 23.94 | 65.12 | 38.52 | 26.83 | 68.30 | 52.08 | 45.52 | 60.84 | 66.59 | 52.28 | 91.68 | 62.24 | 49.96 | 82.54 | 26.04 | 16.34 | 64.12 | |
Abe_RLB_task2_1 | AbeRLB2021 | 62 | 63.85 | 87.01 | 50.43 | 49.90 | 44.35 | 57.05 | 56.89 | 55.63 | 58.21 | 50.05 | 42.99 | 59.88 | 46.38 | 39.86 | 55.45 | 49.01 | 43.56 | 56.00 | 35.04 | 26.78 | 50.67 | |
He_XJU_task2_4 | HeXJU2021 | 17 | 66.67 | 100.00 | 50.00 | 63.72 | 86.85 | 50.31 | 47.20 | 34.75 | 73.56 | 53.58 | 56.24 | 51.16 | 57.79 | 55.09 | 60.76 | 44.58 | 31.54 | 76.03 | 47.27 | 42.97 | 52.52 | |
Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | 20 | 56.47 | 55.82 | 57.13 | 46.59 | 45.33 | 47.92 | 77.13 | 66.14 | 92.49 | 51.64 | 47.08 | 57.19 | 64.98 | 54.62 | 80.21 | 64.46 | 55.95 | 76.04 | 36.02 | 26.30 | 57.15 | |
Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | 12 | 64.57 | 65.45 | 63.71 | 55.83 | 56.50 | 55.17 | 60.96 | 56.09 | 66.77 | 58.00 | 51.99 | 65.57 | 63.21 | 58.18 | 69.19 | 73.09 | 72.55 | 73.64 | 61.09 | 60.29 | 61.91 | |
Wang_UCAS_task2_1 | WangUCAS2021 | 48 | 0.00 | 0.00 | 0.00 | 31.17 | 20.07 | 69.66 | 45.70 | 38.50 | 56.23 | 53.08 | 46.43 | 61.96 | 48.49 | 42.73 | 56.06 | 54.11 | 52.11 | 56.28 | 32.98 | 24.26 | 51.47 | |
Jalali_AIT_task2_1 | JalaliAIT2021 | 58 | 60.84 | 80.63 | 48.85 | 63.88 | 88.99 | 49.83 | 24.83 | 16.46 | 50.53 | 59.06 | 60.82 | 57.41 | 62.96 | 58.79 | 67.76 | 68.56 | 70.23 | 66.96 | 37.10 | 28.44 | 53.35 | |
Lu_UESTC_task2_3 | LuUESTC2021 | 50 | 67.53 | 100.00 | 50.98 | 66.88 | 95.70 | 51.40 | 68.17 | 82.83 | 57.92 | 64.84 | 73.75 | 57.86 | 63.20 | 73.51 | 55.43 | 67.05 | 85.96 | 54.96 | 58.42 | 64.62 | 53.31 | |
Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | 44 | 47.33 | 38.28 | 61.99 | 59.32 | 52.11 | 68.86 | 51.00 | 46.91 | 55.88 | 52.93 | 47.56 | 59.66 | 42.02 | 36.86 | 48.86 | 54.30 | 49.47 | 60.16 | 44.80 | 39.24 | 52.19 | |
Primus_CPJKU_task2_4 | PrimusCPJKU2021 | 27 | 67.46 | 90.23 | 53.86 | 67.00 | 100.00 | 50.38 | 80.78 | 94.66 | 70.44 | 0.00 | 0.00 | 0.00 | 66.71 | 79.52 | 57.46 | 72.09 | 96.58 | 57.51 | 0.00 | 0.00 | 0.00 | |
Dini_TAU_task2_1 | DiniTAU2021 | 68 | 53.71 | 53.71 | 53.71 | 57.65 | 57.65 | 57.65 | 53.35 | 53.35 | 53.35 | 56.46 | 56.51 | 56.41 | 51.52 | 51.52 | 51.52 | 55.71 | 55.79 | 55.63 | 48.64 | 48.64 | 48.64 | |
Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | 9 | 55.51 | 55.46 | 55.56 | 60.06 | 59.97 | 60.16 | 63.39 | 63.39 | 63.39 | 59.57 | 59.42 | 59.72 | 67.90 | 67.90 | 67.90 | 79.22 | 79.36 | 79.07 | 59.84 | 59.84 | 59.84 |
Systems ranking
Rank | Submission Information | Evaluation Dataset | Development Dataset | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Pump (AUC) |
Pump (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
ToyCar (AUC) |
ToyCar (pAUC) |
ToyTrain (AUC) |
ToyTrain (pAUC) |
Fan (AUC) |
Fan (pAUC) |
Gearbox (AUC) |
Gearbox (pAUC) |
Pump (AUC) |
Pump (pAUC) |
Slider (AUC) |
Slider (pAUC) |
Valve (AUC) |
Valve (pAUC) |
|
DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | 51 | 56.375 | 65.93 | 52.32 | 68.51 | 57.56 | 60.68 | 50.50 | 65.49 | 56.86 | 58.30 | 50.98 | 57.22 | 51.41 | 51.87 | 50.07 | 62.49 | 52.36 | 61.71 | 53.81 | 63.24 | 53.38 | 65.97 | 52.76 | 61.92 | 54.41 | 66.74 | 55.94 | 53.41 | 50.54 | |
DCASE2021_baseline_task2_MNV2 | DCASE2021baseline2021 | 59 | 54.770 | 42.73 | 55.93 | 42.91 | 50.55 | 64.96 | 58.14 | 51.14 | 51.59 | 67.97 | 60.28 | 72.92 | 60.71 | 53.13 | 51.52 | 56.04 | 56.37 | 57.46 | 51.61 | 61.56 | 63.02 | 66.70 | 59.16 | 61.89 | 57.37 | 59.26 | 56.00 | 56.51 | 52.64 | |
Tozicka_NSW_task2_1 | TozickaNSW2021 | 61 | 54.397 | 51.80 | 50.69 | 54.00 | 54.15 | 60.35 | 52.14 | 54.30 | 49.97 | 56.87 | 53.01 | 67.35 | 55.59 | 53.57 | 52.05 | |||||||||||||||
Tozicka_NSW_task2_2 | TozickaNSW2021 | 39 | 58.110 | 50.22 | 50.32 | 51.71 | 51.79 | 73.17 | 62.02 | 58.86 | 51.09 | 78.65 | 65.16 | 69.89 | 59.61 | 53.93 | 54.22 | |||||||||||||||
Tozicka_NSW_task2_3 | TozickaNSW2021 | 49 | 56.484 | 68.23 | 59.40 | 70.57 | 61.17 | 57.77 | 51.21 | 64.70 | 57.86 | 50.90 | 50.85 | 57.57 | 51.50 | 48.72 | 50.90 | 74.40 | 58.22 | 51.32 | 49.60 | 57.76 | 51.94 | 73.94 | 58.88 | 56.59 | 53.54 | 64.66 | 54.26 | 55.15 | 52.07 | |
Tozicka_NSW_task2_4 | TozickaNSW2021 | 19 | 61.186 | 68.23 | 59.40 | 51.71 | 51.79 | 73.17 | 62.02 | 64.70 | 57.86 | 78.65 | 65.16 | 69.89 | 59.61 | 53.93 | 54.22 | 74.40 | 58.22 | 73.94 | 58.88 | |||||||||||
Asai_PFU_task2_1 | AsaiPFU2021 | 40 | 57.845 | 46.66 | 50.66 | 53.67 | 51.94 | 74.41 | 61.15 | 52.39 | 51.20 | 73.87 | 62.54 | 77.15 | 60.06 | 57.25 | 55.72 | 61.84 | 55.79 | 65.63 | 56.02 | 61.65 | 61.44 | 65.59 | 53.09 | 64.58 | 57.40 | 70.85 | 58.78 | 74.20 | 67.47 | |
Bai_LFXS_task2_1 | BaiLFXS2021 | 54 | 55.514 | 39.40 | 53.28 | 39.65 | 48.24 | 74.60 | 63.42 | 52.29 | 53.89 | 72.45 | 64.79 | 81.24 | 66.47 | 51.98 | 51.54 | 64.28 | 57.41 | 59.50 | 51.11 | 72.38 | 70.58 | 48.04 | 49.87 | 72.09 | 64.47 | 65.78 | 61.89 | 78.02 | 66.34 | |
Bai_LFXS_task2_2 | BaiLFXS2021 | 43 | 57.040 | 49.39 | 57.51 | 42.53 | 49.75 | 75.15 | 61.32 | 58.61 | 55.55 | 58.12 | 51.21 | 83.09 | 71.86 | 55.29 | 53.34 | 56.32 | 55.29 | 64.12 | 59.71 | 69.13 | 61.73 | 66.67 | 61.65 | 70.54 | 65.07 | 72.93 | 65.50 | 79.39 | 71.64 | |
Bai_LFXS_task2_3 | BaiLFXS2021 | 77 | 36.679 | 6.98 | 53.97 | 50.21 | 49.84 | 55.81 | 54.40 | 49.26 | 51.91 | 60.72 | 55.59 | 67.69 | 61.62 | 51.45 | 51.97 | 67.11 | 62.78 | 65.02 | 56.99 | 73.57 | 69.71 | 76.52 | 61.91 | 72.09 | 64.47 | 73.82 | 65.73 | 82.82 | 69.82 | |
Bai_LFXS_task2_4 | BaiLFXS2021 | 65 | 53.739 | 27.44 | 58.41 | 37.70 | 48.59 | 76.30 | 62.57 | 53.16 | 52.12 | 74.93 | 66.15 | 83.14 | 67.13 | 53.60 | 53.43 | 67.11 | 62.78 | 65.02 | 56.99 | 73.57 | 69.71 | 76.52 | 61.91 | 72.09 | 64.47 | 73.82 | 65.73 | 82.82 | 69.82 | |
Liu_CQUPT_task2_1 | LiuCQUPT2021 | 64 | 53.837 | 44.15 | 50.38 | 69.57 | 63.60 | 56.40 | 50.79 | 64.43 | 56.04 | 51.71 | 51.22 | 52.20 | 51.21 | 51.47 | 50.79 | 64.52 | 63.77 | 62.12 | 60.36 | 61.40 | 60.98 | 67.10 | 66.22 | 62.62 | 61.69 | 66.62 | 64.69 | 51.32 | 51.08 | |
Narita_AIT_task2_1 | NaritaAIT2021 | 32 | 59.548 | 59.32 | 58.16 | 59.42 | 55.56 | 61.26 | 53.59 | 75.35 | 64.54 | 67.97 | 56.89 | 66.96 | 55.81 | 53.17 | 53.98 | 81.56 | 68.34 | 73.44 | 61.96 | 66.85 | 58.79 | 83.40 | 74.94 | 68.97 | 60.65 | 71.17 | 61.46 | 67.66 | 62.95 | |
Narita_AIT_task2_2 | NaritaAIT2021 | 26 | 60.445 | 58.81 | 58.97 | 54.88 | 56.19 | 68.86 | 55.79 | 73.28 | 63.45 | 72.33 | 61.17 | 67.72 | 57.49 | 53.07 | 53.76 | 83.29 | 71.50 | 73.75 | 60.65 | 68.87 | 61.12 | 87.04 | 76.77 | 72.94 | 63.07 | 73.67 | 64.12 | 71.57 | 64.37 | |
Deng_THU_task2_1 | DengTHU2021 | 28 | 60.172 | 52.46 | 59.78 | 43.22 | 48.44 | 88.09 | 70.84 | 63.04 | 54.78 | 80.22 | 69.07 | 73.89 | 58.83 | 57.04 | 54.06 | 73.86 | 56.51 | 65.90 | 60.85 | 72.05 | 69.26 | 72.16 | 61.29 | 71.08 | 60.10 | 68.43 | 61.36 | 84.86 | 72.24 | |
Li_CQUST_task2_1 | LiCQUST2021 | 55 | 55.430 | 44.96 | 52.39 | 47.89 | 49.43 | 66.97 | 58.68 | 51.46 | 53.02 | 66.40 | 61.66 | 73.67 | 60.61 | 52.83 | 51.07 | 64.13 | 62.00 | 64.42 | 59.90 | 69.52 | 68.73 | 68.25 | 65.52 | 66.34 | 64.38 | 63.47 | 58.82 | 69.05 | 68.10 | |
Chan_NTPU_task2_1 | ChanNTPU2021 | 75 | 49.305 | 37.03 | 49.76 | 47.48 | 48.89 | 51.74 | 50.82 | 43.47 | 51.65 | 50.85 | 51.03 | 54.06 | 51.63 | 56.04 | 52.64 | 54.65 | 56.63 | 52.36 | 50.08 | 64.27 | 65.75 | 59.41 | 53.04 | 64.94 | 59.16 | 59.65 | 56.51 | 58.51 | 55.26 | |
Chan_NTPU_task2_2 | ChanNTPU2021 | 73 | 51.925 | 54.77 | 58.83 | 47.67 | 50.37 | 47.82 | 50.56 | 44.10 | 51.72 | 51.86 | 51.07 | 59.02 | 53.30 | 58.64 | 52.07 | 56.34 | 54.90 | 47.46 | 50.71 | 60.51 | 64.67 | 61.53 | 57.30 | 72.20 | 63.26 | 53.90 | 59.80 | 62.83 | 55.21 | |
Chan_NTPU_task2_3 | ChanNTPU2021 | 74 | 51.107 | 51.03 | 52.46 | 47.09 | 48.91 | 49.80 | 51.16 | 43.00 | 51.72 | 51.77 | 51.28 | 57.24 | 53.00 | 58.00 | 52.67 | 58.54 | 55.81 | 49.77 | 50.90 | 62.93 | 65.55 | 66.53 | 60.93 | 70.75 | 62.32 | 63.47 | 56.96 | 60.82 | 55.21 | |
Chan_NTPU_task2_4 | ChanNTPU2021 | 76 | 37.176 | 47.86 | 59.45 | 40.51 | 50.89 | 15.38 | 49.07 | 34.82 | 48.41 | 18.68 | 49.03 | 37.51 | 48.87 | 51.25 | 52.01 | 51.58 | 60.00 | 45.61 | 51.53 | 30.26 | 52.78 | 40.28 | 49.22 | 20.28 | 49.22 | 27.45 | 50.73 | 36.27 | 49.06 | |
Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | 37 | 58.340 | 42.45 | 54.84 | 65.91 | 54.16 | 61.11 | 60.94 | 58.74 | 54.88 | 74.46 | 63.51 | 74.60 | 60.70 | 53.11 | 53.64 | 68.19 | 58.38 | 68.24 | 57.60 | 73.26 | 71.35 | 76.67 | 66.03 | 72.83 | 62.04 | 74.33 | 64.51 | 64.81 | 56.69 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2021 | 6 | 63.831 | 68.22 | 62.28 | 57.65 | 54.14 | 88.93 | 69.84 | 57.86 | 52.78 | 74.15 | 66.10 | 85.88 | 65.50 | 60.13 | 53.06 | 81.43 | 68.62 | 77.89 | 61.11 | 74.80 | 67.41 | 76.49 | 58.19 | 77.08 | 63.05 | 81.07 | 64.29 | 81.60 | 66.16 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2021 | 7 | 63.793 | 68.22 | 62.28 | 57.65 | 54.14 | 88.77 | 70.57 | 56.92 | 49.52 | 74.15 | 66.10 | 85.88 | 65.50 | 63.49 | 54.20 | 81.43 | 68.62 | 77.89 | 61.11 | 74.19 | 66.37 | 73.32 | 53.81 | 77.08 | 63.05 | 81.07 | 64.29 | 80.02 | 62.11 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | 4 | 64.201 | 69.83 | 63.41 | 57.50 | 54.23 | 88.98 | 70.20 | 57.75 | 50.17 | 74.82 | 66.64 | 86.84 | 66.93 | 62.74 | 53.63 | 81.41 | 68.56 | 77.88 | 61.09 | 74.62 | 67.18 | 75.99 | 55.94 | 77.04 | 63.02 | 80.97 | 64.20 | 81.10 | 64.93 | |
Wilkinghoff_FKIE_task2_4 | WilkinghoffFKIE2021 | 8 | 63.747 | 68.15 | 62.29 | 57.64 | 54.45 | 88.91 | 69.87 | 57.88 | 52.83 | 74.24 | 66.13 | 85.91 | 65.51 | 58.21 | 53.37 | 81.31 | 68.50 | 78.03 | 61.27 | 74.83 | 67.40 | 76.49 | 58.26 | 77.06 | 63.04 | 81.10 | 64.22 | 78.10 | 66.40 | |
Tan_NTU_task2_1 | TanNTU2021 | 45 | 56.768 | 68.98 | 55.62 | 67.31 | 56.19 | 57.54 | 50.51 | 64.72 | 56.82 | 59.59 | 51.44 | 58.66 | 51.49 | 53.73 | 50.10 | 62.49 | 52.36 | 61.71 | 53.81 | 63.24 | 53.38 | 65.97 | 52.76 | 61.92 | 54.41 | 66.74 | 55.94 | 53.41 | 50.54 | |
Zhou_PSH_task2_1 | ZhouPSH2021 | 25 | 60.479 | 46.33 | 53.61 | 50.14 | 51.28 | 79.56 | 63.36 | 57.13 | 50.40 | 86.80 | 80.69 | 83.48 | 66.74 | 61.59 | 52.66 | 76.12 | 62.65 | 72.00 | 59.92 | 76.61 | 71.45 | 80.58 | 55.32 | 71.66 | 62.74 | 81.67 | 68.16 | 70.11 | 56.23 | |
Zhou_PSH_task2_2 | ZhouPSH2021 | 16 | 61.792 | 55.89 | 55.30 | 50.60 | 52.24 | 79.27 | 62.10 | 57.41 | 50.59 | 87.11 | 80.42 | 84.02 | 67.40 | 61.76 | 52.80 | 77.34 | 62.81 | 71.42 | 60.43 | 76.26 | 70.91 | 80.68 | 55.59 | 72.73 | 62.89 | 81.48 | 68.50 | 69.82 | 56.41 | |
Zhou_PSH_task2_3 | ZhouPSH2021 | 15 | 62.221 | 59.19 | 54.72 | 51.66 | 52.66 | 78.57 | 62.84 | 57.81 | 50.53 | 86.62 | 79.44 | 84.46 | 69.12 | 61.56 | 52.41 | 78.03 | 65.37 | 71.30 | 60.49 | 75.10 | 70.58 | 80.26 | 55.22 | 71.73 | 62.71 | 81.65 | 68.82 | 69.99 | 56.83 | |
Zhou_PSH_task2_4 | ZhouPSH2021 | 14 | 62.239 | 58.67 | 54.81 | 53.43 | 52.06 | 82.65 | 64.70 | 57.20 | 50.34 | 85.54 | 77.77 | 83.76 | 67.61 | 60.54 | 52.54 | 77.69 | 64.20 | 70.90 | 58.98 | 72.97 | 69.03 | 79.71 | 54.00 | 71.37 | 62.67 | 80.88 | 68.45 | 69.38 | 57.20 | |
Wang_NTU_task2_1 | WangNTU2021 | 46 | 56.650 | 66.44 | 53.40 | 64.98 | 56.55 | 59.84 | 50.77 | 66.46 | 58.43 | 56.53 | 51.73 | 61.23 | 53.40 | 50.20 | 50.72 | 70.54 | 56.77 | 64.97 | 52.67 | 62.81 | 52.04 | 72.47 | 57.56 | 65.21 | 56.04 | 66.36 | 58.47 | 57.94 | 50.63 | |
Wang_NTU_task2_2 | WangNTU2021 | 67 | 53.429 | 51.96 | 51.96 | 45.90 | 49.78 | 73.10 | 60.22 | 33.64 | 49.47 | 70.41 | 61.27 | 73.55 | 57.60 | 49.28 | 50.87 | 51.73 | 50.91 | 52.42 | 50.35 | 62.27 | 62.85 | 41.72 | 48.46 | 58.81 | 57.50 | 62.87 | 57.87 | 57.42 | 54.42 | |
Wang_NTU_task2_3 | WangNTU2021 | 47 | 56.552 | 63.17 | 55.78 | 62.93 | 54.86 | 62.27 | 50.83 | 66.83 | 58.66 | 58.62 | 52.33 | 60.07 | 52.41 | 49.55 | 50.35 | 67.66 | 54.16 | 66.48 | 54.79 | 64.29 | 53.75 | 71.64 | 55.63 | 64.31 | 55.33 | 67.57 | 57.77 | 57.10 | 50.23 | |
Wang_NTU_task2_4 | WangNTU2021 | 41 | 57.420 | 63.94 | 51.99 | 62.93 | 54.86 | 73.10 | 60.22 | 66.46 | 58.43 | 56.53 | 51.73 | 60.39 | 53.06 | 49.28 | 50.87 | 70.54 | 57.10 | 66.48 | 54.79 | 62.27 | 62.85 | 72.47 | 57.56 | 65.21 | 56.04 | 67.41 | 58.21 | 57.42 | 54.42 | |
Morita_SECOM_task2_1 | MoritaSECOM2021 | 5 | 64.128 | 58.47 | 57.41 | 43.99 | 49.84 | 83.82 | 71.64 | 70.12 | 59.01 | 85.86 | 75.19 | 77.65 | 65.07 | 71.47 | 59.83 | 72.54 | 65.90 | 64.60 | 58.20 | 80.93 | 71.47 | 79.52 | 68.35 | 79.05 | 64.37 | 67.45 | 62.85 | 76.57 | 66.15 | |
Morita_SECOM_task2_2 | MoritaSECOM2021 | 3 | 64.424 | 60.51 | 58.21 | 46.52 | 49.54 | 86.20 | 67.59 | 66.28 | 54.96 | 84.33 | 74.46 | 83.57 | 69.72 | 71.49 | 60.05 | 78.85 | 66.52 | 65.01 | 55.74 | 78.60 | 68.35 | 82.08 | 69.87 | 78.62 | 67.04 | 77.57 | 70.84 | 86.42 | 73.02 | |
Morita_SECOM_task2_3 | MoritaSECOM2021 | 2 | 64.956 | 60.88 | 58.22 | 45.60 | 49.64 | 86.48 | 72.39 | 67.45 | 56.65 | 85.04 | 74.77 | 83.05 | 70.51 | 71.49 | 60.05 | 79.50 | 67.87 | 66.44 | 58.60 | 80.56 | 72.59 | 81.13 | 70.00 | 78.24 | 65.96 | 77.16 | 71.00 | 86.42 | 73.02 | |
Lopez_IL_task2_1 | LopezIL2021 | 11 | 63.146 | 50.25 | 56.20 | 65.55 | 57.83 | 63.45 | 58.49 | 56.68 | 60.75 | 86.22 | 76.92 | 82.41 | 63.09 | 65.36 | 60.15 | 67.02 | 62.33 | 71.93 | 67.72 | 71.71 | 72.95 | 83.42 | 74.43 | 77.99 | 66.84 | 78.71 | 67.28 | 90.32 | 77.24 | |
Lopez_IL_task2_2 | LopezIL2021 | 52 | 56.324 | 25.79 | 55.20 | 52.70 | 54.63 | 61.01 | 60.79 | 58.82 | 52.19 | 85.37 | 78.48 | 84.29 | 65.72 | 63.29 | 55.41 | 58.43 | 56.29 | 66.41 | 56.96 | 81.22 | 80.25 | 71.56 | 59.64 | 75.43 | 65.06 | 71.84 | 62.39 | 72.97 | 62.06 | |
Lopez_IL_task2_3 | LopezIL2021 | 31 | 59.913 | 73.23 | 59.56 | 61.48 | 53.59 | 71.52 | 58.93 | 69.29 | 57.60 | 62.12 | 52.91 | 68.99 | 56.01 | 54.47 | 50.39 | 86.57 | 78.31 | 77.97 | 60.31 | 78.66 | 60.24 | 80.81 | 65.13 | 69.93 | 56.55 | 74.83 | 60.54 | 61.30 | 52.75 | |
Lopez_IL_task2_4 | LopezIL2021 | 1 | 66.798 | 75.27 | 59.71 | 69.15 | 59.91 | 61.01 | 60.79 | 63.07 | 61.56 | 86.76 | 81.55 | 83.18 | 63.60 | 65.36 | 60.15 | 87.45 | 78.37 | 77.56 | 70.48 | 81.22 | 80.25 | 86.13 | 76.35 | 79.58 | 67.90 | 82.87 | 69.25 | 90.32 | 77.24 | |
Abe_RLB_task2_1 | AbeRLB2021 | 62 | 54.307 | 54.68 | 51.64 | 58.68 | 51.97 | 58.66 | 53.55 | 63.33 | 54.51 | 55.64 | 52.28 | 56.98 | 51.74 | 49.21 | 50.75 | 57.49 | 54.02 | 61.57 | 50.70 | 56.06 | 51.17 | 54.30 | 52.17 | 59.16 | 55.89 | 65.18 | 54.41 | 52.32 | 51.39 | |
Abe_RLB_task2_2 | AbeRLB2021 | 72 | 52.030 | 54.81 | 53.07 | 49.52 | 49.58 | 46.52 | 50.12 | 55.82 | 52.83 | 51.78 | 50.98 | 59.66 | 54.89 | 51.03 | 50.43 | 62.13 | 57.58 | 63.18 | 56.55 | 62.26 | 57.15 | 66.30 | 55.44 | 66.60 | 62.74 | 73.19 | 61.87 | 51.72 | 50.47 | |
Abe_RLB_task2_3 | AbeRLB2021 | 70 | 52.413 | 36.24 | 54.67 | 66.46 | 56.13 | 36.68 | 49.82 | 61.37 | 57.16 | 59.97 | 53.50 | 68.43 | 56.12 | 51.98 | 49.49 | 64.83 | 58.68 | 63.89 | 55.71 | 55.18 | 54.68 | 60.75 | 54.23 | 62.89 | 57.78 | 69.97 | 58.43 | 53.02 | 50.84 | |
He_XJU_task2_1 | HeXJU2021 | 38 | 58.213 | 70.60 | 62.03 | 53.79 | 51.75 | 63.88 | 52.14 | 62.01 | 54.67 | 59.91 | 52.17 | 71.47 | 55.70 | 60.70 | 53.29 | 56.85 | 56.14 | 58.96 | 55.27 | 68.99 | 56.15 | 61.19 | 63.84 | 67.80 | 56.17 | 64.17 | 54.96 | 71.49 | 59.62 | |
He_XJU_task2_2 | HeXJU2021 | 36 | 58.912 | 46.95 | 51.31 | 49.65 | 53.75 | 79.72 | 69.47 | 57.29 | 53.71 | 79.87 | 66.71 | 76.66 | 61.10 | 52.01 | 52.78 | 60.15 | 53.96 | 62.28 | 58.90 | 57.67 | 66.16 | 70.56 | 61.32 | 67.33 | 57.52 | 63.96 | 58.60 | 66.07 | 59.72 | |
He_XJU_task2_3 | HeXJU2021 | 42 | 57.383 | 40.78 | 54.20 | 48.24 | 49.71 | 87.68 | 66.91 | 56.56 | 52.94 | 72.54 | 65.67 | 75.88 | 58.43 | 53.73 | 51.76 | 65.07 | 57.85 | 58.66 | 58.15 | 63.45 | 62.55 | 67.97 | 58.00 | 63.70 | 55.50 | 60.59 | 57.13 | 62.88 | 57.42 | |
He_XJU_task2_4 | HeXJU2021 | 17 | 61.480 | 70.60 | 62.03 | 48.24 | 49.71 | 87.68 | 66.91 | 56.56 | 52.94 | 72.54 | 65.67 | 76.66 | 61.10 | 60.70 | 53.29 | 56.85 | 57.85 | 62.28 | 58.90 | 57.68 | 66.16 | 70.56 | 61.32 | 67.33 | 55.50 | 60.59 | 58.60 | 71.49 | 57.42 | |
Cai_SMALLRICE_task2_1 | CaiSMALLRICE2021 | 29 | 60.149 | 55.03 | 56.42 | 49.09 | 50.04 | 85.98 | 73.42 | 58.25 | 54.72 | 76.65 | 67.72 | 69.17 | 60.92 | 53.53 | 54.20 | 74.33 | 59.63 | 72.00 | 63.10 | 75.18 | 68.58 | 78.22 | 63.42 | 78.80 | 66.22 | 78.66 | 66.62 | 71.26 | 65.90 | |
Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | 20 | 60.966 | 53.81 | 58.40 | 47.49 | 49.09 | 90.68 | 79.99 | 58.00 | 54.54 | 77.82 | 67.66 | 77.34 | 63.68 | 53.53 | 54.20 | 74.33 | 59.63 | 72.00 | 63.10 | 75.18 | 68.58 | 78.22 | 63.42 | 78.80 | 66.22 | 78.66 | 66.62 | 71.26 | 65.90 | |
Cai_SMALLRICE_task2_3 | CaiSMALLRICE2021 | 22 | 60.867 | 53.31 | 58.05 | 48.97 | 49.22 | 89.14 | 77.63 | 60.67 | 54.70 | 77.21 | 65.44 | 75.47 | 63.27 | 53.53 | 54.20 | 74.33 | 59.63 | 72.00 | 63.10 | 75.18 | 68.58 | 78.22 | 63.42 | 78.80 | 66.22 | 78.66 | 66.62 | 71.26 | 65.90 | |
Cai_SMALLRICE_task2_4 | CaiSMALLRICE2021 | 21 | 60.874 | 52.13 | 58.28 | 47.76 | 48.95 | 90.68 | 79.65 | 59.02 | 54.79 | 78.19 | 67.33 | 77.04 | 63.53 | 53.53 | 54.20 | 74.33 | 59.63 | 72.00 | 63.10 | 75.18 | 68.58 | 78.22 | 63.42 | 78.80 | 66.22 | 78.66 | 66.62 | 71.26 | 65.90 | |
Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | 12 | 62.593 | 73.32 | 67.03 | 61.71 | 54.51 | 68.98 | 52.10 | 67.74 | 55.08 | 71.87 | 57.65 | 79.88 | 58.32 | 63.73 | 57.70 | 84.37 | 64.34 | 78.22 | 65.34 | 70.79 | 57.83 | 78.39 | 57.73 | 71.09 | 58.60 | 74.23 | 61.56 | 84.94 | 70.10 | |
Sakamoto_Fixstars_task2_2 | SakamotoFixstars2021 | 24 | 60.527 | 63.45 | 55.22 | 58.02 | 53.28 | 68.49 | 52.05 | 67.74 | 55.08 | 69.94 | 56.46 | 79.88 | 58.32 | 63.73 | 57.70 | 80.46 | 62.54 | 73.41 | 64.02 | 70.33 | 56.73 | 78.39 | 57.73 | 71.09 | 58.20 | 74.23 | 61.56 | 84.94 | 70.10 | |
Sakamoto_Fixstars_task2_3 | SakamotoFixstars2021 | 23 | 60.810 | 73.32 | 67.03 | 57.77 | 52.95 | 68.98 | 52.10 | 67.14 | 54.98 | 71.87 | 57.65 | 77.40 | 54.55 | 58.52 | 52.36 | 84.37 | 64.34 | 77.89 | 61.61 | 70.79 | 57.83 | 78.03 | 56.78 | 71.09 | 58.60 | 72.68 | 60.04 | 76.55 | 56.86 | |
Sakamoto_Fixstars_task2_4 | SakamotoFixstars2021 | 18 | 61.308 | 68.75 | 67.66 | 64.89 | 56.18 | 69.03 | 52.42 | 68.07 | 57.68 | 61.64 | 52.56 | 70.12 | 55.54 | 65.62 | 57.22 | 83.11 | 61.18 | 77.47 | 64.33 | 69.41 | 54.82 | 76.94 | 59.66 | 70.00 | 57.69 | 72.77 | 59.90 | 74.72 | 63.75 | |
Wang_UCAS_task2_1 | WangUCAS2021 | 48 | 56.509 | 66.67 | 55.59 | 66.51 | 56.71 | 59.18 | 50.76 | 65.04 | 56.85 | 57.48 | 51.05 | 58.30 | 51.62 | 52.17 | 50.38 | 65.94 | 53.43 | 67.26 | 55.19 | 62.60 | 53.42 | 66.61 | 52.83 | 62.18 | 54.76 | 66.78 | 56.18 | 54.46 | 50.51 | |
Wang_UCAS_task2_2 | WangUCAS2021 | 63 | 54.092 | 47.96 | 51.09 | 67.99 | 57.69 | 57.13 | 50.50 | 64.03 | 56.06 | 55.08 | 50.45 | 54.81 | 51.53 | 50.25 | 49.83 | 61.09 | 51.88 | 61.65 | 53.69 | 61.59 | 51.69 | 64.40 | 53.37 | 60.15 | 53.40 | 64.23 | 54.36 | 52.43 | 50.66 | |
Wang_UCAS_task2_3 | WangUCAS2021 | 56 | 55.147 | 56.11 | 52.06 | 67.46 | 57.40 | 58.07 | 50.47 | 64.55 | 56.36 | 56.03 | 50.55 | 56.05 | 51.66 | 51.13 | 50.17 | 63.20 | 52.31 | 63.79 | 54.26 | 62.71 | 52.61 | 65.36 | 53.14 | 61.14 | 53.97 | 65.45 | 55.21 | 52.95 | 50.66 | |
Wang_UCAS_task2_4 | WangUCAS2021 | 71 | 52.176 | 31.62 | 50.85 | 70.89 | 62.52 | 56.69 | 50.52 | 64.64 | 56.96 | 53.23 | 50.52 | 53.96 | 51.47 | 50.42 | 49.76 | 59.49 | 52.83 | 62.01 | 53.08 | 60.41 | 52.16 | 65.75 | 53.06 | 58.84 | 53.64 | 62.53 | 53.31 | 49.38 | 50.12 | |
Jalali_AIT_task2_1 | JalaliAIT2021 | 58 | 54.983 | 44.06 | 53.99 | 45.94 | 48.53 | 51.41 | 50.10 | 57.61 | 53.95 | 77.20 | 66.80 | 80.28 | 61.85 | 49.09 | 53.18 | 58.91 | 53.94 | 69.22 | 59.80 | 60.35 | 63.30 | 65.46 | 58.48 | 68.55 | 61.08 | 71.31 | 62.24 | 76.76 | 66.97 | |
Lu_UESTC_task2_1 | LuUESTC2021 | 66 | 53.463 | 62.22 | 56.18 | 55.32 | 50.12 | 60.57 | 56.92 | 66.94 | 55.58 | 50.42 | 51.84 | 45.85 | 49.50 | 44.92 | 51.13 | 63.54 | 56.89 | 60.49 | 53.53 | 61.83 | 64.71 | 63.70 | 56.25 | 67.24 | 56.83 | 69.20 | 60.76 | 64.48 | 53.92 | |
Lu_UESTC_task2_2 | LuUESTC2021 | 57 | 55.015 | 48.50 | 52.44 | 69.80 | 55.82 | 59.49 | 51.51 | 63.98 | 54.94 | 58.25 | 50.79 | 58.65 | 51.96 | 51.86 | 49.86 | 66.04 | 53.98 | 64.18 | 53.86 | 62.76 | 53.48 | 65.38 | 52.64 | 62.43 | 54.75 | 66.49 | 55.14 | 56.50 | 50.33 | |
Lu_UESTC_task2_3 | LuUESTC2021 | 50 | 56.390 | 53.83 | 53.10 | 65.78 | 55.70 | 63.29 | 51.74 | 65.57 | 56.81 | 60.87 | 51.89 | 60.22 | 51.80 | 54.73 | 50.38 | 67.22 | 53.66 | 71.56 | 58.89 | 66.51 | 54.43 | 70.04 | 53.67 | 60.80 | 54.49 | 67.58 | 56.37 | 59.05 | 50.55 | |
Lu_UESTC_task2_4 | LuUESTC2021 | 53 | 56.124 | 51.93 | 50.84 | 68.54 | 60.97 | 60.22 | 51.12 | 65.60 | 57.20 | 59.69 | 51.61 | 58.93 | 51.91 | 54.61 | 50.09 | 66.60 | 57.78 | 67.55 | 57.78 | 64.40 | 53.14 | 68.40 | 53.87 | 61.48 | 54.37 | 67.80 | 56.05 | 57.37 | 50.26 | |
Yamashita_GifuUniv_task2_1 | YamashitaGifuUniv2021 | 60 | 54.764 | 58.59 | 57.58 | 65.18 | 55.87 | 62.33 | 52.37 | 61.42 | 54.24 | 48.55 | 50.09 | 55.65 | 50.91 | 49.79 | 50.38 | 62.87 | 52.68 | 65.06 | 53.67 | 61.48 | 53.95 | 59.04 | 51.62 | 58.12 | 53.69 | 63.62 | 53.99 | 54.39 | 50.84 | |
Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | 44 | 56.787 | 61.04 | 59.76 | 72.95 | 63.94 | 60.63 | 52.57 | 61.57 | 55.14 | 49.76 | 50.32 | 60.43 | 55.00 | 51.02 | 50.31 | 56.26 | 51.21 | 71.06 | 57.14 | 60.04 | 52.77 | 60.57 | 52.17 | 54.50 | 52.65 | 67.55 | 58.11 | 60.00 | 54.38 | |
Primus_CPJKU_task2_1 | PrimusCPJKU2021 | 35 | 59.084 | 56.76 | 53.71 | 51.34 | 50.33 | 76.65 | 65.18 | 64.25 | 55.58 | 72.80 | 65.84 | 69.96 | 54.37 | 54.24 | 51.60 | 65.95 | 59.79 | 60.65 | 57.44 | 78.41 | 69.39 | 75.72 | 55.41 | 68.76 | 61.74 | 72.09 | 60.72 | 56.74 | 51.68 | |
Primus_CPJKU_task2_2 | PrimusCPJKU2021 | 34 | 59.196 | 58.70 | 55.78 | 47.39 | 50.36 | 78.52 | 67.09 | 61.39 | 54.46 | 75.11 | 66.99 | 72.01 | 54.00 | 54.60 | 51.74 | 66.94 | 57.82 | 59.14 | 57.28 | 78.58 | 70.21 | 75.74 | 55.75 | 70.72 | 63.86 | 70.06 | 60.76 | 56.26 | 51.86 | |
Primus_CPJKU_task2_3 | PrimusCPJKU2021 | 33 | 59.502 | 53.50 | 52.98 | 49.74 | 49.67 | 90.04 | 70.24 | 60.29 | 54.63 | 74.53 | 66.71 | 75.02 | 59.55 | 49.73 | 53.74 | 78.16 | 60.94 | 65.19 | 60.79 | 78.45 | 74.17 | 73.49 | 60.75 | 79.73 | 64.26 | 76.19 | 64.78 | 77.53 | 65.92 | |
Primus_CPJKU_task2_4 | PrimusCPJKU2021 | 27 | 60.221 | 55.71 | 54.10 | 51.97 | 50.97 | 90.22 | 71.19 | 59.68 | 54.49 | 74.71 | 67.17 | 75.13 | 60.05 | 49.75 | 53.74 | 79.12 | 63.61 | 65.63 | 61.62 | 78.72 | 74.39 | 74.86 | 60.31 | 79.99 | 64.68 | 76.34 | 65.62 | 77.52 | 65.90 | |
Dini_TAU_task2_1 | DiniTAU2021 | 68 | 53.226 | 54.45 | 55.37 | 60.35 | 51.66 | 55.55 | 52.44 | 56.14 | 49.74 | 53.28 | 50.66 | 56.60 | 53.56 | 48.26 | 49.69 | 62.94 | 51.24 | 53.98 | 52.14 | 62.59 | 52.05 | 69.93 | 50.75 | 60.58 | 52.26 | 69.29 | 56.28 | 56.96 | 50.10 | |
Dini_TAU_task2_2 | DiniTAU2021 | 69 | 52.722 | 53.02 | 54.37 | 58.59 | 51.04 | 56.00 | 50.98 | 54.68 | 49.52 | 51.51 | 51.07 | 54.97 | 52.87 | 50.56 | 50.53 | 62.94 | 51.24 | 53.98 | 52.14 | 62.59 | 52.05 | 69.93 | 50.75 | 60.58 | 52.26 | 69.29 | 56.28 | 56.96 | 50.10 | |
Kuroyanagi_NU-HDL_task2_1 | KuroyanagiNU-HDL2021 | 30 | 59.915 | 58.97 | 51.44 | 63.48 | 56.57 | 65.06 | 57.17 | 67.70 | 59.10 | 66.31 | 54.91 | 74.22 | 60.51 | 58.44 | 52.97 | 82.60 | 69.48 | 78.10 | 65.06 | 78.75 | 67.28 | 77.17 | 60.76 | 75.06 | 65.67 | 78.37 | 70.68 | 80.70 | 69.38 | |
Kuroyanagi_NU-HDL_task2_2 | KuroyanagiNU-HDL2021 | 10 | 63.213 | 60.17 | 58.58 | 55.93 | 51.95 | 61.48 | 68.54 | 54.23 | 51.91 | 84.36 | 77.19 | 87.44 | 73.26 | 62.37 | 61.87 | 68.95 | 57.49 | 70.23 | 60.21 | 72.11 | 76.23 | 80.76 | 66.04 | 69.85 | 65.26 | 76.02 | 65.90 | 92.09 | 81.70 | |
Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | 9 | 63.745 | 61.70 | 55.58 | 61.79 | 57.07 | 66.60 | 66.17 | 62.53 | 54.92 | 74.60 | 61.69 | 86.27 | 74.12 | 62.36 | 60.05 | 84.31 | 69.10 | 79.15 | 64.84 | 79.68 | 77.03 | 84.09 | 67.73 | 77.15 | 67.22 | 84.03 | 73.22 | 94.42 | 81.03 | |
Kuroyanagi_NU-HDL_task2_4 | KuroyanagiNU-HDL2021 | 13 | 62.263 | 58.97 | 51.44 | 63.48 | 56.57 | 63.25 | 61.37 | 60.72 | 55.57 | 76.55 | 65.30 | 77.87 | 66.51 | 62.37 | 61.87 | 82.60 | 69.48 | 78.10 | 65.06 | 81.25 | 71.80 | 82.31 | 66.51 | 75.17 | 66.07 | 78.37 | 73.44 | 92.09 | 81.70 |
Supplementary metrics (recall, precision, and F1 score)
Rank | Submission Information | Evaluation Dataset | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
ToyCar (F1 score) |
ToyCar (Recall) |
ToyCar (Precision) |
ToyTrain (F1 score) |
ToyTrain (Recall) |
ToyTrain (Precision) |
Fan (F1 score) |
Fan (Recall) |
Fan (Precision) |
Gearbox (F1 score) |
Gearbox (Recall) |
Gearbox (Precision) |
Pump (F1 score) |
Pump (Recall) |
Pump (Precision) |
Slider (F1 score) |
Slider (Recall) |
Slider (Precision) |
Valve (F1 score) |
Valve (Recall) |
Valve (Precision) |
|
DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | 51 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 38.29 | 29.56 | 54.36 | 47.53 | 37.47 | 64.97 | 40.41 | 31.74 | 55.62 | 42.36 | 33.79 | 56.74 | 27.80 | 19.01 | 51.73 | |
DCASE2021_baseline_task2_MNV2 | DCASE2021baseline2021 | 59 | 50.59 | 45.85 | 56.41 | 0.00 | 0.00 | 0.00 | 38.41 | 28.26 | 59.93 | 15.67 | 9.34 | 48.61 | 5.95 | 3.07 | 92.31 | 41.65 | 29.87 | 68.74 | 0.00 | 0.00 | 0.00 | |
Tozicka_NSW_task2_1 | TozickaNSW2021 | 61 | 43.86 | 38.93 | 50.21 | 48.72 | 43.95 | 54.65 | 57.83 | 57.64 | 58.03 | 44.05 | 39.41 | 49.93 | 54.35 | 53.60 | 55.13 | 59.82 | 57.01 | 62.93 | 46.32 | 42.38 | 51.07 | |
Tozicka_NSW_task2_2 | TozickaNSW2021 | 39 | 0.00 | 0.00 | 0.00 | 49.82 | 47.43 | 52.47 | 58.20 | 53.28 | 64.12 | 52.55 | 49.89 | 55.51 | 65.84 | 62.56 | 69.48 | 56.90 | 51.70 | 63.25 | 33.94 | 24.62 | 54.63 | |
Tozicka_NSW_task2_3 | TozickaNSW2021 | 49 | 66.67 | 100.00 | 50.00 | 6.69 | 3.66 | 38.72 | 26.85 | 17.35 | 59.42 | 42.46 | 29.69 | 74.55 | 23.04 | 14.98 | 49.86 | 30.33 | 20.57 | 57.73 | 13.00 | 7.50 | 48.84 | |
Tozicka_NSW_task2_4 | TozickaNSW2021 | 19 | 66.67 | 100.00 | 50.00 | 49.82 | 47.43 | 52.47 | 58.20 | 53.28 | 64.12 | 42.46 | 29.69 | 74.55 | 65.84 | 62.56 | 69.48 | 56.90 | 51.70 | 63.25 | 33.94 | 24.62 | 54.63 | |
Asai_PFU_task2_1 | AsaiPFU2021 | 40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.52 | 10.73 | 47.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bai_LFXS_task2_1 | BaiLFXS2021 | 54 | 64.83 | 83.17 | 53.12 | 57.13 | 68.42 | 49.05 | 40.53 | 27.90 | 74.09 | 14.60 | 8.39 | 56.07 | 50.82 | 37.86 | 77.26 | 22.24 | 12.84 | 82.85 | 10.62 | 6.03 | 44.17 | |
Bai_LFXS_task2_2 | BaiLFXS2021 | 43 | 58.26 | 68.25 | 50.82 | 59.63 | 74.38 | 49.76 | 65.79 | 63.83 | 67.87 | 51.51 | 50.15 | 52.93 | 36.08 | 26.10 | 58.46 | 37.18 | 25.44 | 69.05 | 33.73 | 24.07 | 56.37 | |
Bai_LFXS_task2_3 | BaiLFXS2021 | 77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 63.30 | 86.77 | 49.82 | 0.00 | 0.00 | 0.00 | 38.63 | 27.31 | 65.98 | 66.93 | 67.75 | 66.13 | 13.48 | 7.77 | 50.62 | |
Bai_LFXS_task2_4 | BaiLFXS2021 | 65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 70.39 | 87.01 | 59.11 | 31.91 | 23.32 | 50.50 | 51.82 | 41.78 | 68.20 | 54.27 | 45.08 | 68.17 | 28.45 | 19.08 | 55.84 | |
Liu_CQUPT_task2_1 | LiuCQUPT2021 | 64 | 66.67 | 100.00 | 50.00 | 62.44 | 63.73 | 61.21 | 55.19 | 56.36 | 54.06 | 47.92 | 38.06 | 64.67 | 65.09 | 90.25 | 50.90 | 45.77 | 41.21 | 51.46 | 66.66 | 98.63 | 50.34 | |
Narita_AIT_task2_1 | NaritaAIT2021 | 32 | 0.00 | 0.00 | 0.00 | 65.75 | 88.23 | 52.40 | 64.56 | 79.66 | 54.27 | 64.70 | 59.00 | 71.61 | 60.94 | 59.78 | 62.15 | 68.11 | 78.39 | 60.21 | 51.90 | 51.39 | 52.41 | |
Narita_AIT_task2_2 | NaritaAIT2021 | 26 | 0.00 | 0.00 | 0.00 | 64.44 | 92.98 | 49.31 | 61.25 | 60.99 | 61.52 | 68.20 | 74.17 | 63.12 | 64.26 | 61.37 | 67.43 | 68.39 | 75.49 | 62.50 | 49.60 | 47.65 | 51.73 | |
Deng_THU_task2_1 | DengTHU2021 | 28 | 51.06 | 47.76 | 54.85 | 46.18 | 46.33 | 46.02 | 81.37 | 81.73 | 81.01 | 54.56 | 48.98 | 61.58 | 53.58 | 38.95 | 85.82 | 60.16 | 51.13 | 73.05 | 52.45 | 48.14 | 57.61 | |
Li_CQUST_task2_1 | LiCQUST2021 | 55 | 58.32 | 64.46 | 53.24 | 58.10 | 70.13 | 49.60 | 45.64 | 36.39 | 61.20 | 6.77 | 3.61 | 54.90 | 37.32 | 24.27 | 80.71 | 6.78 | 3.54 | 81.11 | 0.00 | 0.00 | 0.00 | |
Chan_NTPU_task2_1 | ChanNTPU2021 | 75 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 62.88 | 86.37 | 49.43 | 0.00 | 0.00 | 0.00 | 22.00 | 13.97 | 51.79 | 59.29 | 71.58 | 50.61 | 62.05 | 80.30 | 50.56 | |
Chan_NTPU_task2_2 | ChanNTPU2021 | 73 | 57.14 | 66.67 | 50.00 | 66.67 | 100.00 | 50.00 | 65.48 | 95.25 | 49.89 | 58.92 | 79.39 | 46.84 | 64.02 | 86.31 | 50.88 | 65.59 | 86.59 | 52.79 | 65.37 | 92.22 | 50.63 | |
Chan_NTPU_task2_3 | ChanNTPU2021 | 74 | 0.00 | 0.00 | 0.00 | 66.67 | 100.00 | 50.00 | 64.14 | 91.14 | 49.48 | 54.17 | 63.77 | 47.08 | 56.96 | 62.08 | 52.63 | 62.79 | 80.76 | 51.37 | 64.25 | 88.50 | 50.44 | |
Chan_NTPU_task2_4 | ChanNTPU2021 | 76 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 65.46 | 97.32 | 49.32 | 66.25 | 99.84 | 49.57 | 66.52 | 99.66 | 49.92 | 66.48 | 100.00 | 49.79 | 66.67 | 100.00 | 50.00 | |
Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | 37 | 0.00 | 0.00 | 0.00 | 65.73 | 83.05 | 54.39 | 6.15 | 3.21 | 71.84 | 40.85 | 31.24 | 59.02 | 60.89 | 52.71 | 72.07 | 32.11 | 20.05 | 80.46 | 23.17 | 14.35 | 60.06 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2021 | 6 | 51.78 | 50.46 | 53.18 | 60.00 | 76.21 | 49.48 | 74.27 | 72.95 | 75.64 | 53.76 | 52.74 | 54.82 | 67.21 | 67.74 | 66.70 | 74.21 | 69.40 | 79.73 | 48.68 | 45.61 | 52.20 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2021 | 7 | 51.78 | 50.46 | 53.18 | 60.00 | 76.21 | 49.48 | 66.39 | 56.53 | 80.41 | 9.39 | 5.32 | 40.12 | 67.21 | 67.74 | 66.70 | 74.21 | 69.40 | 79.73 | 17.43 | 11.47 | 36.24 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | 4 | 52.09 | 51.03 | 53.19 | 60.44 | 77.05 | 49.72 | 69.95 | 61.90 | 80.41 | 36.54 | 28.09 | 52.29 | 66.73 | 66.06 | 67.40 | 74.48 | 69.13 | 80.72 | 37.73 | 30.47 | 49.52 | |
Wilkinghoff_FKIE_task2_4 | WilkinghoffFKIE2021 | 8 | 52.84 | 52.85 | 52.83 | 59.80 | 75.93 | 49.32 | 75.39 | 75.50 | 75.29 | 53.18 | 51.89 | 54.54 | 67.14 | 67.74 | 66.55 | 74.54 | 69.52 | 80.33 | 43.07 | 36.58 | 52.37 | |
Tan_NTU_task2_1 | TanNTU2021 | 45 | 66.67 | 100.00 | 50.00 | 67.08 | 72.75 | 62.22 | 54.91 | 52.78 | 57.22 | 47.29 | 36.31 | 67.80 | 39.76 | 30.78 | 56.14 | 48.45 | 42.06 | 57.13 | 31.71 | 22.69 | 52.64 | |
Zhou_PSH_task2_1 | ZhouPSH2021 | 25 | 61.71 | 80.53 | 50.02 | 67.27 | 99.66 | 50.77 | 73.55 | 90.84 | 61.79 | 65.94 | 80.07 | 56.04 | 69.90 | 93.05 | 55.98 | 71.80 | 95.81 | 57.42 | 66.79 | 86.97 | 54.21 | |
Zhou_PSH_task2_2 | ZhouPSH2021 | 16 | 66.70 | 99.15 | 50.26 | 67.38 | 99.83 | 50.85 | 73.36 | 90.87 | 61.51 | 66.99 | 83.53 | 55.92 | 69.55 | 92.63 | 55.68 | 71.68 | 95.56 | 57.35 | 67.25 | 87.48 | 54.62 | |
Zhou_PSH_task2_3 | ZhouPSH2021 | 15 | 66.70 | 100.00 | 50.04 | 67.04 | 99.66 | 50.50 | 72.14 | 89.16 | 60.58 | 66.57 | 82.48 | 55.81 | 69.88 | 93.40 | 55.82 | 71.77 | 95.81 | 57.38 | 66.34 | 85.75 | 54.10 | |
Zhou_PSH_task2_4 | ZhouPSH2021 | 14 | 66.70 | 100.00 | 50.04 | 67.03 | 99.31 | 50.58 | 73.25 | 92.90 | 60.46 | 65.72 | 80.80 | 55.38 | 69.48 | 92.83 | 55.52 | 72.22 | 96.05 | 57.86 | 67.73 | 88.72 | 54.77 | |
Wang_NTU_task2_1 | WangNTU2021 | 46 | 0.00 | 0.00 | 0.00 | 65.78 | 76.93 | 57.45 | 16.71 | 9.78 | 57.26 | 50.51 | 39.74 | 69.29 | 25.07 | 16.03 | 57.58 | 61.71 | 60.83 | 62.61 | 33.52 | 25.26 | 49.80 | |
Wang_NTU_task2_2 | WangNTU2021 | 67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Wang_NTU_task2_3 | WangNTU2021 | 47 | 0.00 | 0.00 | 0.00 | 42.73 | 31.99 | 64.36 | 18.80 | 11.41 | 53.43 | 48.66 | 37.14 | 70.54 | 28.47 | 18.95 | 57.23 | 56.01 | 52.06 | 60.61 | 32.58 | 24.38 | 49.07 | |
Wang_NTU_task2_4 | WangNTU2021 | 41 | 0.00 | 0.00 | 0.00 | 42.73 | 31.99 | 64.36 | 0.00 | 0.00 | 0.00 | 50.51 | 39.74 | 69.29 | 25.07 | 16.03 | 57.58 | 66.48 | 100.00 | 49.79 | 0.00 | 0.00 | 0.00 | |
Morita_SECOM_task2_1 | MoritaSECOM2021 | 5 | 67.19 | 100.00 | 50.59 | 64.94 | 90.31 | 50.70 | 66.47 | 57.42 | 78.90 | 61.99 | 58.54 | 65.88 | 73.84 | 69.39 | 78.91 | 0.00 | 0.00 | 0.00 | 9.74 | 5.24 | 68.82 | |
Morita_SECOM_task2_2 | MoritaSECOM2021 | 3 | 54.61 | 53.24 | 56.05 | 62.77 | 77.60 | 52.70 | 51.21 | 37.57 | 80.38 | 57.39 | 51.22 | 65.25 | 69.41 | 59.00 | 84.27 | 0.00 | 0.00 | 0.00 | 62.49 | 60.79 | 64.29 | |
Morita_SECOM_task2_3 | MoritaSECOM2021 | 2 | 54.74 | 55.04 | 54.43 | 62.02 | 80.54 | 50.42 | 51.24 | 37.23 | 82.19 | 60.24 | 55.36 | 66.08 | 73.83 | 67.22 | 81.89 | 0.00 | 0.00 | 0.00 | 62.49 | 60.79 | 64.29 | |
Lopez_IL_task2_1 | LopezIL2021 | 11 | 63.47 | 81.90 | 51.81 | 38.67 | 27.67 | 64.20 | 34.14 | 23.53 | 62.20 | 57.87 | 70.09 | 49.28 | 65.45 | 51.43 | 89.97 | 52.99 | 39.10 | 82.18 | 26.04 | 16.34 | 64.12 | |
Lopez_IL_task2_2 | LopezIL2021 | 52 | 0.00 | 0.00 | 0.00 | 63.97 | 83.87 | 51.71 | 38.66 | 26.83 | 69.18 | 0.00 | 0.00 | 0.00 | 70.06 | 56.26 | 92.84 | 57.23 | 45.28 | 77.76 | 17.43 | 10.23 | 58.88 | |
Lopez_IL_task2_3 | LopezIL2021 | 31 | 0.00 | 0.00 | 0.00 | 31.37 | 22.03 | 54.44 | 68.63 | 99.32 | 52.43 | 43.20 | 30.65 | 73.20 | 0.00 | 0.00 | 0.00 | 35.01 | 23.10 | 72.29 | 11.08 | 6.21 | 51.06 | |
Lopez_IL_task2_4 | LopezIL2021 | 1 | 71.97 | 98.02 | 56.86 | 35.01 | 23.94 | 65.12 | 38.52 | 26.83 | 68.30 | 52.08 | 45.52 | 60.84 | 66.59 | 52.28 | 91.68 | 62.24 | 49.96 | 82.54 | 26.04 | 16.34 | 64.12 | |
Abe_RLB_task2_1 | AbeRLB2021 | 62 | 63.85 | 87.01 | 50.43 | 49.90 | 44.35 | 57.05 | 56.89 | 55.63 | 58.21 | 50.05 | 42.99 | 59.88 | 46.38 | 39.86 | 55.45 | 49.01 | 43.56 | 56.00 | 35.04 | 26.78 | 50.67 | |
Abe_RLB_task2_2 | AbeRLB2021 | 72 | 66.67 | 100.00 | 50.00 | 66.28 | 99.13 | 49.78 | 45.64 | 43.53 | 47.96 | 51.92 | 50.33 | 53.62 | 26.28 | 17.50 | 52.79 | 66.85 | 88.53 | 53.70 | 47.61 | 44.62 | 51.04 | |
Abe_RLB_task2_3 | AbeRLB2021 | 70 | 0.00 | 0.00 | 0.00 | 12.37 | 6.78 | 69.80 | 20.34 | 13.25 | 43.66 | 25.93 | 15.84 | 71.54 | 53.25 | 46.99 | 61.44 | 40.32 | 28.09 | 71.42 | 24.57 | 16.80 | 45.74 | |
He_XJU_task2_1 | HeXJU2021 | 38 | 66.67 | 100.00 | 50.00 | 66.29 | 99.15 | 49.79 | 30.83 | 20.34 | 63.66 | 59.52 | 63.83 | 55.75 | 43.22 | 33.84 | 59.78 | 72.79 | 89.22 | 61.47 | 47.27 | 42.97 | 52.52 | |
He_XJU_task2_2 | HeXJU2021 | 36 | 46.91 | 43.65 | 50.71 | 0.00 | 0.00 | 0.00 | 66.49 | 56.13 | 81.52 | 16.35 | 9.47 | 59.78 | 0.00 | 0.00 | 0.00 | 44.58 | 31.54 | 76.03 | 0.00 | 0.00 | 0.00 | |
He_XJU_task2_3 | HeXJU2021 | 42 | 66.42 | 94.32 | 51.26 | 63.72 | 86.85 | 50.31 | 47.20 | 34.75 | 73.56 | 53.58 | 56.24 | 51.16 | 57.79 | 55.09 | 60.76 | 72.74 | 87.55 | 62.21 | 48.98 | 45.33 | 53.28 | |
He_XJU_task2_4 | HeXJU2021 | 17 | 66.67 | 100.00 | 50.00 | 63.72 | 86.85 | 50.31 | 47.20 | 34.75 | 73.56 | 53.58 | 56.24 | 51.16 | 57.79 | 55.09 | 60.76 | 44.58 | 31.54 | 76.03 | 47.27 | 42.97 | 52.52 | |
Cai_SMALLRICE_task2_1 | CaiSMALLRICE2021 | 29 | 57.33 | 56.30 | 58.40 | 48.73 | 48.55 | 48.91 | 73.09 | 63.08 | 86.89 | 52.99 | 48.93 | 57.77 | 66.34 | 58.35 | 76.88 | 60.18 | 53.33 | 69.04 | 36.02 | 26.30 | 57.15 | |
Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | 20 | 56.47 | 55.82 | 57.13 | 46.59 | 45.33 | 47.92 | 77.13 | 66.14 | 92.49 | 51.64 | 47.08 | 57.19 | 64.98 | 54.62 | 80.21 | 64.46 | 55.95 | 76.04 | 36.02 | 26.30 | 57.15 | |
Cai_SMALLRICE_task2_3 | CaiSMALLRICE2021 | 22 | 53.57 | 51.32 | 56.03 | 50.82 | 50.83 | 50.81 | 74.53 | 62.90 | 91.43 | 56.00 | 52.40 | 60.12 | 57.98 | 44.90 | 81.82 | 67.39 | 60.32 | 76.34 | 36.02 | 26.30 | 57.15 | |
Cai_SMALLRICE_task2_4 | CaiSMALLRICE2021 | 21 | 0.00 | 0.00 | 0.00 | 18.52 | 13.27 | 30.65 | 26.99 | 15.67 | 97.11 | 14.87 | 8.64 | 53.22 | 21.22 | 11.87 | 100.00 | 25.77 | 15.27 | 82.38 | 36.02 | 26.30 | 57.15 | |
Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | 12 | 64.57 | 65.45 | 63.71 | 55.83 | 56.50 | 55.17 | 60.96 | 56.09 | 66.77 | 58.00 | 51.99 | 65.57 | 63.21 | 58.18 | 69.19 | 73.09 | 72.55 | 73.64 | 61.09 | 60.29 | 61.91 | |
Sakamoto_Fixstars_task2_2 | SakamotoFixstars2021 | 24 | 61.42 | 63.80 | 59.22 | 54.29 | 55.67 | 52.97 | 57.74 | 51.99 | 64.92 | 58.00 | 51.99 | 65.57 | 58.39 | 51.81 | 66.90 | 73.09 | 72.55 | 73.64 | 61.09 | 60.29 | 61.91 | |
Sakamoto_Fixstars_task2_3 | SakamotoFixstars2021 | 23 | 64.57 | 65.45 | 63.71 | 53.32 | 54.62 | 52.08 | 60.96 | 56.09 | 66.77 | 57.09 | 50.93 | 64.95 | 63.21 | 58.18 | 69.19 | 70.66 | 69.29 | 72.07 | 52.25 | 50.22 | 54.46 | |
Sakamoto_Fixstars_task2_4 | SakamotoFixstars2021 | 18 | 57.40 | 57.84 | 56.97 | 59.34 | 57.46 | 61.34 | 59.14 | 54.40 | 64.80 | 58.54 | 52.55 | 66.08 | 52.38 | 47.65 | 58.16 | 62.76 | 58.47 | 67.72 | 55.53 | 49.93 | 62.53 | |
Wang_UCAS_task2_1 | WangUCAS2021 | 48 | 0.00 | 0.00 | 0.00 | 31.17 | 20.07 | 69.66 | 45.70 | 38.50 | 56.23 | 53.08 | 46.43 | 61.96 | 48.49 | 42.73 | 56.06 | 54.11 | 52.11 | 56.28 | 32.98 | 24.26 | 51.47 | |
Wang_UCAS_task2_2 | WangUCAS2021 | 63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 29.84 | 20.86 | 52.41 | 44.13 | 33.01 | 66.56 | 33.01 | 24.13 | 52.23 | 34.33 | 24.46 | 57.54 | 21.67 | 13.98 | 48.19 | |
Wang_UCAS_task2_3 | WangUCAS2021 | 56 | 0.00 | 0.00 | 0.00 | 17.92 | 10.16 | 75.66 | 34.67 | 25.89 | 52.47 | 46.61 | 36.82 | 63.49 | 38.98 | 30.54 | 53.86 | 41.28 | 32.65 | 56.11 | 26.03 | 17.67 | 49.45 | |
Wang_UCAS_task2_4 | WangUCAS2021 | 71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 21.25 | 13.39 | 51.40 | 47.09 | 37.16 | 64.25 | 31.88 | 23.73 | 48.57 | 23.36 | 14.85 | 54.76 | 0.00 | 0.00 | 0.00 | |
Jalali_AIT_task2_1 | JalaliAIT2021 | 58 | 60.84 | 80.63 | 48.85 | 63.88 | 88.99 | 49.83 | 24.83 | 16.46 | 50.53 | 59.06 | 60.82 | 57.41 | 62.96 | 58.79 | 67.76 | 68.56 | 70.23 | 66.96 | 37.10 | 28.44 | 53.35 | |
Lu_UESTC_task2_1 | LuUESTC2021 | 66 | 66.67 | 100.00 | 50.00 | 53.98 | 53.93 | 54.04 | 37.25 | 26.97 | 60.20 | 0.00 | 0.00 | 0.00 | 62.83 | 85.57 | 49.64 | 66.48 | 100.00 | 49.79 | 5.60 | 3.05 | 34.39 | |
Lu_UESTC_task2_2 | LuUESTC2021 | 57 | 65.21 | 87.60 | 51.94 | 69.20 | 86.59 | 57.63 | 56.51 | 54.94 | 58.18 | 58.25 | 58.15 | 58.34 | 54.37 | 53.40 | 55.37 | 57.50 | 59.79 | 55.38 | 47.96 | 44.08 | 52.58 | |
Lu_UESTC_task2_3 | LuUESTC2021 | 50 | 67.53 | 100.00 | 50.98 | 66.88 | 95.70 | 51.40 | 68.17 | 82.83 | 57.92 | 64.84 | 73.75 | 57.86 | 63.20 | 73.51 | 55.43 | 67.05 | 85.96 | 54.96 | 58.42 | 64.62 | 53.31 | |
Lu_UESTC_task2_4 | LuUESTC2021 | 53 | 66.67 | 100.00 | 50.00 | 66.67 | 100.00 | 50.00 | 50.03 | 44.23 | 57.58 | 53.12 | 45.84 | 63.16 | 47.52 | 40.76 | 56.98 | 50.85 | 46.60 | 55.94 | 37.33 | 28.56 | 53.90 | |
Yamashita_GifuUniv_task2_1 | YamashitaGifuUniv2021 | 60 | 30.42 | 23.76 | 42.25 | 53.30 | 46.99 | 61.56 | 51.72 | 46.64 | 58.03 | 53.82 | 47.40 | 62.26 | 44.41 | 40.91 | 48.58 | 48.97 | 45.20 | 53.41 | 42.48 | 37.80 | 48.49 | |
Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | 44 | 47.33 | 38.28 | 61.99 | 59.32 | 52.11 | 68.86 | 51.00 | 46.91 | 55.88 | 52.93 | 47.56 | 59.66 | 42.02 | 36.86 | 48.86 | 54.30 | 49.47 | 60.16 | 44.80 | 39.24 | 52.19 | |
Primus_CPJKU_task2_1 | PrimusCPJKU2021 | 35 | 66.67 | 100.00 | 50.00 | 67.57 | 96.39 | 52.01 | 64.30 | 58.96 | 70.71 | 56.43 | 53.14 | 60.16 | 57.43 | 51.70 | 64.59 | 65.88 | 66.97 | 64.82 | 42.50 | 35.57 | 52.78 | |
Primus_CPJKU_task2_2 | PrimusCPJKU2021 | 34 | 66.67 | 100.00 | 50.00 | 66.75 | 94.95 | 51.46 | 67.36 | 65.63 | 69.19 | 33.52 | 24.46 | 53.24 | 63.31 | 57.35 | 70.65 | 70.86 | 89.96 | 58.45 | 49.31 | 46.38 | 52.63 | |
Primus_CPJKU_task2_3 | PrimusCPJKU2021 | 33 | 66.90 | 87.64 | 54.10 | 67.04 | 100.00 | 50.42 | 80.78 | 94.66 | 70.44 | 0.00 | 0.00 | 0.00 | 66.69 | 79.52 | 57.42 | 72.04 | 96.41 | 57.50 | 0.00 | 0.00 | 0.00 | |
Primus_CPJKU_task2_4 | PrimusCPJKU2021 | 27 | 67.46 | 90.23 | 53.86 | 67.00 | 100.00 | 50.38 | 80.78 | 94.66 | 70.44 | 0.00 | 0.00 | 0.00 | 66.71 | 79.52 | 57.46 | 72.09 | 96.58 | 57.51 | 0.00 | 0.00 | 0.00 | |
Dini_TAU_task2_1 | DiniTAU2021 | 68 | 53.71 | 53.71 | 53.71 | 57.65 | 57.65 | 57.65 | 53.35 | 53.35 | 53.35 | 56.46 | 56.51 | 56.41 | 51.52 | 51.52 | 51.52 | 55.71 | 55.79 | 55.63 | 48.64 | 48.64 | 48.64 | |
Dini_TAU_task2_2 | DiniTAU2021 | 69 | 52.67 | 52.67 | 52.67 | 57.21 | 57.21 | 57.21 | 52.96 | 52.96 | 52.96 | 54.60 | 54.71 | 54.49 | 52.39 | 52.39 | 52.39 | 55.55 | 55.63 | 55.47 | 49.70 | 49.70 | 49.70 | |
Kuroyanagi_NU-HDL_task2_1 | KuroyanagiNU-HDL2021 | 30 | 54.97 | 54.97 | 54.97 | 62.49 | 62.43 | 62.54 | 61.28 | 61.28 | 61.28 | 61.84 | 61.75 | 61.94 | 61.21 | 61.21 | 61.21 | 68.60 | 68.72 | 68.49 | 56.96 | 56.96 | 56.96 | |
Kuroyanagi_NU-HDL_task2_2 | KuroyanagiNU-HDL2021 | 10 | 55.07 | 55.07 | 55.07 | 55.02 | 55.02 | 55.02 | 61.67 | 61.67 | 61.67 | 54.83 | 54.69 | 54.97 | 78.24 | 78.24 | 78.24 | 81.94 | 82.09 | 81.78 | 61.32 | 61.32 | 61.32 | |
Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | 9 | 55.51 | 55.46 | 55.56 | 60.06 | 59.97 | 60.16 | 63.39 | 63.39 | 63.39 | 59.57 | 59.42 | 59.72 | 67.90 | 67.90 | 67.90 | 79.22 | 79.36 | 79.07 | 59.84 | 59.84 | 59.84 | |
Kuroyanagi_NU-HDL_task2_4 | KuroyanagiNU-HDL2021 | 13 | 54.97 | 54.97 | 54.97 | 62.49 | 62.43 | 62.54 | 61.03 | 61.03 | 61.03 | 58.02 | 58.03 | 58.01 | 69.89 | 69.89 | 69.89 | 73.03 | 73.16 | 72.91 | 61.32 | 61.32 | 61.32 |
Domain-wise performance
Rank | Submission Information | Ranking | Eveluation Dataset in Source Domain | Eveluation Dataset in Target Domain | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission Code |
Technical Report |
Official Rank |
Official Score |
Harmonic mean (AUC, source) |
ToyCar (AUC, source) |
ToyCar (pAUC, source) |
ToyTrain (AUC, source) |
ToyTrain (pAUC, source) |
Fan (AUC, source) |
Fan (pAUC, source) |
Gearbox (AUC, source) |
Gearbox (pAUC, source) |
Pump (AUC, source) |
Pump (pAUC, source) |
Slider (AUC, source) |
Slider (pAUC, source) |
Valve (AUC, source) |
Valve (pAUC, source) |
Harmonic mean (AUC, target) |
ToyCar (AUC, target) |
ToyCar (pAUC, target) |
ToyTrain (AUC, target) |
ToyTrain (pAUC, target) |
Fan (AUC, target) |
Fan (pAUC, target) |
Gearbox (AUC, target) |
Gearbox (pAUC, target) |
Pump (AUC, target) |
Pump (pAUC, target) |
Slider (AUC, target) |
Slider (pAUC, target) |
Valve (AUC, target) |
Valve (pAUC, target) |
|
DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | 51 | 56.375 | 64.76 | 76.33 | 51.26 | 69.89 | 55.49 | 66.58 | 51.36 | 67.81 | 55.71 | 62.75 | 51.18 | 64.13 | 50.91 | 51.56 | 50.89 | 57.03 | 58.02 | 53.42 | 67.18 | 59.78 | 55.74 | 49.68 | 63.32 | 58.06 | 54.43 | 50.79 | 51.65 | 51.92 | 52.19 | 49.27 | |
DCASE2021_baseline_task2_MNV2 | DCASE2021baseline2021 | 59 | 54.770 | 53.82 | 34.32 | 53.49 | 47.30 | 52.49 | 70.88 | 57.76 | 53.16 | 53.47 | 67.12 | 60.77 | 73.06 | 60.47 | 54.71 | 53.03 | 54.80 | 56.62 | 58.59 | 39.27 | 48.75 | 59.96 | 58.53 | 49.27 | 49.83 | 68.85 | 59.79 | 72.78 | 60.94 | 51.64 | 50.10 | |
Tozicka_NSW_task2_1 | TozickaNSW2021 | 61 | 54.397 | 58.68 | 58.73 | 49.80 | 56.63 | 52.66 | 62.19 | 51.67 | 56.25 | 50.06 | 56.35 | 54.08 | 69.20 | 57.93 | 53.90 | 53.17 | 54.46 | 46.34 | 51.61 | 51.60 | 55.72 | 58.61 | 52.62 | 52.47 | 49.87 | 57.39 | 51.98 | 65.60 | 53.43 | 53.26 | 50.98 | |
Tozicka_NSW_task2_2 | TozickaNSW2021 | 39 | 58.110 | 61.21 | 50.69 | 50.10 | 49.44 | 50.94 | 73.43 | 62.26 | 62.96 | 52.02 | 76.22 | 65.39 | 68.87 | 59.34 | 57.90 | 57.00 | 60.04 | 49.77 | 50.54 | 54.19 | 52.66 | 72.90 | 61.79 | 55.27 | 50.20 | 81.23 | 64.93 | 70.93 | 59.88 | 50.46 | 51.69 | |
Tozicka_NSW_task2_3 | TozickaNSW2021 | 49 | 56.484 | 61.24 | 73.69 | 59.71 | 73.42 | 60.75 | 60.45 | 51.76 | 64.14 | 55.39 | 55.89 | 51.50 | 63.17 | 51.54 | 47.06 | 51.55 | 56.46 | 63.52 | 59.08 | 67.92 | 61.59 | 55.32 | 50.68 | 65.26 | 60.56 | 46.73 | 50.21 | 52.87 | 51.46 | 50.51 | 50.27 | |
Tozicka_NSW_task2_4 | TozickaNSW2021 | 19 | 61.186 | 64.87 | 73.69 | 59.71 | 49.44 | 50.94 | 73.43 | 62.26 | 64.14 | 55.39 | 76.22 | 65.39 | 68.87 | 59.34 | 57.90 | 57.00 | 63.95 | 63.52 | 59.08 | 54.19 | 52.66 | 72.90 | 61.79 | 65.26 | 60.56 | 81.23 | 64.93 | 70.93 | 59.88 | 50.46 | 51.69 | |
Asai_PFU_task2_1 | AsaiPFU2021 | 40 | 57.845 | 64.93 | 50.00 | 51.91 | 60.77 | 54.14 | 72.33 | 63.12 | 55.46 | 50.58 | 72.75 | 64.91 | 87.08 | 63.36 | 70.05 | 59.63 | 55.86 | 43.73 | 49.47 | 48.05 | 49.91 | 76.62 | 59.30 | 49.65 | 51.82 | 75.01 | 60.34 | 69.26 | 57.09 | 48.40 | 52.29 | |
Bai_LFXS_task2_1 | BaiLFXS2021 | 54 | 55.514 | 58.26 | 40.40 | 51.63 | 47.88 | 47.65 | 74.05 | 63.27 | 55.26 | 54.05 | 73.80 | 65.71 | 79.91 | 67.25 | 59.33 | 53.92 | 51.17 | 38.45 | 55.04 | 33.84 | 48.84 | 75.15 | 63.56 | 49.62 | 53.73 | 71.14 | 63.90 | 82.60 | 65.72 | 46.25 | 49.36 | |
Bai_LFXS_task2_2 | BaiLFXS2021 | 43 | 57.040 | 59.32 | 44.16 | 56.29 | 48.42 | 48.52 | 79.83 | 63.12 | 62.52 | 55.32 | 59.77 | 51.47 | 88.67 | 76.68 | 55.03 | 53.94 | 56.04 | 56.03 | 58.79 | 37.92 | 51.05 | 70.98 | 59.62 | 55.16 | 55.79 | 56.56 | 50.95 | 78.17 | 67.61 | 55.56 | 52.74 | |
Bai_LFXS_task2_3 | BaiLFXS2021 | 77 | 36.679 | 54.36 | 35.14 | 58.72 | 48.42 | 48.52 | 64.35 | 59.29 | 54.13 | 53.80 | 67.08 | 62.98 | 83.59 | 74.59 | 53.28 | 53.45 | 18.66 | 3.88 | 49.93 | 52.13 | 51.23 | 49.28 | 50.26 | 45.20 | 50.15 | 55.47 | 49.76 | 56.87 | 52.49 | 49.74 | 50.57 | |
Bai_LFXS_task2_4 | BaiLFXS2021 | 65 | 53.739 | 45.67 | 18.23 | 55.29 | 40.56 | 47.37 | 76.77 | 62.51 | 54.51 | 50.97 | 75.87 | 68.62 | 85.43 | 71.73 | 57.15 | 57.16 | 56.19 | 55.43 | 61.91 | 35.21 | 49.88 | 75.83 | 62.64 | 51.87 | 53.32 | 74.02 | 63.85 | 80.97 | 63.09 | 50.46 | 50.16 | |
Liu_CQUPT_task2_1 | LiuCQUPT2021 | 64 | 53.837 | 57.30 | 48.45 | 52.81 | 71.64 | 61.29 | 55.99 | 50.58 | 66.01 | 54.68 | 55.80 | 51.36 | 57.11 | 50.69 | 52.30 | 51.27 | 52.14 | 40.55 | 48.17 | 67.61 | 66.10 | 56.81 | 50.99 | 62.93 | 57.48 | 48.18 | 51.09 | 48.06 | 51.74 | 50.67 | 50.33 | |
Narita_AIT_task2_1 | NaritaAIT2021 | 32 | 59.548 | 70.30 | 84.43 | 68.74 | 63.47 | 55.54 | 68.90 | 55.08 | 77.70 | 64.71 | 67.86 | 56.61 | 75.19 | 57.74 | 60.41 | 54.11 | 56.50 | 45.72 | 50.40 | 55.86 | 55.59 | 55.15 | 52.18 | 73.14 | 64.37 | 68.07 | 57.16 | 60.36 | 54.00 | 47.48 | 53.84 | |
Narita_AIT_task2_2 | NaritaAIT2021 | 26 | 60.445 | 70.48 | 80.68 | 65.60 | 60.57 | 56.79 | 73.48 | 57.05 | 75.45 | 63.25 | 72.61 | 61.68 | 75.25 | 59.42 | 60.63 | 53.90 | 57.22 | 46.27 | 53.55 | 50.17 | 55.59 | 64.78 | 54.58 | 71.23 | 63.66 | 72.05 | 60.67 | 61.56 | 55.67 | 47.19 | 53.62 | |
Deng_THU_task2_1 | DengTHU2021 | 28 | 60.172 | 61.87 | 44.32 | 52.43 | 43.56 | 47.46 | 88.42 | 69.51 | 66.84 | 55.00 | 76.16 | 67.85 | 77.20 | 58.59 | 65.49 | 55.90 | 62.08 | 64.28 | 69.52 | 42.87 | 49.46 | 87.76 | 72.22 | 59.64 | 54.56 | 84.73 | 70.32 | 70.86 | 59.07 | 50.52 | 52.35 | |
Li_CQUST_task2_1 | LiCQUST2021 | 55 | 55.430 | 56.05 | 38.81 | 51.17 | 47.58 | 49.09 | 73.17 | 58.51 | 54.70 | 54.73 | 67.46 | 62.16 | 74.54 | 61.05 | 55.82 | 51.83 | 55.90 | 53.42 | 53.66 | 48.21 | 49.76 | 61.74 | 58.85 | 48.58 | 51.42 | 65.38 | 61.17 | 72.82 | 60.17 | 50.14 | 50.34 | |
Chan_NTPU_task2_1 | ChanNTPU2021 | 75 | 49.305 | 45.90 | 35.25 | 48.63 | 48.78 | 49.44 | 47.39 | 49.66 | 41.20 | 51.63 | 49.51 | 50.92 | 54.22 | 51.36 | 50.94 | 51.39 | 49.90 | 39.01 | 50.94 | 46.25 | 48.36 | 56.97 | 52.04 | 46.01 | 51.67 | 52.26 | 51.15 | 53.90 | 51.91 | 62.26 | 53.96 | |
Chan_NTPU_task2_2 | ChanNTPU2021 | 73 | 51.925 | 49.23 | 52.36 | 60.62 | 49.26 | 50.38 | 43.78 | 50.78 | 39.05 | 51.14 | 51.47 | 50.95 | 59.61 | 52.14 | 55.11 | 51.09 | 53.84 | 57.41 | 57.15 | 46.18 | 50.35 | 52.68 | 50.34 | 50.66 | 52.30 | 52.25 | 51.19 | 58.44 | 54.51 | 62.65 | 53.08 | |
Chan_NTPU_task2_3 | ChanNTPU2021 | 74 | 51.107 | 47.51 | 45.15 | 48.56 | 48.90 | 48.94 | 44.76 | 50.29 | 38.55 | 51.11 | 49.75 | 51.50 | 56.92 | 51.58 | 53.27 | 52.03 | 54.24 | 58.68 | 57.04 | 45.41 | 48.88 | 56.12 | 52.06 | 48.61 | 52.35 | 53.95 | 51.06 | 57.56 | 54.50 | 63.65 | 53.33 | |
Chan_NTPU_task2_4 | ChanNTPU2021 | 76 | 37.176 | 25.37 | 47.49 | 61.11 | 38.54 | 50.88 | 9.78 | 48.21 | 28.53 | 48.10 | 24.80 | 49.63 | 35.36 | 48.64 | 43.50 | 49.75 | 34.63 | 48.25 | 57.88 | 42.69 | 50.90 | 35.99 | 49.97 | 44.66 | 48.73 | 14.99 | 48.44 | 39.94 | 49.09 | 62.34 | 54.49 | |
Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | 37 | 58.340 | 63.75 | 43.95 | 52.59 | 69.88 | 51.55 | 73.71 | 62.71 | 62.09 | 56.08 | 76.54 | 64.94 | 73.56 | 59.67 | 60.96 | 56.76 | 55.66 | 41.05 | 57.29 | 62.36 | 57.05 | 52.19 | 59.28 | 55.74 | 53.73 | 72.49 | 62.14 | 75.66 | 61.76 | 47.05 | 50.85 | |
Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2021 | 6 | 63.831 | 72.97 | 67.03 | 62.80 | 70.88 | 55.87 | 88.89 | 68.83 | 60.71 | 53.10 | 70.93 | 65.50 | 88.07 | 64.35 | 72.88 | 55.59 | 64.42 | 69.45 | 61.77 | 48.59 | 52.50 | 88.98 | 70.88 | 55.27 | 52.47 | 77.67 | 66.71 | 83.79 | 66.68 | 51.17 | 50.75 | |
Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2021 | 7 | 63.793 | 72.97 | 67.03 | 62.80 | 70.88 | 55.87 | 89.03 | 70.65 | 60.36 | 50.23 | 70.93 | 65.50 | 88.07 | 64.35 | 73.24 | 56.23 | 65.11 | 69.45 | 61.77 | 48.59 | 52.50 | 88.51 | 70.50 | 53.85 | 48.83 | 77.67 | 66.71 | 83.79 | 66.68 | 56.03 | 52.30 | |
Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | 4 | 64.201 | 73.13 | 67.07 | 63.05 | 70.87 | 56.19 | 89.07 | 69.85 | 61.19 | 50.97 | 70.89 | 65.52 | 88.06 | 64.38 | 73.19 | 55.97 | 65.76 | 72.83 | 63.77 | 48.38 | 52.39 | 88.89 | 70.55 | 54.68 | 49.40 | 79.20 | 67.81 | 85.66 | 69.69 | 54.90 | 51.47 | |
Wilkinghoff_FKIE_task2_4 | WilkinghoffFKIE2021 | 8 | 63.747 | 72.17 | 66.89 | 62.85 | 70.90 | 56.69 | 88.84 | 68.81 | 60.76 | 53.22 | 71.10 | 65.53 | 88.10 | 64.36 | 67.54 | 56.29 | 64.41 | 69.47 | 61.74 | 48.56 | 52.39 | 88.99 | 70.95 | 55.27 | 52.45 | 77.66 | 66.74 | 83.83 | 66.70 | 51.14 | 50.75 | |
Tan_NTU_task2_1 | TanNTU2021 | 45 | 56.768 | 65.71 | 80.61 | 56.09 | 71.33 | 54.43 | 64.05 | 51.13 | 66.14 | 55.52 | 62.75 | 51.33 | 65.74 | 51.39 | 54.88 | 50.78 | 57.04 | 60.29 | 55.16 | 63.72 | 58.08 | 52.23 | 49.91 | 63.36 | 58.19 | 56.74 | 51.54 | 52.96 | 51.59 | 52.62 | 49.43 | |
Zhou_PSH_task2_1 | ZhouPSH2021 | 25 | 60.479 | 64.65 | 41.32 | 47.85 | 59.77 | 51.78 | 75.08 | 61.81 | 64.50 | 51.12 | 84.98 | 77.33 | 87.49 | 72.49 | 65.23 | 54.20 | 61.19 | 52.72 | 60.94 | 43.18 | 50.78 | 84.60 | 64.98 | 51.27 | 49.70 | 88.71 | 84.36 | 79.81 | 61.83 | 58.34 | 51.21 | |
Zhou_PSH_task2_2 | ZhouPSH2021 | 16 | 61.792 | 66.51 | 47.09 | 48.38 | 60.19 | 52.49 | 74.32 | 61.52 | 63.35 | 51.05 | 85.44 | 78.11 | 87.63 | 72.25 | 66.45 | 54.60 | 64.06 | 68.72 | 64.53 | 43.65 | 51.99 | 84.92 | 62.69 | 52.48 | 50.14 | 88.86 | 82.88 | 80.69 | 63.16 | 57.70 | 51.12 | |
Zhou_PSH_task2_3 | ZhouPSH2021 | 15 | 62.221 | 67.80 | 52.52 | 48.60 | 60.82 | 52.98 | 72.10 | 60.81 | 63.43 | 50.80 | 85.41 | 77.88 | 88.16 | 73.20 | 66.37 | 53.74 | 64.47 | 67.81 | 62.61 | 44.91 | 52.35 | 86.31 | 65.02 | 53.10 | 50.27 | 87.86 | 81.08 | 81.06 | 65.47 | 57.40 | 51.15 | |
Zhou_PSH_task2_4 | ZhouPSH2021 | 14 | 62.239 | 67.58 | 51.08 | 48.20 | 60.00 | 51.87 | 78.12 | 61.10 | 62.22 | 50.44 | 84.13 | 76.33 | 87.33 | 70.51 | 66.11 | 54.01 | 65.18 | 68.91 | 63.53 | 48.16 | 52.25 | 87.75 | 68.76 | 52.94 | 50.25 | 86.99 | 79.26 | 80.48 | 64.94 | 55.83 | 51.15 | |
Wang_NTU_task2_1 | WangNTU2021 | 46 | 56.650 | 64.89 | 71.28 | 51.95 | 68.34 | 58.16 | 66.34 | 51.28 | 68.43 | 57.68 | 63.99 | 51.89 | 72.68 | 54.98 | 49.67 | 51.01 | 56.26 | 62.21 | 54.93 | 61.93 | 55.02 | 54.50 | 50.28 | 64.60 | 59.21 | 50.63 | 51.58 | 52.89 | 51.90 | 50.75 | 50.44 | |
Wang_NTU_task2_2 | WangNTU2021 | 67 | 53.429 | 51.31 | 50.33 | 50.33 | 44.33 | 49.09 | 72.81 | 60.24 | 31.81 | 49.49 | 69.63 | 61.79 | 74.13 | 56.56 | 47.70 | 50.24 | 54.41 | 53.70 | 53.70 | 47.59 | 50.48 | 73.39 | 60.19 | 35.69 | 49.45 | 71.20 | 60.76 | 72.98 | 58.69 | 50.97 | 51.51 | |
Wang_NTU_task2_3 | WangNTU2021 | 47 | 56.552 | 64.08 | 65.05 | 51.92 | 67.47 | 56.10 | 68.71 | 51.40 | 68.87 | 58.66 | 65.28 | 52.58 | 70.59 | 52.94 | 48.81 | 51.00 | 56.44 | 61.40 | 60.26 | 58.97 | 53.67 | 56.93 | 50.26 | 64.90 | 58.66 | 53.19 | 52.08 | 52.28 | 51.90 | 50.32 | 49.72 | |
Wang_NTU_task2_4 | WangNTU2021 | 41 | 57.420 | 64.34 | 65.64 | 48.12 | 67.47 | 56.10 | 72.81 | 60.24 | 68.43 | 57.68 | 63.99 | 51.89 | 72.42 | 54.02 | 47.70 | 50.24 | 57.95 | 62.33 | 56.54 | 58.97 | 53.67 | 73.39 | 60.19 | 64.60 | 59.21 | 50.63 | 51.58 | 51.78 | 52.13 | 50.97 | 51.51 | |
Morita_SECOM_task2_1 | MoritaSECOM2021 | 5 | 64.128 | 71.94 | 56.47 | 53.08 | 52.23 | 49.60 | 89.53 | 76.27 | 74.48 | 59.61 | 83.15 | 72.07 | 86.25 | 71.22 | 81.74 | 65.72 | 62.62 | 60.61 | 62.50 | 38.00 | 50.09 | 78.80 | 67.53 | 66.24 | 58.42 | 88.75 | 78.59 | 70.61 | 59.90 | 63.49 | 54.92 | |
Morita_SECOM_task2_2 | MoritaSECOM2021 | 3 | 64.424 | 71.89 | 55.83 | 53.07 | 54.69 | 49.40 | 88.92 | 66.34 | 71.68 | 55.99 | 81.80 | 71.49 | 87.38 | 69.63 | 81.28 | 64.72 | 65.00 | 66.04 | 64.47 | 40.47 | 49.67 | 83.63 | 68.88 | 61.63 | 53.96 | 87.02 | 77.69 | 80.08 | 69.80 | 63.80 | 56.01 | |
Morita_SECOM_task2_3 | MoritaSECOM2021 | 2 | 64.956 | 71.89 | 56.47 | 53.08 | 52.23 | 49.60 | 89.53 | 76.27 | 74.48 | 59.61 | 83.15 | 72.07 | 86.25 | 71.22 | 81.28 | 64.72 | 65.00 | 66.04 | 64.47 | 40.47 | 49.67 | 83.63 | 68.88 | 61.63 | 53.96 | 87.02 | 77.69 | 80.08 | 69.80 | 63.80 | 56.01 | |
Lopez_IL_task2_1 | LopezIL2021 | 11 | 63.146 | 64.07 | 43.07 | 53.61 | 75.59 | 62.14 | 59.60 | 59.78 | 54.59 | 60.36 | 86.92 | 79.87 | 84.55 | 66.88 | 69.56 | 64.03 | 66.08 | 60.31 | 59.04 | 57.86 | 54.08 | 67.84 | 57.26 | 58.93 | 61.15 | 85.53 | 74.17 | 80.38 | 59.71 | 61.64 | 56.71 | |
Lopez_IL_task2_2 | LopezIL2021 | 52 | 56.324 | 46.65 | 16.93 | 53.68 | 60.01 | 52.81 | 51.45 | 61.70 | 60.15 | 54.45 | 86.90 | 81.49 | 84.35 | 62.97 | 67.10 | 54.90 | 63.08 | 54.11 | 56.81 | 46.99 | 56.57 | 74.93 | 59.91 | 57.55 | 50.11 | 83.89 | 75.67 | 84.23 | 68.73 | 59.88 | 55.94 | |
Lopez_IL_task2_3 | LopezIL2021 | 31 | 59.913 | 70.94 | 81.04 | 59.58 | 64.79 | 52.05 | 85.00 | 63.26 | 73.78 | 57.93 | 67.85 | 54.14 | 76.81 | 56.66 | 56.09 | 50.95 | 60.40 | 66.79 | 59.54 | 58.50 | 55.22 | 61.74 | 55.15 | 65.32 | 57.27 | 57.28 | 51.72 | 62.60 | 55.36 | 52.94 | 49.83 | |
Lopez_IL_task2_4 | LopezIL2021 | 1 | 66.798 | 71.66 | 81.44 | 59.05 | 77.56 | 62.21 | 51.45 | 61.70 | 63.52 | 61.38 | 88.72 | 82.19 | 85.56 | 66.10 | 69.56 | 64.03 | 70.00 | 69.97 | 60.39 | 62.38 | 57.78 | 74.93 | 59.91 | 62.62 | 61.75 | 84.88 | 80.91 | 80.92 | 61.28 | 61.64 | 56.71 | |
Abe_RLB_task2_1 | AbeRLB2021 | 62 | 54.307 | 61.32 | 53.35 | 50.85 | 70.55 | 51.85 | 71.80 | 58.27 | 67.30 | 56.61 | 60.69 | 54.08 | 60.93 | 51.97 | 51.14 | 51.25 | 52.29 | 56.07 | 52.45 | 50.23 | 52.10 | 49.59 | 49.54 | 59.80 | 52.55 | 51.36 | 50.61 | 53.51 | 51.52 | 47.43 | 50.26 | |
Abe_RLB_task2_2 | AbeRLB2021 | 72 | 52.030 | 51.62 | 46.33 | 48.71 | 48.35 | 49.43 | 50.31 | 50.93 | 54.22 | 51.66 | 52.08 | 51.57 | 59.54 | 54.84 | 52.57 | 50.57 | 53.26 | 67.08 | 58.29 | 50.75 | 49.72 | 43.27 | 49.33 | 57.52 | 54.05 | 51.49 | 50.40 | 59.78 | 54.94 | 49.59 | 50.30 | |
Abe_RLB_task2_3 | AbeRLB2021 | 70 | 52.413 | 57.19 | 47.11 | 55.31 | 68.39 | 53.27 | 44.73 | 50.39 | 61.31 | 57.08 | 68.48 | 56.57 | 69.10 | 56.65 | 53.14 | 49.45 | 46.35 | 29.45 | 54.04 | 64.64 | 59.32 | 31.08 | 49.27 | 61.42 | 57.24 | 53.34 | 50.75 | 67.78 | 55.59 | 50.87 | 49.54 | |
He_XJU_task2_1 | HeXJU2021 | 38 | 58.213 | 67.66 | 78.90 | 66.28 | 62.03 | 53.77 | 70.13 | 52.76 | 60.76 | 53.63 | 61.87 | 52.72 | 74.04 | 55.43 | 70.03 | 55.93 | 58.37 | 63.87 | 58.29 | 47.48 | 49.88 | 58.65 | 51.54 | 63.31 | 55.75 | 58.07 | 51.63 | 69.07 | 55.98 | 53.56 | 50.89 | |
He_XJU_task2_2 | HeXJU2021 | 36 | 58.912 | 64.18 | 45.73 | 51.65 | 59.32 | 53.82 | 82.53 | 70.09 | 60.87 | 54.72 | 77.86 | 68.71 | 81.62 | 64.05 | 59.89 | 53.76 | 56.72 | 48.23 | 50.97 | 42.69 | 53.69 | 77.10 | 68.85 | 54.10 | 52.75 | 81.99 | 64.83 | 72.26 | 58.41 | 45.96 | 51.83 | |
He_XJU_task2_3 | HeXJU2021 | 42 | 57.383 | 62.78 | 41.84 | 55.06 | 53.63 | 50.03 | 88.06 | 65.44 | 64.45 | 56.31 | 72.91 | 69.29 | 78.03 | 58.62 | 64.30 | 53.09 | 54.55 | 39.77 | 53.36 | 43.84 | 49.40 | 87.31 | 68.46 | 50.38 | 49.96 | 72.17 | 62.41 | 73.85 | 58.25 | 46.14 | 50.49 | |
He_XJU_task2_4 | HeXJU2021 | 17 | 61.480 | 71.11 | 78.90 | 66.28 | 53.63 | 50.03 | 88.06 | 65.44 | 64.45 | 56.31 | 72.91 | 69.29 | 81.62 | 64.05 | 70.03 | 55.93 | 60.28 | 63.87 | 58.29 | 43.84 | 49.40 | 87.31 | 68.46 | 50.38 | 49.96 | 72.17 | 62.41 | 72.26 | 58.41 | 53.56 | 50.89 | |
Cai_SMALLRICE_task2_1 | CaiSMALLRICE2021 | 29 | 60.149 | 62.24 | 47.53 | 49.03 | 46.46 | 48.42 | 88.31 | 76.56 | 61.24 | 56.12 | 72.39 | 66.39 | 78.97 | 64.65 | 63.43 | 55.76 | 61.09 | 65.35 | 66.44 | 52.05 | 51.78 | 83.77 | 70.53 | 55.54 | 53.38 | 81.45 | 69.10 | 61.53 | 57.60 | 46.30 | 52.73 | |
Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | 20 | 60.966 | 63.34 | 49.62 | 53.85 | 45.59 | 48.13 | 92.67 | 83.07 | 61.08 | 55.10 | 74.36 | 68.27 | 82.96 | 66.24 | 63.43 | 55.76 | 61.28 | 58.78 | 63.79 | 49.56 | 50.10 | 88.76 | 77.12 | 55.21 | 53.98 | 81.61 | 67.06 | 72.44 | 61.31 | 46.30 | 52.73 | |
Cai_SMALLRICE_task2_3 | CaiSMALLRICE2021 | 22 | 60.867 | 64.45 | 50.33 | 53.03 | 47.87 | 48.32 | 92.05 | 79.43 | 64.91 | 56.00 | 74.24 | 64.94 | 80.96 | 65.29 | 63.43 | 55.76 | 60.92 | 56.65 | 64.11 | 50.13 | 50.17 | 86.41 | 75.91 | 56.96 | 53.46 | 80.43 | 65.94 | 70.68 | 61.36 | 46.30 | 52.73 | |
Cai_SMALLRICE_task2_4 | CaiSMALLRICE2021 | 21 | 60.874 | 63.32 | 47.79 | 53.56 | 46.09 | 47.78 | 92.93 | 82.68 | 62.67 | 55.33 | 74.83 | 67.59 | 82.80 | 66.24 | 63.43 | 55.76 | 61.11 | 57.34 | 63.91 | 49.54 | 50.18 | 88.54 | 76.83 | 55.77 | 54.26 | 81.86 | 67.07 | 72.02 | 61.02 | 46.30 | 52.73 | |
Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | 12 | 62.593 | 73.25 | 81.76 | 71.53 | 66.24 | 53.74 | 70.93 | 53.54 | 68.64 | 55.29 | 71.53 | 58.14 | 83.63 | 58.47 | 73.37 | 63.10 | 65.48 | 66.46 | 63.06 | 57.75 | 55.29 | 67.13 | 50.73 | 66.87 | 54.88 | 72.20 | 57.18 | 76.45 | 58.18 | 56.33 | 53.15 | |
Sakamoto_Fixstars_task2_2 | SakamotoFixstars2021 | 24 | 60.527 | 69.86 | 59.88 | 53.90 | 66.24 | 53.74 | 69.84 | 52.88 | 68.64 | 55.29 | 71.82 | 57.45 | 83.63 | 58.47 | 73.37 | 63.10 | 63.90 | 67.48 | 56.61 | 51.62 | 52.82 | 67.19 | 51.24 | 66.87 | 54.88 | 68.15 | 55.51 | 76.45 | 58.18 | 56.33 | 53.15 | |
Sakamoto_Fixstars_task2_3 | SakamotoFixstars2021 | 23 | 60.810 | 70.22 | 81.76 | 71.53 | 59.32 | 52.02 | 70.93 | 53.54 | 67.92 | 54.83 | 71.53 | 58.14 | 80.71 | 54.77 | 64.91 | 53.70 | 64.32 | 66.46 | 63.06 | 56.30 | 53.91 | 67.13 | 50.73 | 66.39 | 55.14 | 72.20 | 57.18 | 74.36 | 54.33 | 53.28 | 51.09 | |
Sakamoto_Fixstars_task2_4 | SakamotoFixstars2021 | 18 | 61.308 | 73.02 | 81.76 | 71.53 | 74.03 | 57.11 | 70.93 | 53.54 | 69.48 | 56.95 | 64.69 | 53.50 | 77.47 | 57.18 | 75.35 | 61.93 | 61.49 | 59.31 | 64.18 | 57.75 | 55.29 | 67.22 | 51.35 | 66.72 | 58.44 | 58.87 | 51.65 | 64.05 | 54.00 | 58.12 | 53.18 | |
Wang_UCAS_task2_1 | WangUCAS2021 | 48 | 56.509 | 65.28 | 77.34 | 54.89 | 72.04 | 56.52 | 66.60 | 52.02 | 66.78 | 55.86 | 62.44 | 51.49 | 65.61 | 51.42 | 52.16 | 51.14 | 56.08 | 58.59 | 56.31 | 61.77 | 56.90 | 53.24 | 49.55 | 63.39 | 57.86 | 53.24 | 50.61 | 52.46 | 51.82 | 52.18 | 49.65 | |
Wang_UCAS_task2_2 | WangUCAS2021 | 63 | 54.092 | 59.20 | 54.33 | 48.10 | 72.96 | 57.16 | 62.34 | 51.03 | 64.97 | 54.24 | 57.72 | 50.32 | 59.45 | 51.37 | 48.63 | 50.49 | 53.15 | 42.93 | 54.48 | 63.66 | 58.22 | 52.73 | 49.99 | 63.11 | 58.01 | 52.67 | 50.58 | 50.84 | 51.70 | 51.99 | 49.19 | |
Wang_UCAS_task2_3 | WangUCAS2021 | 56 | 55.147 | 62.03 | 65.18 | 49.81 | 72.37 | 56.51 | 64.27 | 51.28 | 65.81 | 54.62 | 59.67 | 50.60 | 61.84 | 51.61 | 50.00 | 50.93 | 54.53 | 49.26 | 54.52 | 63.17 | 58.33 | 52.96 | 49.69 | 63.33 | 58.22 | 52.80 | 50.50 | 51.25 | 51.71 | 52.31 | 49.43 | |
Wang_UCAS_task2_4 | WangUCAS2021 | 71 | 52.176 | 55.29 | 38.87 | 47.65 | 73.10 | 62.24 | 60.69 | 50.98 | 65.09 | 54.60 | 55.46 | 50.43 | 57.54 | 51.38 | 50.14 | 50.52 | 48.14 | 26.64 | 54.52 | 68.81 | 62.81 | 53.18 | 50.07 | 64.19 | 59.54 | 51.17 | 50.61 | 50.80 | 51.57 | 50.71 | 49.03 | |
Jalali_AIT_task2_1 | JalaliAIT2021 | 58 | 54.983 | 55.50 | 36.07 | 50.65 | 51.20 | 48.47 | 50.25 | 50.16 | 58.14 | 53.55 | 72.73 | 66.50 | 79.62 | 61.34 | 64.71 | 55.64 | 54.69 | 56.60 | 57.80 | 41.66 | 48.60 | 52.62 | 50.04 | 57.10 | 54.35 | 82.26 | 67.09 | 80.94 | 62.36 | 39.54 | 50.93 | |
Lu_UESTC_task2_1 | LuUESTC2021 | 66 | 53.463 | 56.12 | 61.28 | 53.40 | 56.80 | 49.72 | 58.32 | 55.86 | 70.72 | 58.28 | 53.60 | 52.22 | 43.17 | 50.60 | 56.50 | 53.17 | 52.13 | 63.18 | 59.26 | 53.92 | 50.53 | 63.00 | 58.02 | 63.56 | 53.12 | 47.59 | 51.47 | 48.89 | 48.45 | 37.28 | 49.25 | |
Lu_UESTC_task2_2 | LuUESTC2021 | 57 | 55.015 | 60.56 | 52.62 | 51.33 | 71.86 | 56.06 | 63.33 | 51.95 | 65.28 | 54.35 | 59.59 | 50.78 | 62.86 | 52.85 | 53.02 | 50.74 | 55.47 | 44.98 | 53.60 | 67.85 | 55.57 | 56.09 | 51.08 | 62.72 | 55.55 | 56.96 | 50.80 | 54.97 | 51.10 | 50.75 | 49.01 | |
Lu_UESTC_task2_3 | LuUESTC2021 | 50 | 56.390 | 64.37 | 56.32 | 50.53 | 72.29 | 57.66 | 69.68 | 52.73 | 67.65 | 55.36 | 64.88 | 52.38 | 66.91 | 51.49 | 56.58 | 51.49 | 56.67 | 51.56 | 55.94 | 60.34 | 53.88 | 57.97 | 50.79 | 63.62 | 58.34 | 57.33 | 51.40 | 54.76 | 52.13 | 53.01 | 49.31 | |
Lu_UESTC_task2_4 | LuUESTC2021 | 53 | 56.124 | 64.27 | 57.92 | 47.37 | 73.14 | 60.18 | 67.29 | 51.92 | 67.18 | 56.13 | 63.94 | 51.82 | 67.14 | 51.57 | 56.50 | 50.78 | 55.32 | 47.07 | 54.86 | 64.49 | 61.79 | 54.49 | 50.35 | 64.09 | 58.31 | 55.96 | 51.40 | 52.51 | 52.26 | 52.84 | 49.42 | |
Yamashita_GifuUniv_task2_1 | YamashitaGifuUniv2021 | 60 | 54.764 | 58.09 | 53.64 | 58.32 | 79.81 | 62.06 | 66.03 | 51.56 | 64.86 | 54.55 | 47.02 | 49.96 | 60.02 | 51.00 | 48.01 | 50.57 | 55.43 | 64.55 | 56.85 | 55.08 | 50.81 | 59.03 | 53.19 | 58.32 | 53.94 | 50.18 | 50.21 | 51.87 | 50.83 | 51.70 | 50.18 | |
Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | 44 | 56.787 | 59.72 | 55.32 | 60.04 | 82.66 | 67.12 | 63.29 | 51.73 | 65.65 | 56.85 | 48.38 | 50.10 | 66.03 | 57.64 | 49.52 | 50.43 | 57.89 | 68.09 | 59.49 | 65.28 | 61.04 | 58.19 | 53.44 | 57.97 | 53.53 | 51.23 | 50.55 | 55.71 | 52.59 | 52.61 | 50.18 | |
Primus_CPJKU_task2_1 | PrimusCPJKU2021 | 35 | 59.084 | 64.40 | 53.98 | 51.02 | 56.97 | 48.85 | 79.22 | 64.18 | 69.89 | 56.42 | 73.79 | 66.69 | 72.37 | 54.99 | 54.61 | 51.68 | 60.53 | 59.84 | 56.71 | 46.72 | 51.90 | 74.24 | 66.22 | 59.45 | 54.77 | 71.84 | 65.00 | 67.71 | 53.77 | 53.88 | 51.52 | |
Primus_CPJKU_task2_2 | PrimusCPJKU2021 | 34 | 59.196 | 65.33 | 65.07 | 58.72 | 50.90 | 50.05 | 80.66 | 66.04 | 67.31 | 54.84 | 75.48 | 67.81 | 73.92 | 56.72 | 55.22 | 51.32 | 59.22 | 53.47 | 53.13 | 44.33 | 50.67 | 76.49 | 68.17 | 56.42 | 54.08 | 74.74 | 66.19 | 70.18 | 51.54 | 54.00 | 52.17 | |
Primus_CPJKU_task2_3 | PrimusCPJKU2021 | 33 | 59.502 | 62.50 | 44.03 | 49.80 | 54.17 | 49.38 | 90.28 | 68.33 | 60.91 | 54.94 | 68.76 | 65.20 | 74.61 | 60.97 | 64.97 | 56.85 | 61.04 | 68.16 | 56.59 | 45.97 | 49.97 | 89.80 | 72.26 | 59.69 | 54.33 | 81.35 | 68.29 | 75.44 | 58.19 | 40.28 | 50.96 | |
Primus_CPJKU_task2_4 | PrimusCPJKU2021 | 27 | 60.221 | 63.74 | 47.13 | 51.29 | 55.95 | 48.96 | 90.44 | 69.36 | 61.13 | 55.08 | 68.88 | 65.40 | 74.61 | 61.04 | 64.97 | 56.84 | 61.49 | 68.11 | 57.25 | 48.52 | 53.15 | 90.00 | 73.12 | 58.30 | 53.91 | 81.62 | 69.05 | 75.67 | 59.09 | 40.31 | 50.95 | |
Dini_TAU_task2_1 | DiniTAU2021 | 68 | 53.226 | 55.57 | 55.66 | 54.36 | 64.05 | 51.42 | 56.34 | 52.56 | 57.63 | 49.73 | 52.04 | 49.65 | 60.45 | 54.56 | 46.43 | 49.59 | 53.92 | 53.30 | 56.43 | 57.06 | 51.91 | 54.78 | 52.33 | 54.71 | 49.75 | 54.58 | 51.71 | 53.21 | 52.59 | 50.25 | 49.79 | |
Dini_TAU_task2_2 | DiniTAU2021 | 69 | 52.722 | 54.26 | 52.90 | 53.42 | 59.53 | 51.09 | 56.42 | 50.20 | 56.31 | 49.49 | 51.23 | 50.70 | 56.85 | 53.28 | 48.30 | 50.27 | 53.88 | 53.14 | 55.35 | 57.69 | 50.98 | 55.58 | 51.78 | 53.14 | 49.54 | 51.80 | 51.45 | 53.21 | 52.46 | 53.04 | 50.79 | |
Kuroyanagi_NU-HDL_task2_1 | KuroyanagiNU-HDL2021 | 30 | 59.915 | 70.19 | 58.97 | 51.43 | 76.21 | 57.96 | 68.90 | 57.76 | 73.21 | 60.38 | 63.41 | 53.67 | 81.81 | 63.42 | 74.18 | 55.21 | 59.67 | 58.97 | 51.44 | 54.40 | 55.25 | 61.62 | 56.59 | 62.96 | 57.87 | 69.48 | 56.20 | 67.93 | 57.85 | 48.21 | 50.91 | |
Kuroyanagi_NU-HDL_task2_2 | KuroyanagiNU-HDL2021 | 10 | 63.213 | 67.79 | 62.40 | 66.51 | 59.20 | 51.11 | 64.96 | 67.02 | 58.63 | 53.44 | 85.22 | 77.90 | 91.21 | 78.22 | 65.80 | 66.66 | 61.51 | 58.09 | 52.34 | 53.00 | 52.81 | 58.35 | 70.14 | 50.43 | 50.46 | 83.52 | 76.50 | 83.98 | 68.89 | 59.28 | 57.72 | |
Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | 9 | 63.745 | 72.06 | 62.02 | 59.69 | 71.49 | 58.98 | 73.59 | 66.77 | 67.08 | 55.81 | 75.36 | 66.16 | 90.44 | 75.43 | 70.39 | 67.25 | 62.66 | 61.38 | 52.00 | 54.42 | 55.27 | 60.83 | 65.58 | 58.55 | 54.05 | 73.86 | 57.78 | 82.47 | 72.85 | 55.97 | 54.25 | |
Kuroyanagi_NU-HDL_task2_4 | KuroyanagiNU-HDL2021 | 13 | 62.263 | 69.70 | 58.97 | 51.43 | 76.21 | 57.96 | 64.96 | 67.02 | 58.63 | 53.44 | 85.22 | 77.90 | 91.21 | 78.22 | 65.80 | 66.66 | 61.71 | 58.97 | 51.44 | 54.40 | 55.25 | 61.62 | 56.59 | 62.96 | 57.87 | 69.48 | 56.20 | 67.93 | 57.85 | 59.28 | 57.72 |
System characteristics
Summary of the submitted system characteristics.
Rank |
Submission Code |
Technical Report |
Classifier |
System Complexity |
Acoustic Feature |
Data Augmentation |
Decision Making |
System Embeddings |
Subsystem Conut |
External Data Usage |
Front End System |
---|---|---|---|---|---|---|---|---|---|---|---|
51 | DCASE2021_baseline_task2_AE | DCASE2021baseline2021 | AE | 269992 | log-mel energies | ||||||
59 | DCASE2021_baseline_task2_MNV2 | DCASE2021baseline2021 | MobileNetV2 | 710067 | log-mel energies | ||||||
61 | Tozicka_NSW_task2_1 | TozickaNSW2021 | KNN | 1576834 | log-mel energies | Siamese Network | |||||
39 | Tozicka_NSW_task2_2 | TozickaNSW2021 | KNN | 1576834 | log-mel energies | Siamese Network | |||||
49 | Tozicka_NSW_task2_3 | TozickaNSW2021 | AE | 9053064 | log-mel energies | OpenL3 | |||||
19 | Tozicka_NSW_task2_4 | TozickaNSW2021 | AE, KNN | 10629898 | log-mel energies | Siamese Network, OpenL3 | |||||
40 | Asai_PFU_task2_1 | AsaiPFU2021 | CNN, GMM, OCSVM | 13405536 | log-mel energies | mixup | |||||
54 | Bai_LFXS_task2_1 | BaiLFXS2021 | Transformer | 1186755 | log-mel energies | mixup, spec augmentation | |||||
43 | Bai_LFXS_task2_2 | BaiLFXS2021 | Transformer | 2367555 | spectrogram | mixup, spec augmentation | |||||
77 | Bai_LFXS_task2_3 | BaiLFXS2021 | Transformer, CNN | 1186755 | spectrogram, log-mel energies | mixup, spec augmentation | 7 | ||||
65 | Bai_LFXS_task2_4 | BaiLFXS2021 | Transformer, CNN | 1186755 | spectrogram, log-mel energies | mixup, spec augmentation | average | 6 | |||
64 | Liu_CQUPT_task2_1 | LiuCQUPT2021 | GAN | 1166568 | log-mel energies | ||||||
32 | Narita_AIT_task2_1 | NaritaAIT2021 | VAE, CenterLoss | 128043983 | log-mel energies | PANNs ResNet38 | pre-trained model | Resampling(16kHz to 32kHz) | |||
26 | Narita_AIT_task2_2 | NaritaAIT2021 | VAE, CenterLoss | 182304719 | log-mel energies | average | PANNs ResNet38 | 2 | pre-trained model | Resampling(16kHz to 32kHz) | |
28 | Deng_THU_task2_1 | DengTHU2021 | CNN | 533000 | log-mel energies | mixup | average | ||||
55 | Li_CQUST_task2_1 | LiCQUST2021 | AE, ELM, GAN | 894781 | log-mel energies | ||||||
75 | Chan_NTPU_task2_1 | ChanNTPU2021 | MobileNetV2 | 710067 | log-mel energies | mixup | |||||
73 | Chan_NTPU_task2_2 | ChanNTPU2021 | ResNet50V2 | 23570947 | log-mel energies | mixup | |||||
74 | Chan_NTPU_task2_3 | ChanNTPU2021 | MobileNetV2, ResNet50V2 | 23642014 | log-mel energies | mixup | average | 2 | |||
76 | Chan_NTPU_task2_4 | ChanNTPU2021 | MobileNetV2, ResNet50V2 | 24291004 | log-mel energies | mixup | average | 2 | |||
37 | Zhang_NJUPT_task2_1 | ZhangNJUPT2021 | MobileNetV2, AE | 2933855 | log-mel energies | Audio denoising, Mixup | 2 | train denoising model | |||
6 | Wilkinghoff_FKIE_task2_1 | WilkinghoffFKIE2021 | CNN, GMM, ensemble | 1217299311 | log-mel energies | mixup | sum, average | 40 | |||
7 | Wilkinghoff_FKIE_task2_2 | WilkinghoffFKIE2021 | CNN, GMM, ensemble | 609044474 | log-mel energies | mixup | sum | 20 | |||
4 | Wilkinghoff_FKIE_task2_3 | WilkinghoffFKIE2021 | CNN, GMM, ensemble | 1217299311 | log-mel energies | mixup | sum, average | 40 | |||
8 | Wilkinghoff_FKIE_task2_4 | WilkinghoffFKIE2021 | CNN, GMM, ensemble | 1189557471 | log-mel energies | mixup | sum, average | 40 | |||
45 | Tan_NTU_task2_1 | TanNTU2021 | AE | 2,415,060 | log-mel energies | Guassian noise, frequency shifting | Static classifier selection | 3 | |||
25 | Zhou_PSH_task2_1 | ZhouPSH2021 | CNN, ArcFace, ensemble | 58316344 | spectrogram | mixup | maximum | 6 | |||
16 | Zhou_PSH_task2_2 | ZhouPSH2021 | CNN, ArcFace, ensemble | 58316344 | spectrogram | mixup | average | 6 | |||
15 | Zhou_PSH_task2_3 | ZhouPSH2021 | CNN, ArcFace, ensemble | 58316344 | spectrogram | mixup | average | 6 | |||
14 | Zhou_PSH_task2_4 | ZhouPSH2021 | CNN, ArcFace, ensemble | 58316344 | spectrogram | mixup | average | 6 | |||
46 | Wang_NTU_task2_1 | WangNTU2021 | CAE | 7916544 | log-mel energies | ||||||
67 | Wang_NTU_task2_2 | WangNTU2021 | CRNN | 663783 | log-mel energies | ||||||
47 | Wang_NTU_task2_3 | WangNTU2021 | CAE | 7719648 | log-mel energies | ||||||
41 | Wang_NTU_task2_4 | WangNTU2021 | CAE, CRNN | 31989511 | log-mel energies | ||||||
5 | Morita_SECOM_task2_1 | MoritaSECOM2021 | CNN, LOF | 994048 | spectrogram | ||||||
3 | Morita_SECOM_task2_2 | MoritaSECOM2021 | CNN, k-NN | 994048 | spectrogram | ||||||
2 | Morita_SECOM_task2_3 | MoritaSECOM2021 | CNN, LOF, k-NN | 994048 | spectrogram | ||||||
11 | Lopez_IL_task2_1 | LopezIL2021 | classifier | 3341026 | STFT, log-mel energies | ||||||
52 | Lopez_IL_task2_2 | LopezIL2021 | classifier | 1889899 | raw waveform | Teager-Kaiser | |||||
31 | Lopez_IL_task2_3 | LopezIL2021 | normalizing flow | 6574848 | log-mel energies | ||||||
1 | Lopez_IL_task2_4 | LopezIL2021 | ensemble, normalizing flow, classifier | 11805773 | log-mel energies | Teager-Kaiser | |||||
62 | Abe_RLB_task2_1 | AbeRLB2021 | Fast Autoregressive Transformer | 37897472 | log-mel energies | Frame sequence transformation | |||||
72 | Abe_RLB_task2_2 | AbeRLB2021 | Fast Autoregressive Transformer | 25539968 | log-mel energies | ||||||
70 | Abe_RLB_task2_3 | AbeRLB2021 | Fast Autoregressive Transformer | 25539968 | log-mel energies | ||||||
38 | He_XJU_task2_1 | HeXJU2021 | PCA | 220000 | log-mel energies | ||||||
36 | He_XJU_task2_2 | HeXJU2021 | CNN | 2000000 | log-mel energies | ||||||
42 | He_XJU_task2_3 | HeXJU2021 | CNN | 571000 | log-mel energies | ||||||
17 | He_XJU_task2_4 | HeXJU2021 | PCA, CNN | 2791000 | log-mel energies | 3 | |||||
29 | Cai_SMALLRICE_task2_1 | CaiSMALLRICE2021 | AE, CNN | 4282586 | log-mel energies | mixup, median-filtering, timeshift, timemask | pre-trained model | ||||
20 | Cai_SMALLRICE_task2_2 | CaiSMALLRICE2021 | AE, CNN | 4282586 | log-mel energies | mixup, median-filtering, timeshift, timemask | average | 5 | pre-trained model | ||
22 | Cai_SMALLRICE_task2_3 | CaiSMALLRICE2021 | AE, CNN | 4282586 | log-mel energies | mixup, median-filtering, timeshift, timemask | maximum | pre-trained model | |||
21 | Cai_SMALLRICE_task2_4 | CaiSMALLRICE2021 | AE, CNN | 4282586 | log-mel energies | mixup, median-filtering, timeshift, timemask | average | pre-trained model | |||
12 | Sakamoto_Fixstars_task2_1 | SakamotoFixstars2021 | Mahalanobis distance, Section ID classification, IDNN | 301315 | log-mel energies | 3 | |||||
24 | Sakamoto_Fixstars_task2_2 | SakamotoFixstars2021 | Mahalanobis distance, Section ID classification, IDNN | 301315 | log-mel energies | 3 | |||||
23 | Sakamoto_Fixstars_task2_3 | SakamotoFixstars2021 | Mahalanobis distance, Section ID classification, IDNN | 301315 | log-mel energies | 3 | |||||
18 | Sakamoto_Fixstars_task2_4 | SakamotoFixstars2021 | Mahalanobis distance, IDNN | 184320 | log-mel energies | 2 | |||||
48 | Wang_UCAS_task2_1 | WangUCAS2021 | AE | 1,854,376 | log-mel energies | ||||||
63 | Wang_UCAS_task2_2 | WangUCAS2021 | VAE | 1,860,008 | log-mel energies | ||||||
56 | Wang_UCAS_task2_3 | WangUCAS2021 | AE,VAE | 3,714,384 | log-mel energies | average | |||||
71 | Wang_UCAS_task2_4 | WangUCAS2021 | IAE,IAVE | 630,072 | log-mel energies | average | |||||
58 | Jalali_AIT_task2_1 | JalaliAIT2021 | LeNet | 391302 | log-mel energies | mixup | |||||
66 | Lu_UESTC_task2_1 | LuUESTC2021 | CNN | 1675971 | STFT, log-mel energies | average | 2 | STFT cut | |||
57 | Lu_UESTC_task2_2 | LuUESTC2021 | VAE | 186528 | log-mel energies | ||||||
50 | Lu_UESTC_task2_3 | LuUESTC2021 | CNN | 989692 | log-mel energies | ||||||
53 | Lu_UESTC_task2_4 | LuUESTC2021 | AE | 185496 | log-mel energies | ||||||
60 | Yamashita_GifuUniv_task2_1 | YamashitaGifuUniv2021 | VAE, CNN | 1254167 | log-mel energies | ||||||
44 | Yamashita_GifuUniv_task2_2 | YamashitaGifuUniv2021 | VAE, CNN | 1254167 | log-mel energies | ||||||
35 | Primus_CPJKU_task2_1 | PrimusCPJKU2021 | MADE | 144900000 | log-mel energies | ||||||
34 | Primus_CPJKU_task2_2 | PrimusCPJKU2021 | MAF | 228200000 | log-mel energies | ||||||
33 | Primus_CPJKU_task2_3 | PrimusCPJKU2021 | ResNet | 46200000 | log-mel energies | ||||||
27 | Primus_CPJKU_task2_4 | PrimusCPJKU2021 | Ensemble | 421372000 | log-mel energies | average | 3 | ||||
68 | Dini_TAU_task2_1 | DiniTAU2021 | GAN | 15224193 | log-mel energies | ||||||
69 | Dini_TAU_task2_2 | DiniTAU2021 | GAN | 15224193 | log-mel energies | ||||||
30 | Kuroyanagi_NU-HDL_task2_1 | KuroyanagiNU-HDL2021 | AE, Conformer, GMM, ID regression | 400000000 | log-mel energies | SpecAugment | average, median, maximum, raking | 10 | |||
10 | Kuroyanagi_NU-HDL_task2_2 | KuroyanagiNU-HDL2021 | ensemble, CNN, ArcFace,binary classification | 71127950 | log-mel energies | mixup, gaussian noise, volume perturbation | average | ResNet34, ResNeXt50, efficientnet-b3 | 6 | pre-trained model | |
9 | Kuroyanagi_NU-HDL_task2_3 | KuroyanagiNU-HDL2021 | AE, Conformer, GMM, ID regression, ensemble, CNN, ArcFace, binary classification | 471127950 | log-mel energies | SpecAugment, mixup, gaussian noise, volume perturbation | average, median, maximum, raking | ResNet34, ResNeXt50, efficientnet-b3 | 18 | pre-trained model | |
13 | Kuroyanagi_NU-HDL_task2_4 | KuroyanagiNU-HDL2021 | AE, Conformer, GMM, ID regression, ensemble, CNN, ArcFace, binary classification | 471127950 | log-mel energies | SpecAugment, mixup, gaussian noise, volume perturbation | average, median, maximum, raking | ResNet34, ResNeXt50, efficientnet-b3 | 18 | pre-trained model |
Technical reports
ANOMALOUS SOUND DETECTION BY AUTO REGRESSIVE FRAME SEQUENCE MODEL
Yoshiharu Abe
Ralabo, Yokohama, Kanagawa, Japan
Abstract
The normal sound frame sequence is modeled by a base module. This base module inputs a partially masked frame sequence and predicts the masked part of the frame sequence. The anomaly score is calculated as the difference between the predicted and actual frames of the masked area. The Transformer[1] is used as the sequence model in the base module. The base module is trained with a large amount of normal sound from the source domain. A front-end module is added in front of the base module to cope with environmental changes in the target domain. The front-end module, consisted of Transformer[1], transforms a target domain frame sequence into a source domain frame sequence. The front-end module is trained with a small amount of normal sound from the target domain. The AUC for audio clips in the target domain was 51.11% for the domain-dependent model (with base and front-end modules), and 61.44% for the domain-independent model (with base module). Further investigation would be needed to determine why the performance of the domain-dependent model is lower than that of the domain-independent model.
System characteristics
Classifier | Fast Autoregressive Transformer |
System complexity | 25539968, 37897472 parameters |
Acoustic features | log-mel energies |
Front end system | Frame sequence transformation |
Sub-Cluster AdaCos based unsupervised anomalous sound detection for machine condition monitoring under domain shift conditions
Yudai Asai
PFU Limited., Kanagawa, Japan
Asai_PFU_task2_1
Sub-Cluster AdaCos based unsupervised anomalous sound detection for machine condition monitoring under domain shift conditions
Yudai Asai
PFU Limited., Kanagawa, Japan
Abstract
This technical describes our approaches for the DCASE 2021 Challenge Task 2. Our approaches are based on deep metric learning using sub-cluster AdaCos loss and outlier detection using GMM and One-Class SVM. To tackle the difficulties of domain shift conditions, first we trained our model with only source domain data, and then, fine-tuned with source and target domain data. We achieved an averaged area under the curve (AUC) of 66.12% and averaged partial AUC (p = 0.1) of 58.18% on the test data in development dataset.
System characteristics
Classifier | CNN, GMM, OCSVM |
System complexity | 13405536 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup |
DPTRANS: DUAL-PATH TRANSFORMER FOR MACHINE CONDITION MONITORING
Jisheng Bai, Zejian Wang, Mou Wang, and Jianfeng Chen
LianFeng Acoustic Technologies Co., Ltd., Xi'an, China and School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
Bai_LFXS_task2_1 Bai_LFXS_task2_2 Bai_LFXS_task2_3 Bai_LFXS_task2_4
DPTRANS: DUAL-PATH TRANSFORMER FOR MACHINE CONDITION MONITORING
Jisheng Bai, Zejian Wang, Mou Wang, and Jianfeng Chen
LianFeng Acoustic Technologies Co., Ltd., Xi'an, China and School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
Abstract
Anomaly detection has a wide range of application scenarios in industry such as finding fraud cases in financial industry or finding network intrusion in network security. Finding anomaly condition of machines in factories can prevent causing damage. Previous works mainly focus on finding local and deep features from spectrograms of anomaly sounds. Most importantly, deep features are always obtained after deep convolutional and pooling layers. However, the details of spectrogram, which present potential anomaly information, may be lost by these operations. In this paper, we introduce DPTrans, a novel dual-path Transformer-based neural network for DCASE 2021 challenge Task2 (Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions). DPTrans learns temporal and frequency dependencies through self-attention blocks, and achieves great performance. Moreover, DPTrans takes advantages of Transformer, which provide faster training speed and less GPU demand than comparative methods. Finally, we take different settings of Transformer train several models and make a fusion of them.
System characteristics
Classifier | CNN, Transformer |
System complexity | 1186755, 2367555 parameters |
Acoustic features | log-mel energies, spectrogram |
Data augmentation | mixup, spec augmentation |
Decision making | average |
Subsystem count | 6, 7 |
THE SMALL RICE CAMERA READY SUBMISSION TO THE DCASE2021
Xinyu Cai, Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Zhiyong Wu, Yujun Wang
Technology Comittee, Beijing, China
Cai_SMALLRICE_task2_1 Cai_SMALLRICE_task2_2 Cai_SMALLRICE_task2_3 Cai_SMALLRICE_task2_4
THE SMALL RICE CAMERA READY SUBMISSION TO THE DCASE2021
Xinyu Cai, Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Zhiyong Wu, Yujun Wang
Technology Comittee, Beijing, China
Abstract
This paper describes our submission to the DCASE 2021 Task 2 challenge. The objective is identifying whether the sound emitted from a machine is normal or anomalous without having access to large amounts of anomalous samples. Our anomaly score calculator system is a combination of two models: i) AutoEncoder-based unsupervised training and ii) EfficientNet-based supervised model. To alleviate the problem of domain shift, we train the models with contrastive loss and hard example mining manner, which leads to a substantial improvement with regards to the main omega evaluation metric. Further we investigate the use of median-filtering, timemasking, time shifting and mixup augmentation for this task, which further boosts performance. Our best single model submission achieves an official omega score of 71.72, 70.05, 72.14, 67.26, 66.17, 71.97, 68.47 for Fan, Gearbox, Slider, Toy Train, Toy Car, Pump, Valve on the development dataset, respectively.
System characteristics
Classifier | AE, CNN |
System complexity | 4282586 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup, median-filtering, timeshift, timemask |
Decision making | average, maximum |
Subsystem count | 5 |
External data usage | pre-trained model |
AN ENSEMBLE APPROACH FOR ABNORMAL SOUND DETECTION WITH DATA AUGMENTATION
Bo Cheng Chan, and Chung Li Lu
National Taipei University, Taipei, Taiwan and National Taiwan University, Taipei, Taiwan
Abstract
In this paper, we present the task description and discuss the results of DCASE 2021 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions. The task is identifying whether the sound emitted from a machine is normal or anomalous in test dataset. The training dataset does not contain any abnormal machine sounds. Our approached is based on MobileNetV2 and ResNetV2-50 with data augmentation mix up to identify abnormal sounds in each machine.
System characteristics
Classifier | MobileNetV2, ResNet50V2 |
System complexity | 23570947, 23642014, 24291004, 710067 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup |
Decision making | average |
Subsystem count | 2 |
Description and discussion on DCASE 2021 challenge task2: unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions
Yohei Kawaguchi, Keisuke Imoto, Yuma Koizumi, Noboru Harada, Daisuke Niizumi, Kota Dohi, Ryo Tanabe, Harsh Purohit, and Takashi Endo
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and Doshisha University, Kyoto, Japan and Google LLC, Tokyo, Japan
DCASE2021_baseline_task2_AE DCASE2021_baseline_task2_MNV2
Description and discussion on DCASE 2021 challenge task2: unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions
Yohei Kawaguchi, Keisuke Imoto, Yuma Koizumi, Noboru Harada, Daisuke Niizumi, Kota Dohi, Ryo Tanabe, Harsh Purohit, and Takashi Endo
Research and Development Group, Hitachi, Ltd., Tokyo, Japan and Doshisha University, Kyoto, Japan and Google LLC, Tokyo, Japan
Abstract
We present the task description and discussion on the results of the DCASE 2021 Challenge Task 2. Last year, we organized unsupervised anomalous sound detection (ASD) task; identifying whether the given sound is normal or anomalous without anomalous training data. In this year, we organize an advanced unsupervised ASD task extit{under domain-shift conditions} which focuses on the inevitable problem for the practical use of ASD systems. The main challenge of this task is to detect unknown anomalous sounds where the acoustic characteristics of the training and testing samples are different, i.e. domain-shifted. This problem is frequently occurs due to changes in seasons, manufactured products, and/or environmental noise. After the challenge submission deadline, we will add challenge results and analysis of the submissions.
System characteristics
Classifier | AE, MobileNetV2 |
System complexity | 269992, 710067 parameters |
Acoustic features | log-mel energies |
AITHU SYSTEM FOR UNSUPERVISED ANOMALOUS SOUND DETECTION
Yufeng Deng, Jia Liu, Jitao Ma, Xuchu Chen, Cheng Lu, Ruhang Xu, and Wei-Qiang Zhang
Electronic Engineering, Tsinghua University, Beijing, China and Tsinghua AI Plus, Beijing, China and North China Electric Power University, Beijing, China
Deng_THU_task2_1
AITHU SYSTEM FOR UNSUPERVISED ANOMALOUS SOUND DETECTION
Yufeng Deng, Jia Liu, Jitao Ma, Xuchu Chen, Cheng Lu, Ruhang Xu, and Wei-Qiang Zhang
Electronic Engineering, Tsinghua University, Beijing, China and Tsinghua AI Plus, Beijing, China and North China Electric Power University, Beijing, China
Abstract
This report describes the AITHU system for Task 2 of the DCASE 2021 challenge, Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions. The task aims to detect audio recordings containing anomalous machine sounds in a test set, when the training dataset itself does not contain any examples of anomalies. Moreover, the task is performed under the conditions that the acoustic characteristics of the training data and the test data are different (i.e., domain mismatch). We perform weighted mixing of data in different sections instead of to distinguish the data in the same part of different fields, and train a neural network to recognize mixed weights. The results of our approach are better than baseline systems for all machine types. In the development set, the official score of our approach is 67.12%.
System characteristics
Classifier | CNN |
System complexity | 533000 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup |
Decision making | average |
UNSUPERVISED DETECTION OF ANOMALOUS SOUND FOR MACHINE MONITORING UNDER DOMAIN SHIFTED CONDITION BASED ON GANS AND AUTOENCODERS
Amirhossein Hassankhani, Afshin Dini, and Konstantinos Drossos
Tampere University, Tampere, Finland
Abstract
This report presents an unsupervised method for detecting anomalous industrial machine sounds, taken under two different conditions and shifted domains, and submitted to DCASE 2021 Task 2. The method tries to map the distribution of data into a learned latent space, using a reconstructive autoencoder followed by an additional second encoder. Furthermore, the method employs a discriminator trying to differentiate between the input and the reconstructed audio to and from the autoencoder. All components are jointly optimized, using a sum of weighted losses and utilizing an adversarial setting between the autoencoder and the discriminator. Anomaly is detected through the distance between the output of the two encoders. Obtained results show that the method performs better than the provided baseline in some cases.
System characteristics
Classifier | GAN |
System complexity | 15224193 parameters |
Acoustic features | log-mel energies |
Several Approaches For Anomaly Detection From Sound
Yaoguang Wang,Yaohao Zheng, Yunxiang Zhang, Ying Hu, Minqiang Xu, and Liang He
Department of Electronic Engineering, Tsinghua University, Bejing, China and School of information science and engineering, Xinjiang University, Xinjiang, China
He_XJU_task2_1 He_XJU_task2_2 He_XJU_task2_3 He_XJU_task2_4
Several Approaches For Anomaly Detection From Sound
Yaoguang Wang,Yaohao Zheng, Yunxiang Zhang, Ying Hu, Minqiang Xu, and Liang He
Department of Electronic Engineering, Tsinghua University, Bejing, China and School of information science and engineering, Xinjiang University, Xinjiang, China
Abstract
The task2 of IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events mainly research unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions, three methods are proposed to solve this problem: principal component analysis (PCA), outlier classifier and contarative learning. Firstly, PCA is used for anomaly detection with three components. Secondly, outlier classifier is used by selecting the normal sound of other section as outlier samples. At last, contrastive learning is used by taking normal samples of other sections as negative examples. We present results obtained by each kind of models separately,as well as,a results of an esemble obtained by averaging anomaly scores computed by individual models.
System characteristics
Classifier | CNN, PCA |
System complexity | 2000000, 220000, 2791000, 571000 parameters |
Acoustic features | log-mel energies |
Subsystem count | 3 |
DCASE Challenge 2021: Unsupervised Anomalous Sound Detection of Machinery with LeNet Architecture
Lam Pham, Anahid Jalali, Olivia Dinica, and Alexander Schindler
Data Science and Artificial Intelligence, AIT., Vienna, Austria
Jalali_AIT_task2_1
DCASE Challenge 2021: Unsupervised Anomalous Sound Detection of Machinery with LeNet Architecture
Lam Pham, Anahid Jalali, Olivia Dinica, and Alexander Schindler
Data Science and Artificial Intelligence, AIT., Vienna, Austria
Abstract
In this study, we present an unsupervised anomalous sound detection framework trained on the DCASE2021 audio dataset. We use LeNet architecture to classify the machine IDs and use the classification loss as a threshold for detecting the anomalies in an unsupervised manner. We train our classifier on log-mel-bands and use the Mixup approach to augment our training set. Our framework outperforms both DCASE2021 benchmarks: the dense autoencoder and the MobileNet. The dense autoencoder has a harmonic mean of AUC of 61.92 and pAUC of 53.26 and the MobileNet has a harmonic mean of AUC of 59.72 and pAUC of 56.37. Our framework achieved the harmonic mean AUC of 66.72 and pAUC of 60.59, over all the machines, which shows an improved performance of 7.75% and 13.76%, AUC- and pAUC-harmonic-mean respectively from the dense autoencoder. The improved performance of our approach from the Mobilenet baseline is 11.72% and 7.48%, AUC- and pAUC-harmonic-mean respectively.
System characteristics
Classifier | LeNet |
System complexity | 391302 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup |
ANOMALOUS SOUND DETECTION WITH ENSEMBLE OF AUTOENCODER AND BINARY CLASSIFICATION APPROACHES
Ibuki Kuroyanagi, Tomoki Hayashi, Yusuke Adachi, Takenori Yoshimura, Kazuya Takeda, and Tomoki Toda
Nagoya University and Human Dataware Lab. Co., Ltd., Nagoya, Japan and Human Dataware Lab. Co., Ltd. and Nagoya University, Nagoya, Japan and Human Dataware Lab. Co., Ltd., Nagoya, Japan and Nagoya University, Nagoya, Japan
Kuroyanagi_NU-HDL_task2_1 Kuroyanagi_NU-HDL_task2_2 Kuroyanagi_NU-HDL_task2_3 Kuroyanagi_NU-HDL_task2_4
ANOMALOUS SOUND DETECTION WITH ENSEMBLE OF AUTOENCODER AND BINARY CLASSIFICATION APPROACHES
Ibuki Kuroyanagi, Tomoki Hayashi, Yusuke Adachi, Takenori Yoshimura, Kazuya Takeda, and Tomoki Toda
Nagoya University and Human Dataware Lab. Co., Ltd., Nagoya, Japan and Human Dataware Lab. Co., Ltd. and Nagoya University, Nagoya, Japan and Human Dataware Lab. Co., Ltd., Nagoya, Japan and Nagoya University, Nagoya, Japan
Abstract
This paper describes a solution with the ensemble of two unsupervised anomalous sound detection (ASD) methods for the DCASE2021 Challenge Task 2. The first ASD method is based on a sequence-level autoencoder with section ID regression and a self-attention architecture. We introduce the data augmentation techniques such as SpecAugment to boost up the performance and combine the simple scorer module for each section and each domain to address the domain shift problem. The second ASD method is based on a binary classification model using metric learning, which utilizing task-irrelevant outliers as pseudo-anomalous data and considering the centroid of normal and outlier data in the feature space. As a countermeasure against the domain shift problem, we perform data augmentation using Mixup with data from the target domain, resulting in a stable performance for each section. On the development set, our method achieves a harmonic mean of 76.59% harmonically averaged over of area under the curve (AUC) and partial AUC (p = 0.1) of all machines, sections, and domains.
System characteristics
Classifier | AE, ArcFace, CNN, Conformer, GMM, ID regression, binary classification, ensemble |
System complexity | 400000000, 471127950, 71127950 parameters |
Acoustic features | log-mel energies |
Data augmentation | SpecAugment, SpecAugment, mixup, gaussian noise, volume perturbation, mixup, gaussian noise, volume perturbation |
Decision making | average, maximum, median, raking |
System embeddings | ResNet34, ResNeXt50, efficientnet-b3 |
Subsystem count | 10, 18, 6 |
External data usage | pre-trained model |
Unsupervised Adversarial domain adaptive abnormal sound detection for machine condition monitoring under Domain Shift Conditions
Renjie Li, Xiaohua Gu, Fei Lu, Hongfei Song, and Jutao Pan
College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, China and Chongqing University of Science and Technology, Chongqing, China
Li_CQUST_task2_1
Unsupervised Adversarial domain adaptive abnormal sound detection for machine condition monitoring under Domain Shift Conditions
Renjie Li, Xiaohua Gu, Fei Lu, Hongfei Song, and Jutao Pan
College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, China and Chongqing University of Science and Technology, Chongqing, China
Abstract
In the industrial field, it is very important to detect unknown anomalies based on normal production data. Facing the actual production situation, it is also of great significance to study the abnormal detection of the machine under the condition of constantly changing operating conditions. In dcase2021 task 2, we propose to use an unsupervised abnormal sound detection method based on adversarial domain adaptation. This method proposes a framework of adding domain discriminator and one-class classifier on the basis of auto-encoder, and achieves good results on the development dataset provided by the contest.
System characteristics
Classifier | AE, ELM, GAN |
System complexity | 894781 parameters |
Acoustic features | log-mel energies |
UNSUPERVISED ANOMALOUS SOUND DETECTION VIA SEMI-SUPERVISED GANOMALY ADVERSARIAL TRAINING
Wenbin Zhu, Jie Ou, Ying Zeng, Yi Zhou, and Hongqing Liu
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China and Chongqing University of Posts and Telecommunications, Chongqing, China
Liu_CQUPT_task2_1
UNSUPERVISED ANOMALOUS SOUND DETECTION VIA SEMI-SUPERVISED GANOMALY ADVERSARIAL TRAINING
Wenbin Zhu, Jie Ou, Ying Zeng, Yi Zhou, and Hongqing Liu
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China and Chongqing University of Posts and Telecommunications, Chongqing, China
Abstract
This technical report describes the submission from our team for Task 2 of the DCASE2021 challenge Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions. In this work, we adopt a GANomaly semi-supervised anomaly detection method via adversarial training to perform anomalous sound detection. By using the conditional generation of the confrontation network, the generator network effectively fits the data distribution of the normal samples during training, and calculates the reconstruction error of the anomaly score of the test samples.
System characteristics
Classifier | GAN |
System complexity | 1166568 parameters |
Acoustic features | log-mel energies |
Ensemble of Complementary Anomaly Detectors Under Domain Shifted Conditions
Jose A. Lopez, Georg Stemmer, Paulo Lopez-Meyer, Pradyumna S. Singh Juan Del Hoyo Ontiveros, and Hector Courdourier
Intel Labs, Santa Clara, CA and Intel Labs, Neubiberg, Germany and Intel Labs, Zapopan, Mexico
Lopez_IL_task2_1 Lopez_IL_task2_2 Lopez_IL_task2_3 Lopez_IL_task2_4
Ensemble of Complementary Anomaly Detectors Under Domain Shifted Conditions
Jose A. Lopez, Georg Stemmer, Paulo Lopez-Meyer, Pradyumna S. Singh Juan Del Hoyo Ontiveros, and Hector Courdourier
Intel Labs, Santa Clara, CA and Intel Labs, Neubiberg, Germany and Intel Labs, Zapopan, Mexico
Abstract
We present our submission to the DCASE2021 Challenge Task 2, which aims to promote research in anomalous sound detection. We found that blending the predictions of various anomaly detectors, rather than relying on well-known domain adaptation techniques alone, gave us the best performance under domain shifted conditions. Our submission is composed of two self-supervised classifier models, a probabilistic model we call NF-CDEE, and an ensemble of the three.
System characteristics
Classifier | classifier, ensemble, normalizing flow |
System complexity | 11805773, 1889899, 3341026, 6574848 parameters |
Acoustic features | STFT, log-mel energies, raw waveform |
Front end system | Teager-Kaiser |
Anomalous Sounds Detection Using Autoencoder and Classification Methods
Haisheng Lu, Yujie Fu, Huajing Qin, Shijin Huang, Yihan Wang, Chen Deng, Tianchu Yao, Huitian Jiang, Haifeng Wen, and Chuang Shi
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
Lu_UESTC_task2_1 Lu_UESTC_task2_2 Lu_UESTC_task2_3 Lu_UESTC_task2_4
Anomalous Sounds Detection Using Autoencoder and Classification Methods
Haisheng Lu, Yujie Fu, Huajing Qin, Shijin Huang, Yihan Wang, Chen Deng, Tianchu Yao, Huitian Jiang, Haifeng Wen, and Chuang Shi
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
Abstract
This report described our contribution to Unsupervised Detection of Anomalous Sounds on DCASE 2020 challenge (Task2). Previous research results show that AE and outlier detection is a very effective solution to abnormal sound detection (ASD). This design based on previous research, using IDNN, FREAK and MobileFaceNets to implement unsupervised ASD.
System characteristics
Classifier | AE, CNN, VAE |
System complexity | 1675971, 185496, 186528, 989692 parameters |
Acoustic features | STFT, log-mel energies |
Decision making | average |
Subsystem count | 2 |
Front end system | STFT cut |
ANOMALOUS SOUND DETECTION USING CNN-BASED FEATURES BY SELF SUPERVISED LEARNING
Kazuki Morita, Tomohiko Yano, and Khai Q. Tran
Intelligent Systems Laboratory, SECOM CO.,LTD., Tokyo, Japan
Morita_SECOM_task2_1 Morita_SECOM_task2_2 Morita_SECOM_task2_3
ANOMALOUS SOUND DETECTION USING CNN-BASED FEATURES BY SELF SUPERVISED LEARNING
Kazuki Morita, Tomohiko Yano, and Khai Q. Tran
Intelligent Systems Laboratory, SECOM CO.,LTD., Tokyo, Japan
Abstract
We propose a detection method for the anomalous sound detection task of DCASE2021 task2 in this report. This is the task of anomalous sound detection for machine condition monitoring, and it is required to detect unknown anomalous sound only from normal sound data. We use the normal sound of the machine and its section index to train the Convolutional Neural Network (CNN) in a self-supervised learning manner. Then, we detect anomalous sound by using feature vectors extracted from CNN. As a result, for the development dataset we show the detection performance of 78.05% in Area Under Curve (AUC) and 68.09% in partial AUC (pAUC).
System characteristics
Classifier | CNN, LOF, k-NN |
System complexity | 994048 parameters |
Acoustic features | spectrogram |
Unsupervised Anomalous Sound Detection Using Intermediate Representation of Trained Models and Metric Learning Based Variational Autoencoder
Hiroki Narita and Akira Tamamori
Aichi Institute of Technology, Aichi, Japan
Narita_AIT_task2_1 Narita_AIT_task2_2
Unsupervised Anomalous Sound Detection Using Intermediate Representation of Trained Models and Metric Learning Based Variational Autoencoder
Hiroki Narita and Akira Tamamori
Aichi Institute of Technology, Aichi, Japan
Abstract
This paper is a technical report of DCASE Challenge2021 Task2. The objective of the DCASE Challenge2021 Task2 is unsupervised anomalous sound detection under domain shift. Our method consists of feature extraction using a pretrained model and Center-Loss VAE (CL-VAE) based on Center-Loss and Variational AutoEncoder (VAE). In feature extraction with pre-trained models, ResNet38 trained on acoustic data is used as a feature extractor to obtain intermediate representations. The CL-VAE is trained with the intermediate representations as input and is trained to minimize the Center-Loss of the section labels and the loss function of the VAE. As a result of validation on the development dataset, we confirmed that the performance of CL-VAE is superior to that of Conditional VAE (CVAE) using baseline models and section labels.
System characteristics
Classifier | CenterLoss, VAE |
System complexity | 128043983, 182304719 parameters |
Acoustic features | log-mel energies |
Decision making | average |
System embeddings | PANNs ResNet38 |
Subsystem count | 2 |
External data usage | pre-trained model |
Front end system | Resampling(16kHz to 32kHz) |
CP-JKU Submission to DCASE'21: Improving Out-of-Distribution Detectors for Machine Condition Monitoring with Proxy Outliers & Domain Adaptation via Semantic Alignment
Paul Primus, Martin Zwifl, and Gerhard Widmer
Institute of Computational Perception, Johannes Kepler University Linz, Linz, Austria and Johannes Kepler University Linz, Linz, Austria
Primus_CPJKU_task2_1 Primus_CPJKU_task2_2 Primus_CPJKU_task2_3 Primus_CPJKU_task2_4
CP-JKU Submission to DCASE'21: Improving Out-of-Distribution Detectors for Machine Condition Monitoring with Proxy Outliers & Domain Adaptation via Semantic Alignment
Paul Primus, Martin Zwifl, and Gerhard Widmer
Institute of Computational Perception, Johannes Kepler University Linz, Linz, Austria and Johannes Kepler University Linz, Linz, Austria
Abstract
This technical report contains a detailed summary of our submissions to the Unsupervised Anomalous Sound Detection under Domain Shifted Conditions Task for Machine Condition Monitoring of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events 2021 (DCASE). Our goal was to learn out-of-distribution (OOD) detectors without access to OOD data, i.e., we trained only on recordings of undamaged machines. To this end, we employed a range of popular unsupervised anomaly detection methods based on auxiliary classification, density estimation, and reconstruction error. OOD detectors were trained for each of the seven machine categories included in the development dataset. We then showed that the OOD detectors’ performance was enhanced by utilizing metadata labels and other machines’ regular sounds as proxy outliers. To further improve detection performance under domain-shifted conditions, we fine-tuned the auxiliary classifiers to semantically align the hidden representations of source and target domain, using the limited target domain data. In addition to this technical description, we release our complete source code to make our submission fully reproducible.
System characteristics
Classifier | Ensemble, MADE, MAF, ResNet |
System complexity | 144900000, 228200000, 421372000, 46200000 parameters |
Acoustic features | log-mel energies |
Decision making | average |
Subsystem count | 3 |
COMBINE MAHALANOBIS DISTANCE, INTERPOLATION AUTO ENCODER AND CLASSIFICATION APPROACH FOR ANOMALY DETECTION
Yuya Sakamoto and Naoya Miyamoto
Fixstars Corporation, Tokyo, Japan
Sakamoto_Fixstars_task2_1 Sakamoto_Fixstars_task2_2 Sakamoto_Fixstars_task2_3 Sakamoto_Fixstars_task2_4
COMBINE MAHALANOBIS DISTANCE, INTERPOLATION AUTO ENCODER AND CLASSIFICATION APPROACH FOR ANOMALY DETECTION
Yuya Sakamoto and Naoya Miyamoto
Fixstars Corporation, Tokyo, Japan
Abstract
This paper is a technical report of the method we submitted to DCASE 2021 Challenge Task 2. In our method, one sample is converted into a time-series log-mel-spectrogram similar to the Autoencoder-based baseline. For the feature vector obtained from this log-mel-spectrogram, 3 types of anomaly detection models, section ID classification, interpolation deep neural network and mahalanobis distance are constructed, and the final degree of anomaly is calculated as an ensemble of 3 models. In this task, it is necessary to deal with the domain shift problem, which has different characteristics between training data and test data. We addressed this problem by absorbing the difference in the mean of log-mel-spectrogram features between domains.
System characteristics
Classifier | IDNN, Mahalanobis distance, Section ID classification |
System complexity | 184320, 301315 parameters |
Acoustic features | log-mel energies |
Subsystem count | 2, 3 |
Anomaly Sound Detection Using Essemble of Autoencoders
Ee-Leng Tan, Santi Peksi, and Nguyen Duy Hai
EEE, Nanyang Technological University, Singapore, Singapore
Tan_NTU_task2_1
Anomaly Sound Detection Using Essemble of Autoencoders
Ee-Leng Tan, Santi Peksi, and Nguyen Duy Hai
EEE, Nanyang Technological University, Singapore, Singapore
Abstract
This technical report outlines our solution to task 2 of the detection and classification of acoustic scenes and events (DCASE) 2021 challenge. The objective of this task is to identify anomalous sounds using an anomaly detector trained with normal sound only and to avoid identifying normal sounds that deviate from the operating condition of the normal sounds in the training dataset as anomalous sounds. Our approach is based on an assemble of autoencoders with different network architectures targeted to different machine types.
System characteristics
Classifier | AE |
System complexity | 2,415,060 parameters |
Acoustic features | log-mel energies |
Data augmentation | Guassian noise, frequency shifting |
Decision making | Static classifier selection |
Subsystem count | 3 |
Unsupervised Anomalous Sound Detection by Siamese Network and Auto-Encoder
Jan Tozicka, Karel Durkota, and Michal Linda
NeuronSW SE, Prague, Czech Republic
Tozicka_NSW_task2_1 Tozicka_NSW_task2_2 Tozicka_NSW_task2_3 Tozicka_NSW_task2_4
Unsupervised Anomalous Sound Detection by Siamese Network and Auto-Encoder
Jan Tozicka, Karel Durkota, and Michal Linda
NeuronSW SE, Prague, Czech Republic
Abstract
This paper describes our submission to the DCASE 2021 challenge Task 2 ”Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring under Domain Shifted Conditions.” Acoustic-based machine condition monitoring is a challenging task with a very unbalanced training dataset. In this submission, we propose two methods for anomaly detection and then their combination. The first method is based on feature extractor using Siamese Network with triplet loss and KNN for the actual anomaly detection. The second method uses very small auto-encoder on top of the OpenL3 embeddings. The combination of these two approaches selects the best performing method for each machine type. This is a novel approach and have not been used by NeuronSW SE so far.
System characteristics
Classifier | AE, KNN |
System complexity | 10629898, 1576834, 9053064 parameters |
Acoustic features | log-mel energies |
System embeddings | OpenL3, Siamese Network, Siamese Network, OpenL3 |
DCASE 2021 TASK 2: ANOMALOUS SOUND DETECTION USING CONDITIONAL AUTOENCODER AND CONVOLUTIONAL RECURRENT NEURAL NETW
Wei-Lin Liao, Tsung-Han Wu, Shu-Yu Chen, Yun-Shing Wu, Chia-Yin Chen, Cai-Yu Yuan, Chung-Che Wang, and Jyh-Shing Roger Jang
Dept. of Mechanical Engineering, National Taiwan Univ., Taipei, Taiwan and Dept. of Computer Science and Information Engineering, National Taiwan Univ., Taipei, Taiwan and FinTech Center, National Taiwan Univ., Taipei, Taiwan
Wang_NTU_task2_1 Wang_NTU_task2_2 Wang_NTU_task2_3 Wang_NTU_task2_4
DCASE 2021 TASK 2: ANOMALOUS SOUND DETECTION USING CONDITIONAL AUTOENCODER AND CONVOLUTIONAL RECURRENT NEURAL NETW
Wei-Lin Liao, Tsung-Han Wu, Shu-Yu Chen, Yun-Shing Wu, Chia-Yin Chen, Cai-Yu Yuan, Chung-Che Wang, and Jyh-Shing Roger Jang
Dept. of Mechanical Engineering, National Taiwan Univ., Taipei, Taiwan and Dept. of Computer Science and Information Engineering, National Taiwan Univ., Taipei, Taiwan and FinTech Center, National Taiwan Univ., Taipei, Taiwan
Abstract
This technical report describes our methods to Task 2 of the DCASE 2021 challenge: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions. We use reconstruction error of a conditional autoencoder and 1 - classification confidence of a classifier as anomaly scores.
System characteristics
Classifier | CAE, CRNN |
System complexity | 31989511, 663783, 7719648, 7916544 parameters |
Acoustic features | log-mel energies |
DATA AUGMENTATION AND CLASS-BASED ENSEMBLED CNN-CONFORMER NETWORKS FOR SOUND EVENT LOCALIZATION AND DETECTION
Shuo Wang, Zihao Li, Yuxuan Zhang, Kejian Guo, Shijin Chen, and Yan Pang
Electronic, Electrical and Communication Engineering, Beijing, China
Wang_UCAS_task2_1 Wang_UCAS_task2_2 Wang_UCAS_task2_3 Wang_UCAS_task2_4
DATA AUGMENTATION AND CLASS-BASED ENSEMBLED CNN-CONFORMER NETWORKS FOR SOUND EVENT LOCALIZATION AND DETECTION
Shuo Wang, Zihao Li, Yuxuan Zhang, Kejian Guo, Shijin Chen, and Yan Pang
Electronic, Electrical and Communication Engineering, Beijing, China
Abstract
In the industrial field, the anomaly detection of mechanical systems has played an important role. This technical report uses four modified autoencoders (AEs) to detect abnormal conditions of different machines in DCASE2021 Task 2. AE has been widely used in image reconstruction due to its excellent generalization ability. The reconstruction error can be used to evaluate the abnormal value of the machine condition when the development set only provide the normal mechanical sound signals. The performance of the anomaly detection system is evaluated by the area under the receiver operating characteristic curve (AUC) and partial-AUC (pAUC) scores. Finally, the experimental results show that the presented models can improve AUC and pAUC compared to the baseline system.
System characteristics
Classifier | AE, IAE, IAVE, VAE |
System complexity | 1,854,376, 1,860,008, 3,714,384, 630,072 parameters |
Acoustic features | log-mel energies |
Decision making | average |
Utilizing Sub-Cluster AdaCos for Anomalous Sound Detection under Domain Shifted Conditions
Kevin Wilkinghoff
Communication Systems, Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Wachtberg, Germany
Wilkinghoff_FKIE_task2_1 Wilkinghoff_FKIE_task2_2 Wilkinghoff_FKIE_task2_3 Wilkinghoff_FKIE_task2_4
Utilizing Sub-Cluster AdaCos for Anomalous Sound Detection under Domain Shifted Conditions
Kevin Wilkinghoff
Communication Systems, Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Wachtberg, Germany
Abstract
Anomalous sound detection systems based on sub-cluster AdaCos yield state-of-the-art performance on the DCASE 2020 dataset for anomalous sound detection. In contrast to the previous year, the dataset belonging to task 2 “Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions” of the DCASE challenge 2021 contains not only source domains with 1000 normal training samples for each machine but also so-called target domains with different acoustic conditions for which only 3 normal training samples are available. To address this additional problem, a novel anomalous sound detection system based on sub-cluster AdaCos for the DCASE challenge 2021 is presented. This system is trained to extract embeddings whose distributions are estimated in different ways for source and target domains, and utilize their negative log-likelihoods as anomaly scores. In experimental evaluations, it is shown that the presented system significantly outperforms both baseline systems on source and target domains of the development set.
System characteristics
Classifier | CNN, GMM, ensemble |
System complexity | 1189557471, 1217299311, 609044474 parameters |
Acoustic features | log-mel energies |
Data augmentation | mixup |
Decision making | average, sum |
Subsystem count | 20, 40 |
VAE-based anomaly detection with domain adaptation
Jun’ya Yamashita, Hayato Mori, Satoshi Tamura, and Satoru Hayamizu
Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan and Faculty of Engineering, Gifu University, Gifu, Japan
Yamashita_GifuUniv_task2_1 Yamashita_GifuUniv_task2_2
VAE-based anomaly detection with domain adaptation
Jun’ya Yamashita, Hayato Mori, Satoshi Tamura, and Satoru Hayamizu
Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan and Faculty of Engineering, Gifu University, Gifu, Japan
Abstract
This paper presents our anomaly detection scheme for DCASE 2021 Challenge, using a Variational AutoEncoder (VAE) with a framework of Interpolation Deep Neural Network (IDNN) and fine tuning as an adaptation method. VAE is built using normal training data for each machine, to predict a frame from its neighbor frames just like IDNN. In addition, we involve a kind of high-pass filter and a scheme to preserve particular frames or frequencies having larger errors. Finally an anomaly score is calculated based on reconstruction error in VAE. We further apply fine tuning to target data recorded in different settings, to adapt a model.
System characteristics
Classifier | CNN, VAE |
System complexity | 1254167 parameters |
Acoustic features | log-mel energies |
Unsupervised Anomalous Sound Detection Using Denoising-Detection System Under Domain Shifted Conditions
Chenxu Zhang, Yao Yao, Rui Qiu, Shengchen Li, and Xi Shao
NJUPT, Nanjing, China and XJTLU, Suzhou, China
Zhang_NJUPT_task2_1
Unsupervised Anomalous Sound Detection Using Denoising-Detection System Under Domain Shifted Conditions
Chenxu Zhang, Yao Yao, Rui Qiu, Shengchen Li, and Xi Shao
NJUPT, Nanjing, China and XJTLU, Suzhou, China
Abstract
The DCASE2021 Challenge Task2 is to develop an unsupervised detection system of anomalous sounds for seven types of machines under domain shifted conditions. A common challenge in the detection of anomalous sounds for machine is to identify the diversity of malfunctioning sounds and the scarcity of malfunctioning sounds samples between normal and anomalous condition. In this paper, an unsupervised denoising-detection system is proposed to perform this task by: (1) removing noise in each recording to obtain signal that is more related to this task; (2) training an overfitting model by leveraging the information of sections in each machine type. The experimental evaluation demonstrates that the proposed system outperforms the provided baseline system across majority of machine types in both source domain and target domain.
System characteristics
Classifier | AE, MobileNetV2 |
System complexity | 2933855 parameters |
Acoustic features | log-mel energies |
Data augmentation | Audio denoising, Mixup |
Subsystem count | 2 |
External data usage | train denoising model |
ENSEMBLE OF ARCFACE BASED SYSTEMS FOR UNSUPERVISED ANOMALOUS SOUND DETECTION UNDER DOMAIN SHIFT CONDITIONS
Qiping Zhou
R&D department, PFU Shanghai Co., LTD, Shanghai, China
Zhou_PSH_task2_1 Zhou_PSH_task2_2 Zhou_PSH_task2_3 Zhou_PSH_task2_4
ENSEMBLE OF ARCFACE BASED SYSTEMS FOR UNSUPERVISED ANOMALOUS SOUND DETECTION UNDER DOMAIN SHIFT CONDITIONS
Qiping Zhou
R&D department, PFU Shanghai Co., LTD, Shanghai, China
Abstract
In this report, we outline our ensemble of models solution for the DCASE 2021 challenge’s Task 2 (Unsupervised Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions) [1]. The basic approach follows our DCASE2020 Task 2 system [2]. In 2021 we diversify our CNN backbone architecture and input size. The final submissions are the ensemble of 6 models for each machine type. Models are trained on source domain data and fine-tuned on target domain data to improve the performance on the domain shifted data.
System characteristics
Classifier | ArcFace, CNN, ensemble |
System complexity | 58316344 parameters |
Acoustic features | spectrogram |
Data augmentation | mixup |
Decision making | average, maximum |
Subsystem count | 6 |